

Imagerie SAR

F. Tupin, J.-M. Nicolas

- I : Quelques images
 - II : Principes et Historique
 - **III : Formation d'une image**
- IV : Aspects géométriques
- V : Aspects radiométriques
- VI : Applications

page 2 Département TSI

GoogleEarth en Russie (Volvograd)

Zone plate

EXEM Terrasar-X : au même endroit

Zone plate

Stripmap HH 51° 19/06/2007

ioi le radar ?

iers les nuages...

Le suivi des glaces arctiques ©ASC

Image optique à la verticale : où est le relief ?

Filtre « multivues » sur image TSX visée latérale depuis l'ouest

Visée latérale : sensible au relief

II: Principes et historique

page 13 Département TSI

- Principe du radar imageur
 - Émission d'ondes électro-magnétiques
 - Enregistrement du signal rétro-diffusé

- Domaine des hyper-fréquences 1-300GHz (0.1-30cm)
- Radar à visée latérale et monostatique

Frequency

 Fenêtre du visible
 Ondes submétriques

Mais surtout :

- Capteur actif (indépendant du soleil)
- Traverse les nuages
- Imagerie cohérente

Particularités des systèmes radars

Systèmes tous temps (transparence des nuages) et de jour comme de nuit (système actif)

- Perspectives différentes des systèmes optiques (visée latérale, échantillonnage en distance)
- Possibilités de pénétrer la végétation et certaines surfaces

Département TSI

- Principes posés par Wiley (1951)
- Mise en œuvre pour l'imagerie de la surface lunaire (Apollo 17)
- L'expérience américaine SEASAT (1978)
- Les réalisations soviétiques (Kosmos et Almaz)
- L'utilisation de la navette : SIR(1982,1984 et 1994) et SRTM (2000)
- L'Europe : ERS (1991,1995) et Envisat (2002)
- Le Japon (1992,2006) et le Canada (1995, 2007)
- Les capteurs métriques : Terrasar-X (2007), CSK (2008)

Les constellations : Orfeo-Pleiades (2012) et Sentinel

Les RSO satellitaires civils Première génération

		cycle	altitude	bande
ERS	1991	35 j	780 km	С
JERS	1992	46 j	580 km	L
RADARSAT-1	1996	25 j	798 km	С
ENVISAT	2002	35 j	780 km	С

Les RSO satellitaires civils Seconde génération

		cycle	altitude	bande
ALOS	2006	46 j	580 km	L
Terrasar-X	2007	11 j	514 km	Х
Cosmo SKymed (CSK)	2007	16j	619 km	X
Radarsat-2	2007	26 j	780 km	С

page 21 Département TSI

留意 で Terrasar-X (DLR)

Anzahl der Satelliten, 5, identisch Bahnebenen, 3 Mittlere Höher ca. 500 km, optimiert für höhere Auflösung Bahninklination, ca. Polar, alle Anzahl der Satelliten in den Bahnebenen, Orbit 1: 2 Satelliten Orbit 3: 2 Satelliten Orbit 3: 2 Satelliten Winkel zwischen den Bahnebenen und Phasenwinkel der Satelliten optimiert für eine kürzest mögliche Systemantwortzeit

3 orbites pour améliorer le temps de revisite

III : Formation des images RSO

page 26 Département TSI

- Principe du radar imageur
 - Émission d'ondes électro-magnétiques
 - Enregistrement du signal rétro-diffusé

- Domaine des hyper-fréquences 1-300GHz (0.1-30cm)
- Radar à visée latérale et monostatique

Les deux principes fondamentaux du RSO

- Aspects « signal » : mesure du temps de vol, donc d'une distance.
- Aspects « antenne » : pouvoir séparateur angulaire
 - Deux dimensions : <u>une image</u>

Formation des images radar

Case temps, case distance, case sol Echantillonage $\Delta t \leftrightarrow \Delta r \leftrightarrow \Delta x$

Résolution en distance (ou radiale ou "en range")

Echolocation : signal bref (T le plus petit possible!) <u>MAIS</u> :contrainte de puissance !!

