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Where to start from?

* Tons of Plenary Talks and Overview Articles
- Fulfilling dream of ubiquitous wireless connectivity

» Expectation: Many Metrics Should Be Improved in 5G
- Higher user data rates
- Higher area throughput
- Great scalability in number of connected devices
- Higher reliability and lower latency
- Better coverage with more uniform user rates
- Improved energy efficiency




20 Advanced Mathematical Tools for Engineering
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Discipline of Random Matrix Theory
Discipline of Free Probability Theory
Discipline of Stochastic Geometry
Discipline of Discrete Mathematics
Discipline of Statistics

Discipline of Game Theory

Discipline of Mean Field Theory
Discipline of Information Theory
Discipline of Signal Processing
Discipline of Queuing Theory
Discipline of Estimation Theory
Discipline of Decision theory

Discipline of Probability Theory
Discipline of Optimization Theory
Discipline of Statistical Mechanics
Discipline of Factor Graphs

Discipline of Control Theory

Discipline of Learning theory
Discipline on Partial Differential Equations Theory
Discipline of Optimal Transport Theory



1948: Cybernetics and Theory of
Communications

"A Mathematical Theory of Communication”, Bell System Technical
Journal, 1948, C. E. Shannon

“Cybernetics, or Control and Communication in the Animal and the
Machine”, Herman et Cie/The Technology Press, 1948, N. Wiener

rétroaction
SIGMAL RECEIVED (feedback)

—
SIGMAL :: "

>

entrée sortie

MOISE
SOURCE
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60 years later..the network paradigm...

FEEDBACK

We must learn and control the black box

e within a fraction of time
e with finite energy.
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Basics

C, = log(1+P/c?)
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Basics

X = X(1) + x(2)

X(1) X(2) C2“)=|0g(1+P/202)
P/2 [}U 0 ep2

C,? = log(1+P/20?)

OZEGI
SRR |

C, =C,M + C,12) = 2log(1+P/20?)

y(1) Y(2)
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C, and C,, which is better?

C,=log(1+P/o?) v.s. C,=2log(1+P/20?)
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e Lesson learned:
— High SNR regime
— No need for transmit and receive cooperation
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Nature

P/2

Y2) = b X(1) + d X2

Y1) = 3 X(1) + ¢ X2
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Recelver cooperation
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YO = o, X Y@ = a, X
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Transmitter cooperation

P/2

Y2) = b X(1) + d X2

Y1) = 3 X(1) + ¢ X2
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Transmitter cooperation

fl(X(l)r X(Z)Ial blcld) fz(x(l)’ X(z)ra; blcld)
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“We build too many walls and not enough bridges.”
Isaac Newton
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Mumber of TX/RX antennas

Network MIMO can greatly
increase the efficiency of multiple

o antennas in cellular networks
SINR = Signal ~ 0 dB with-interference
Noise + Interference ~ 18 dB without interference
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Sum rate performance
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e For large SNR, the sum rate scales as R, ~ M log SNR with perfect
channel state information at Tx and Rx (CSIT/R)

e The capacity is achieved by a combination of MMSE beamforming and
interference pre-cancelation encoding, Dirty-paper coding
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Sum rate performance
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*Recent results show that a naive ZF with training and analog/digital
feedback can indeed achieve the full multiplexing.
*The number of feedback bits should scale as log(SNR).
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Our Goal: Self-Learning Base
Station

fl(x(l)r X(Z)Ial b)

Y2) = b X(1) + d X2

Y1) = 3 X(1) + ¢ X2
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Our Goal: Self-Learning Base
Station

£, (X1, X, 3,b) f, (X, X2),c,d)

Y@ = by g X(2)

Y = o XKL ¢ X@)
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Learning Equilibria in Cognitive Radio Networks

Learning lterative Steps:
@ Choose action ax(t) ~ m«(t). ax(1)
@ Observe game outcome, e.g., T%

o /—\
a_(t) A W, h(t)

Uk(ak(t), a—k(t)).

@ Improve m(t + 1). (1) @« (1)
(1) O (1)
Thus, we can expect that: Vk € I,
m(t) =5 wr (6)
U (i (b), m_k(1)) == O (mh, 7" %) (7)
where, ©° = (71,..., ™k ) is a NE strategy profile.
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Shannon’s Small Self-Learning Mouse

Computers and Automata”
CLAUDE E. SHANNONY, FELLOW, IRE

advances in human knowledge.—The Editor

C. E. Shannon first became known for a paper in which he applied Boolean Algebra to relay
switching circuits; this laid the foundation for the present extensive application of Boolean Algebra
to computer design. Dr. Shannon, who is engaged in mathematical research at Bell Telephone
Laboratories, is an authority on information theory. More recently he received wide notice for his
ingenious maze-solving mechanical mouse, and he is well-known as one of the leading explorers
into the exciting, but uncharted world of new ideas in the computer field.

The Editors asked Dr. Shannon to write a paper describing current experiments, and specula-
tions concerning future developments in computer logic. Here is a real challenge for those in
search of a field where creative ability, imagination, and curiosity will undoubtedly lead to major

Summary—This paper reviews briefly some of the recent de-
velopments in the field of and ical i
A number of typical machines are described, including logic ma-
chines, game-playing machines and learning machines. Some theo-

retical i and devel are d d, such as a com~
parison of computers and the brain, Turing’s formulation of comput-
ing hines and von N ’s models of self-reproducing ma-
chines.

* Decimal classification: 621.385.2. Original manuscript received
by the Institute, July 17, 1953.
1 Bell Telephone Laboratories, Murray Hill, N. J.

HUAWEI TECHNOLOGIES CO.,, LTD.

INTRODUCTION

AMUEL BUTLER, in 1871, completed the manu-
S script of a most engaging social satire, Erewhon.

Three chapters of Erewhon, originally appearing
under the title “Darwin Among the Machines,” are a
witty parody of The Origin of Species. In the topsy-
turvy logic of satirical writing, Butler sees machines as
gradually evolving into higher forms. He considers the
classification of machines into genera, species and vari-
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Computers and Automata’
CLAUDE E. SHANNONT, FELLOW, IRE

C. E. Shannon first became known for a paper in which he applied Boolean Algebra to relay
switching circuits; this laid the foundation for the present extensive application of Boolean Algebra
to computer design. Dr. Shannon, who is engaged in mathematical research at Bell Telephone
Laboratories, is an authority on information theory, More recently he received wide notice for his
ingenious maze-solving mechanical mouse, and he is well-known as one of the leading explorers
into the exciting, but uncharted world of new ideas in the computer field.

The Editors asked Dr. Shannon to write a paper describing current experiments, and specula-
tions concerning future developments in computer logic. Here is a real challenge for those in

search of a field where creative ability, imagination, and curiosity will undoubtedly lead to major
advances in human knowledge,—Thke Editor

Summary-—'l‘hls paper reviews bneﬂy some of the recent de- INTRODUCTION
o ' o e SAMUEL BUTLER, in 1871, completed the manu-

script of a most engaging social satire, Erewhon.
Three chapters of Erewhon, originally appearing
nder the title “Darwin Among the Machines,” are a
itty parody of The Origin of Species. In the topsy-
turvy logic of satirical writing, Butler sees machines as

by :hgﬁgl?nﬂxg?s]ﬁ;af‘;o%ggl +385.2. Original manuscript received  gradually evolving into higher forms. He considers the

t Bell Telephone Laboratories, Murray Hill, N. J. classification of machines into genera, species and vari-

tion of comput-

ing machines and von Neumann’s models of self-reproducing ma-

HUAWEI TECHNOLOGIES CO., LTD. Huawei Proprietary - Restricted Distribution Page 27 g?" HUAWEI



Motivation: How To Tackle the Challenge

Basic Turbo Deconding Concept:

e Two decoders iterate beliefs (probability measures) about the received sequence.
e The iteration process produces a countinous improvement of the beliefs
e The process converges when both decoders produce the same beliefs.

{ay....ug} (?}1.....?i_.\.-]| {f.'l..._.f.“bjl
'\_E'_/ i > ’ i \"_-.J
c
Outer Inner j Outer (m) Inner
¥ b
—{ Enc. |+ [] I+ Enec. T—:| Y—F{}{ | Dec. [ (%), Deec.

|

{{.I;rr4+1‘l{bj_]}

Pseudoposteriors
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Motivation: How To Tackle the Challenge

What about iterating with the transmitter?

e.g., To use ACK/NACK, BER or SINR feedback to iteratively improve a belief of the
optimal transmission configuration, given the existence of other CRs.