⇒Emission d'une rampe en fréquence

Solution : le filtrage adapté

0.8
Chirp et sinus cardinal de même bande Cas d'ERS

Chirp

- Durée vraie : 37 μs
- 18 MHz ↔ 11 Km (5.5 km en trajet A/R)

Sinus Cardinal :

- Durée utile : 55 ns (=1/B)
- 18 MHz \leftrightarrow 16 m (7.9 m en trajet A/R)

- On raisonne comme si le signal émis était un sinus cardinal
- **La durée utile du sinus cardinal est** τ
- La bande passante du sinus cardinal est

$$B = \frac{1}{\tau}$$

Le chirp émis a une durée

$$T = \frac{1}{K\tau}$$

La résolution radiale d'un capteur RSO est lié à sa bande passante

	Bande passante
ERS	15.55 MHz
Radarsat 1	30 MHz
Terrasar-X	300 MHz
ESAR	120 MHz
Ramses	600 MHz 1200 MHz

EXAMPL'antenne synthétique

Résolution azimutale

- Ouverture angulaire : $\beta = \lambda/D$ •
- Résolution à la distance R : dy=R ß •

AN ERS-1 : dy=4.5km !!!

L'avion se déplace en acquérant des données le long de sa trajectoire

Antenne en visée latérale

page 41 Département TSI

L'antenne réelle est trop petite : elle « voit » une trop grande zone

L'avion se déplace en acquérant des données le long de sa trajectoire

Un même point est vu depuis plusieurs positions de l'antenne

L'antenne *synthétique* « voit » une **petite** zone →Traitement d'antenne

EXAMPL'antenne synthétique

Attention : on se place dans le plan trajectoire capteur / point imagé mais la visée n'est pas verticale!

page 44 Département TSI

page 45 Département TSI

Antenne synthétique Utilise le mouvement du satellite

Vue de dessus

Wisibilité d'une cible : lobe d'antenne

Juxtaposer des antennes sur L'

Résolution de l'antenne synthétique

Ne dépend pas du critère de résolution (premier zéro, 1,22 …)

Résolution :
$$\frac{D}{2}$$

Ne dépend pas de la distance à la cible !!
 Ne dépend pas de la longueur d'onde

Dépend seulement de la taille de l'antenne !

page 50 Département TSI

Données brutes : amplitude et phase

page 51 Département TSI

page 52 Département TSI

Filtrage adapté en distance (chirp)

page 53 Département TSI

Synthèse d'ouverture !!

Filtrage adapté en range (synthèse d'ouverture)

Traitement « multivue »

Moyennage de plusieurs pixels pour améliorer la lisibilité

En range: 習習習習 toolbox « s	signal »	$\delta r = \frac{c}{2B}$	$\Delta r = \frac{1}{2}$	c B _e
			ERS	TSX
Λrββ <tr< td=""><td>Fréquence d'échantille</td><td>onnage</td><td>23⁻ 18,96 MHz</td><td>109 MHz</td></tr<>	Fréquence d'échantille	onnage	23 ⁻ 18,96 MHz	109 MHz
	∆r : case distance		7,91 m	1,37 m
	∆x : case sol		20,4 m	2,74 m
	Bande passante		15,55 MHz	100 MHz
	δr : Résolution range		9,65 m	1,5 m
	δx : Résolution sol		24,7 m	3,0 m
$\Delta x = \frac{\Delta r}{1 + c} = \frac{c}{2r}$	 Projeter au sol Dépend de l'incidence 			
$\sin\theta 2E$	$S_e \sin \theta$	locale		25番47

IV : Aspects géométriques

page 58 Département TSI

Caractéristiques du signal radar

- Grandeur physique caractéristique des surfaces : coefficient de rétrodiffusion
- Fonction des paramètres :
 - Propriétés électro-magnétiques
 - Rugosité
 - Géométrie
 - Polarisation

Comment voit-on une scène sur une image RSO?

- Système imageur en visée latérale :
 - Case temporelle et résolution « au sol »
 - Effets d'ombres et de « repliement »
- Analyse des effets de relief
- Divers modes d'acquisition

δr: résolution radiale (case temporelle)δx: résolution au sol (« ground range »)

Geometrical distorsions Variable incidence angle: variable resolution

 θ =6°, dx

 θ =60°, dx/10

Airborn system: same δr , variable δx along the swath

- résolution, voire repliement
- pentes négatives : amélioration de la résolution, voire ombrage.

page 65 Département TSI

Example of a vertical post

Increased effects for buildings: vertical walls

Length: 232m
Height: 146m
Slope: 51°

Backscattering and geometry

An object is defined by its radar cross section:

- Depends on the material (roughness, di-electric properties,...)
- Depends on the shape (geometry and relative orientation compared to the incidence direction)

20+20'= π >> backscattered wave parallel to incident wave

Ground-wall corner (smooth surfaces)

Trihedral configurations

- Chimneys
- Balconies
- Sidewalks
- Parapets....

Building backscattering

high resolution

Comparaison optique-radar :

Influence of the viewing direction

X-SAR image of Brooklyn, New-York, resolution 6.5m

Exemple sur Jussieu : données ERS, incidence entre 20° et 25°

Sensibilité à la polarisation

- Polarisation de l'onde émise : choix du capteur
- Polarisation de l'onde rétrodiffusée : fonction des mécanismes de rétrodiffusion dominants (volumique, surfacique, …) liés aux matériaux
- Cas non polarimétrique (ERS, RadarSat,...) :
 - Onde émise avec une certaine polarisation (horizontale ou verticale)
 - Mesure de l'onde à la réception avec la même polarisation
- **Cas polarimétrique (missions SIR, ENVISat) :**
 - mesures des 4 combinaisons (HH, HV, VH, VV)
 - analyse des mécanismes de rétrodiffusion (Bragg, Fresnel, volume,...)

Comparison between HH and HV images

Composition of TerraSAR-X images HH and HV polarizations

Potentiel multi-polarisation

Polarisation VV

Polarisation HH

Comparaison optique / radar

國務國際 Comparaison optique / radar

國務國際 Comparaison optique / radar

Comparaison optique / radar

Lambesc : TSX et SPOT5 Structures urbaines

•Mais.... Quel est le coté du bateau qui est montré sur l'image ?

Département TSI

V: Aspects radiométriques

page 87 Département TSI

Chaque pixel est décrit par :

- Une partie réelle
- Une partie imaginaire
- Autre représentation
 - Amplitude (module) ou Intensité (module au carré)
 - phase

Rétrodiffusion : la nature des objets

- Un objet est défini par sa RCS (Radar Cross Section) :
 - Dépend du matériau
 - Dépend de la forme
- Plusieurs objets sont dans le même pixel :
 - Interférences (constructives ou destructives)
 - Notion de « speckle » (chatoiement) pour des zones « optiquement » homogènes

Réflectivité :

- Proportionnelle à la RCS
- Mesurée par le capteur radar en intensité = paramètre physique des cibles

Cible unique petite isotrope :

- Omnidirectionnelle
- Cible quelconque :
 - Effets de directivité
- Beaucoup de cibles dans une cellule de résolution :
 - Speckle

警察 (Market Les bases du speckle (chatoiement)

- Caractéristique d'un système imageur à base d'ondes cohérentes
- Echographie médicale, images Sonar, laser, Radar
- Suppose qu'il existe un grand nombre de cibles dans la cellule de résolution

Les a_i sont des valeurs indépendantes Les ϕ_i sont des valeurs indépendantes

Speckle et statistiques

Nombreux réflecteurs élémentaires dans une cellule de résolution Addition cohérente des ondes : phénomène d'interférences

- Considéré comme une variable aléatoire
- Sous certaines conditions : modèle de Goodman
 - Calcul de ddp en intensité, en amplitude et en phase
- Intérêt : prédictions des performances des outils (pfa, pd, etc.)
- Limites : ne modélise bien que certains types de surfaces (rugueuses par rapport à λ)

- L'amplitude d'une zone « homogène » physiquement n'a aucune raison d'être constante
- La phase d'un pixel est décorrélée avec les phases de ses voisins
- Aspect « statistique » du speckle