(ag..ag) (bpoby)  (e1..C)
N— — —— —
' Outer i Inner ° j \]/_ Outer {n:[.m}[:b-} Inner
—| Enc. [T |+ Enec. T Rx—{ Dec. —=—+ Dec.
("™ (0))
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ACK-NACEK, BER, SINR
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Vision
*1Gbps/Km? for 10 MHz
*Environment constraints = <1W EIRP
*Constraint: ~10 W power consumption

Bell Labs lightradio antenna module - the
next generation small cell
(picture from www.washingtonpost.com)
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Let us go back to the MIMO paradigm...

FEEDBACK

We must learn and control the black box

e within a fraction of time
e with finite energy.

HUAWEI TECHNOLOGIES CO., LTD. Huawei Proprietary - Restricted Distribution Page 33 g!’é HUAWEI



Information transfer in MIMO flexible networks

y = Wx+n
—_—r i
— —
_‘.. _"
— -
—_— —
C = H(y)—H(y|x)

= logdet(meRy) — logdet (meR;)

Rate = log (%)

The rate is:
Cy = logydet(me(c’Iy + "ﬁ-"‘b‘e’”}j — log,det(meaIy)

1
= logydet(Iy + WW')
2 g
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Channel Modelling Perspective
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Where do we stand on Channel Modelling

Google search: "MIMO Wireless Channel Modelling”

e Over 15 000 publications on channel modelling
e Atarate of 10 papers per day, 1 500 days (nearly 4 years)!
e The models are different and many validated by measurements!

Three conflicting schools

e Geometry based channel models.
e Stochastic channel models based on channel statistics
o Do not model, use test measurements

Not even within each school, all experts agree on fundamental issues.
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How to increase YOUR number of publications
or how to increase the length and shrink the content...
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MIMO System Model

o

ha H
! !
i i
i i
i i
i i
s

The channel is linear, noise is additive

yv(u) = \/S:tR/ H,\ xn, (T)x(u — 7)d7T +n(u)

Y(f,u) = S;‘I—RHU w)X(f) + N(f)

i

u, f, SNR are respectively time, frequency and the SNR per receive antenna.
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My first experience in channel modelling

Suppose that you read a paper and find a "good model” (which complies with capacity
measurements for example) M represented by the structured matrix H.

Create the new model M, represented by the structured matrix H, = © H (where ® is a
unitary transform, Fourier matrix for example so that © represents some directions of
arrival).

Call it the double scattering model (and pretend that the ©® matrix represents the
information coming from scatterers to the receiving antennas)

You have also a very good model since:

SNR SNR
logdet(I + ——H,H,") = logdet(I + oHH"e™)
Ty TLg

SNR
— logdet(I + HH™)

Tt

The two models can predict very well capacity measurements. Which one of the models
should we choose?
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Occam’s razor

The razor states that:

o Entities are not to be multiplied without necessity.
e The simplest answer is usually the correct answer.

William Ockham, 1295-1349

General idea: When multiple competing theories have equal predictive powers, the
principle recommends selecting those that introduce the fewest assumptions and
postulate the fewest hypothetical entities Note: Occam’s razor (due to the franciscan friar

Ockham) is also known as the principle of parsimony.
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Information theory and channel modeling

Still, occam’s razor does not provide us the answer and has no theoretical background.

©H — H — Hi':.&';-f.
Questions information theory should answer:
e Why is Occam’s razor true?

o [f is true then what is the most adequate (parsimonious or less redundant or less
parametrized) representation of the channel?
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Model Comparison

How to compare models?

What is the right model, in other words how to choose between the set
{_ My, f'rirl, ceey f‘rir[{} of K models?

Different methods based on different metrics:

e Parameter estimation methods
¢ Mutual information
o Bayesian methods

Is there a universal metric?
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Model Comparison

Parameter Estimation methods

e The datais cut in two parts.
e The first part is used for estimation.
o The second part is used to test the model with respect to the mean square error.

Deficiencies:

e How does one cut the set of data?
o By adding more and more parameters, one can always fit the model to the data!
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Model Comparison

Mutual information compliance

e Explicit expressions of the mutual information are derived.

e Find the optimal parameters of the problem such as the model has the same mutual
information as measurements.

Deficiencies:

o Mutual information is a symmetric measure:
I(x;y) = I(y;x). (1)

o We can exchange transmitter and receiver without any change of mutual information
(although the model is different)!
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Bayesian Viewpoint

¢ Ranking of the models based on computing their likelihood.

o The method punishes models with too many parameters over those with fewer by the
fact that they are less likely to be true.

o |t can be proved that there is an optimum number of parameters when representing
information which fulfills Occam’s razor.
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Model Comparison

What is the right model?

Bayes rule gives the posterior probability for the i™ model according to:

P(Y | My, 1)

P(M; | Y. 1) = P(M; | D—p

For comparing two models M and M, one has to compute the ratio:

P(My|Y,I) P(My|I)P(Y | My,I)
P(M |Y,I) P(M|I) P(Y|M,I)

If  is the set of parameters on which is based the model, then
P(Y | M,I) = /P(Y,ﬂ' | M, Idw

_ /p(y |7, M, T)P(x | M, I)dn
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What is the right model?

Comparing with traditional methods
In traditional "advanced methods”, one maximizes the likelihood P(Y | &, M, I).
But what if both models have the same likelihood?

let us expand log P(Y | 7, M, I) around the maximum likelihood point
T = Wlmaﬁ ceey Wmmzu{}
1 & d*log(P), , o

. Ty 1 . - ax T —
2 4= dmidr (=T max) (7 =

max)

log P(Y | 7, M,I) = log P(Y | #rma, M, I)+

then near the peak a good approximation is a multivariate gaussian such as:
. - . Lir Amao T AT max)
PY |7®,M,I)= P(Y | o, M, I)e 2 max ) max

with the inverse covariance mairix defined as:

AL — d’? log(P)
" dridmd -

|/
(N3
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What is the right model?

A common misconception

Occam’s razor: Nature prefers simplicity!
o — 4 (r—#max) T A~ (&~ max)
PY|M,I) = PY | fmu, M, I) [ e 20" "M mp(w | M, Idm
= P(Y | Tmwx, M, )G(M, I)

Usually, the more model has parameters, the more P(w | M, I) is spread out and
G (M, I) decreases.

Indeed:
P(Tr,cx | M, I) = P{Tr \ JM,I,O:)P(O: \ JM,I)
< P(m| M, I, @)
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What is the right model?

There are three terms to compatre....

P(M |Y,I) P(M|I) P(Y | M,T)

P(M, |Y,I)  P(M,|I)P(Y | My, 1)
P(M | I) P(Y | ftma, M,I) G(M,I)
P(M; | I)P(Y | Fimas M1, I) G(My, 1)

Remark: The term % can be seen as the revenge of the measurement field scientist

over the mathematician. ft shows that modelling is both an experimental and theoretical
science and that the experience of the field scientist (which attributes the values of the

prior probabilities) does matter.
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Clearing up mysteries

Model validation is a question of trading adequacy for complexity.

Usual validation methods validate functionals (mutual information..) of the model and not
the model itself (transforming a multi-dimensional problem into a one dimensional
problem).

This explains why so many models comply with measurements!

Models have to be constructed in a consistent manner with the functionals of the model of
interest i.e marginalizing over the functionals should lead to consistent solutions.

A distribution probability consistent model (as we did) is for the case where we do not
know which functions we are interested in.
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Information and Complexity: One can know less but
understand more

e Should we take into account all the information provided, in other words, what
information is useful?

e From a bayesian point of view, we should consider all the available information BUT
there is a compromise to be made in terms of model complexity.

e Each information added will not have the same effect on the channel model and might
as well more complicate the model for nothing rather than bring useful insight.

o To assume further information by putting some additional structure would not lead to
incorrect predictions:

m However, if the predictions achieved with or without the details are equivalent
m Then this means that the details may exist but are irrelevant for the understanding of
our model
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Let us start...