EXEM Le chatoiement de Goodman - résultats

- •La partie réelle suit une loi normale $N(0,\sigma)$ •La partie imaginaire suit une loi normale $N(0,\sigma)$
 - La phase est uniforme
 L'amplitude suit une loi de Rayleigh ⇔ L'intensité suit une loi Gamma

page 99 Département TSI

- Applications terrestres
- Applications maritimes
- Interférométrie
 - MNT
 - Mouvements

Applications terrestres (1)

Surveillance agricole (souvent utilisation conjointe radar / optique)

- Suivi de la croissance des cultures et prévision des récoltes (polarimétrie : signal différent suivant l'âge des plans)
- Contrôle de la proportion terres cultivées / jachère

Surveillance et prévention des inondations

• Bonne visibilité des zones inondées sur les images radar

Surveillance de la déforestation des forêts tropicales

page 102 Département TSI

- Détection et surveillance des marées noires et des dégazages sauvages
- Surveillance des mouvements des glaces

Applications : interférométrie

- Principe de l'interférométrie
- Interférométrie et MNT
- Interférométrie différentielle
 - Suivi des mouvements de terrain (volcans, failles)
 - Réseau de points (permanent scatterers)

SRTM Un capteur « 2 antennes » : SRTM

Deux antennes

page 105 Département TSI

Un capteur, une antenne, plusieurs passes temporelles

Terrasar-X : © DLR

page 106 Département TSI

Deux antennes placées en deux endroits différents

- Sol plat : recalage d'images nécessaire
- En présence de relief : effets stéréoscopiques. Le RSO est bien adapté aux mesures de relief
 - Petite base : imagerie cohérente.
 - Grande base : Radargrammétrie (stéréovision « classique »)
- Spécificité du RSO « multitemporel » : effets liés aux modifications du sol entre deux acquisitions
 - Petits déplacements (échelle de λ) : phase (analyse d'image complexe)
 - Trois acquisitions et plus : interférométrie différentielle

- Deux objets A et B
- Dans la même case distance pour l'antenne noire
- •Dans la même case distance de l'antenne rouge
- •→ interférométrie

Grande base Deux antennes avec des incidences différentes

- Deux objets A et B
- Dans la même case distance pour l'antenne noire
- •Dans deux cases distance de l'antenne rouge !!
- •→stéréoscopie

Limites de l'interférométrie

Altitude d'ambiguïté:

• Valeur de H pour laquelle la phase s'enroule

$$h_{amb} = \frac{\lambda R \sin \theta}{2B_{orth}}$$

Base critique

 Valeur de la base à partir de laquelle la différence d'angle empêche la suppression de la « phase propre »

三多記 Effets de la longueur d'onde

SIR-C L, C BAND INTERFEROGRAMS FT. IRWIN, CALIFORNIA

page 115 Département TSI

Market States interférométrie : MNTs

Précision : dépend de l'altitude d'ambiguïté (de 10m à 100m en fonction de la base) et de la précision de la mesure de phase

Limites

- En multi-passes : décorrélation temporelle, perturbations atmosphériques
- Limites géométriques : repliements et ombres
- Base critique de décorrélation des images (ERS-1 : 1000m)

Base of the second sec

$$\phi = \phi_{orb} + \phi_{topo} + \phi_{def} + \phi_{atm} + \phi_{res} + \phi_n$$

Principe :

- Suppression des franges topographiques
 Utilisation d'un MNT ou d'une 3eme image SAR
- Franges résiduelles : mouvement

Précision : inférieure au centimètre (en théorie 3mm pour une frange/10)

page 118

Principe :

- Réseau de points stables (pas de décorrélation temporelle) structures urbaines, critère intensité-
- Bonnes connaissances de tous les paramètres de prise de vue
- Inversion du système tenant compte de la topographie, du mouvement, des perturbations atm.

(possibilité d'utiliser de très grandes bases)

-33 cm/yr

0 cm/yr

Etude des glissements de terrain : la Clapière

Franges révélant le glissement de terrain

Tremblement de terre de BAM Images ENVISAT, B=50cm !!

page 126 Département TSI

page 127