Model Construction
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The i.i.d Gaussian model

The modeler would like to attribute a joint probability distribution to:

Flu{f) v e . hlnt{f)
R @
bt (F) oo oo By ()

Assumption 1: The modeler has no knowledge where the transmission took place (the
frequency, the bandwidth, the type of room, the nature of the antennas...)

Assumption 2: The only things the modeler knows:
Forall {i, 5},

E(Zi.j | h‘ij |2) = TlrntE

What distribution P(H) should the modeler assign to the channel based énly on that
specific knowledge?
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The i.i.d Gaussian model

Principle of maximum entropy

Maximize the following expression:

Ty ng

/ dHP(H)logP(H) + y[n,nE — /dHZ > | hy 1? P(H)]

i=1 j=1

+3 l1 - [ dHP(H)]

Solution:

P(H) = e 1n.,.nnt ZZ i I

Contrary to past belief, the i.i.d Gaussian model is not an assumption but the result of
finite energy knowledge.

This method can be extensively used whenever additional information is provided in terms
of expected values.
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Knowledge of the covariance structure

In the general case, under the constraint that:

j::N h?-h;‘PH H)dH = ¢, ;
for (i,5) € [1,...,N]* (N = n,n,). Then using Lagrangian multipliers,
L(Puq) = [gf‘\" — log(Pyiq(H))Phjq(H)dH
+ B [1 — ./=EN Py Q(H)dH]
+ ) iy Uﬂ hih Pyq(H)dH — qi:j} .
we obtain:

Puq(H) = gy exp (—(vee(H)Q vee(H) )
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Existence of Correlation

Question
What to do if we know the existence of correlation but not its exact value?

Answer

P(H) = f P(H, Q)dQ = / P(H | Q)P(Q)dQ

1- Determine the a priori distribution of the covariance matrix based on limited information
at hand

2- Marginalize with respect to the a priori distribution
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Construction of the a priori

Let us determine the a priori distribution of the covariance

Suppose that we only know that E(Trace(Q)) = n,.n:E (The covariance is not fixed but
varies due to mobility for example)

Result. The maximum entropy distribution for a covariance matrix Q under the constraint
E(Trace(Q)) = n,n:E is such as:

Q = uAaU”
where:
e U is Haar unitary distributed matrix.
e A = diag (Al, Anrnt) is diagonal matrix with independent Laplacian distributions.
1 e 1 _ Trace(Q) 9
P(Q)dQ=——IL "7 (nl(n+ 1)e E - ILiwj(Ai — Aj) " dUdA

E'”T"”t n=>0

Note that QQ is nothing else than a Wishart matrix with n,.n, degrees of freedom.
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MIMO Channel distribution with correlation

What do we need to do?

P(H) - / P(H | Q) P(Q)dQ

_ —Tracc{vec{H)vec{H]H v A1
- Hﬂrﬂf A.

Y
nrnr—1
E‘nrnfnﬂ 0 (ﬂ'[ﬂ + 1) )E E Hu-j( — A ) dUdA

We need to integrate over U and A!

Difficult problem...but well known in statistical physics!
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MIMO Channel distribution with correlation

Harish-Chandra, "Differential Operator on a Semi-Simple Lie Algebra”, Amer. J. Math. 79

87-120 (1957)

ey
A/
Harish-Chandra, 1923-1983

Harish-Chandra integral

1

—0. AL
/ e—mTracc(Z_lUAU_l)dU _ det(e 4 )
JUeU(m) A(E—I)A(A)
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MIMO Channel distribution with correlation

"Maximum Entropy Analytical MIMO Channel Models”, M. Guillaud, M. Debbah and A.
Moustakas, submitted to IEEE transactions on Information Theory, 2007.

Solution. P(H) is given by

<o Trace(HHY) ntnpny—2 Trace(HHH)
pa) = 3 o(toetHHD oy T,
n=1
(_1)l‘lﬂr]lt

[(n — D)!2(n,ny — n)!

K, (x) are bessel functions of order n.

We have therefore an explicit form that can be used for design when correlation exists in

the MIMO model but we are not aware of the explicit value of the correlation!
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Figure 1.4: Mutual information of a 2x2 (dual polarized at the BS) MIMO
system in an urban area for a SNR of 10dB and constant transmit power.
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Figure 1.10: Mutual information of a 1x1 SISO system in an urban area for
a SNR of 10dB and constant transmit power.
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Receive power over time:

-100, 1

A M AA T AAA LR W LR VA AAAdA A A A ALV WA A

Map of the measurement run:

- e ar
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Snapshots .
10 &0
Mutual information over time: CDF of the Mutual information:
n T T T T ! —acaneaerol ; e il
A2 coret. Fx Pwr ez P |;
- MQOU':EAHHT: H 09| ]
EET ozl o
:% éa‘:- N
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Information transfer in MIMO flexible networks

y = Wx+n
—_—r i
— —
_‘.. _"
— -
—_— —
C = H(y)—H(y|x)

= logdet(meRy) — logdet (meR;)

Rate = log (%)

The rate is:
Cy = logydet(me(c’Iy + "ﬁ-"‘b‘e’”}j — log,det(meaIy)

1
= logydet(Iy + WW')
2 g
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Schrondinger’s equation

$; is the wave function
E; is the energy level
H is the hamiltonian

Magnetic interactions between the spins of electrons
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The Birth of Asymptotic Random Matrix Theory

Eugene Paul Wigner, 1902-1995
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Randomness in 1955

E. Wigner. "Characteristic Vectors of bordered matrices with infinite dimensions”, The
annal of mathematics, vol. 62, pp.546-564, 1955.

0 +1 +1 41 -1 -1
+1 0 -1 +1 +1 +1
1 [ 41 -1 0 +1 +1 +1
Jao| 1 +1 +1 0 41 +1
—1 41 +1 41 0 -1
~1 +1 +1 +1 —1 0

As the matrix dimension increases, what can we say about the eigenvalues (energy
levels)?
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Wigner Matrices: the semi-circle law

- -1.3 -1 0.3 a [ 1] 1

Figure 2: The semicircle law density function (4) compared with the
histogram of the average of 100 empirical density functions for a Wigner
matrix of size n = 100.
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The empirical eigenvalue distribution of H

H is Hermitian

n&r
1 Z ]
CEFW’()&):E lﬂ'{}u—hlj
i=1

The moments of this distribution are given by:

n,.r
: 1 1 «
N N —
vl
my = —tr(H)?= [ XdFy(})
i
: 1 . |
mi = rad (H)* = f N dFy ()
i

In many cases, all the moments converge. This is exactly the type of results needed to
understand the network.
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Wigner Matrices: the semi-circle law

Wigner's proof of the convergence to the semi-circle law:

The empirical moment %Trace{HE"'] — The Catalan numbers

2

1 : .
lim —_Trace{HE'l"] = f -:;:ﬂf(ﬂ:jd:r:
N—oo N 9

I S
T k41 F

Since the semi-circle law is symmetric, the odd moments vanish.
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Catalan Numbers

Eugéne Charles Catalan, 1814-1894
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Wigner Matrices: the semi-circle law

E. Wigner. "On the Distribution of Roots of certain symmetric matrices”, The Annals of
Mathematics, vol. 67, pp.325-327, 1958.

Theorem2. Consider a N x N standard Wigner matrix W such that, for some constant &
and sufficiently large IV,

4 K
max; ;E(| wi; [7) < Nz
Then the empirical distribution of W converges almost surely to the semi-circle law whose
density is:
1
flx) = 5=v4 — a2
2m
with | = |< 2

The semi-circle law is also known as the non-commutative analog of the Gaussian
distribution.
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Square Matrix of i.i.d coefficients

1 +1 +1 1 1 41 ]
-1 +1 -1 -1 <41 41
1 +1 41 +1 +1 +1 1
| 41 -1 41 -1 41 +1
1 1 +1 | 1 |

| -1 41 41 41 41 -1 |

Figure 3: The full-circle law and the eigenvalues of a realization of a 500 » 500 matrix
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Remarks on asymptotics

Distribution Insensitivity: The asymptotic distribution does not depend on the distribution
of the independent entries.

Ergodicity: The eigenvalue histogram of one realization converges almost surely to the
asymptotic eigenvalue distribution.

Speed of Convergence: 8 = oo

Gaussian Case: Non-asymptotic joint distribution of the entries known.
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The Marchenko-Pastur Distribution Law

V. A. Marchenko and L. A. Pastur, "Distributions of eigenvalues for some sets of random
matrices,” Math USSR-Sbornik, vol.1 pp.457-483, 1967.

Theorem. Consider an N x K matrix H whose entries are independent zero-mean
complex (or real) random variables with variance + and fourth moments of order D(T}.-j}.

As K, N — oc with % — a, the empirical distribution of HH converges almost surely
to a nonrandom limiting distribution with density

V(x—a)*(b—x)*

2mror

f@) = (1-2)*5(z) +

where a = (1 — Va)*and b = (1 + Va)~.
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The Marchenko-Pastur Distribution Law

H matrix N x K with i.i.d. elements, zero mean and variance 1/N.

Eigenvalues of the matrix

K { [ HY H

L -
el

N

when N — oo, K/N — a IS NOT IDENTITY!

Remark: If the entries are Gaussian, the matrix is called a Wishart matrix with K degrees
of freedom. The exact distribution is known in the finite case.
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Limiting eigenvalue distribution for o — 10

L]
L
L

1
]

L

|

i
v

ks 2

LK 3 10 13 20

Remark: CQuite remarkably, the support is bounded even though the entries can take any

values!
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Empirical Eigenvalue Distribution

Denote the eigenvalues of Wy as A4, ..., An.

Definition. The empirical eigenvalue distribution function of Wy is defined as the
function that, for each =z, gives the proportion of eigenvalues lower than or equal to z, i.e

r 1
)2 (x) = ¥ﬂ{n < N, A €2}
{

where #{} stands for the cardinality of the set.

Remark The eigenvalues of W are random so is their empirical distribution function
FY(z).
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Cauchy-Stieltjes Transform

N. I. Akhiezer, "the classical moment problem”, Oliveir & Boyd, 1965.

The Cauchy-Stieltjes transform G, (z) associated to the probability measure v is

Gy(z}:f L (an)

t—=z
Analytic in the half complex plan Im(z) > 0.

A one to one mapping between v and G, (z).

b 1 b
/ dv = — lim f ImG, (x + iy)
a Wy—=07™ Ja

with a, b two continuity point of 1.
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Cauchy-Stieltjes Transform

Some intuitions. Let v be compactly supported. Then G, (z) is analytic in a
neighborhood of cc. Since (z — t) ™' = 77, t*2 ", then G, (z) has the following
expansion at z = oc:

—Gu(z) =z '+ Z ?nk(u)z_k_l.
k=1

where my(v) = [ t*dv(t)(k € Z7)
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Cauchy-Stieltjes Transform and Matrices

Definition. The resolvent matrix of a hermitian matrix W is defined as:

Ry(z) = (Wy — zI) "

and therefore:

dF¥(z) 1 1 1
—_ — == _T / Rﬂ:‘
f r—z N Z A — =z N race(Ru(2))

since dFN(z) = £ N §(z — A,).

Interestingly, finding the Stieltjes transform can be related to a problem of computation of
the trace of the inverse of a matrix.
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Shannon Capacity

Consider the random variable

1 1 wH ) — 1 roxrH
Oy = <-log det (Im +—WW ) Zlng <1—|——}\ (wn )

When N — oc and K/N — «o,

1
Cy — flng (l + —Dt) p(dt) a.s.
J_

dCy

ICI

g”) a.s.

d_z

The capacity is strongly related to the Cauchy-Stieltjes transform.
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Information transfer in MIMO flexible networks

y = Wx+n

Consider the random variable

1 1 1
Ry = — log det (IN + —ww”) = f log (1 + —_ﬁ,x) 1N 37 8(X — Ay)dA
N o2 a2 -

1

When N — occand K/N — « {Fl.-j = SNR),

-
Ry = f log(1 + SNRA)AF ()
o

— alog(l+ SNR — SNR~) + In(1 + SNRa — SNR~y) —

with

[ +Q+SI\R \/( +Q+E~NR] o]
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MMSE Receiver

Model example :

v = Ws+n
= us; +Ux+n
= us;+n
E(n'n™) = (UUY + %1) = QAQ"
Whitening filter:

_1 1 1
v=A2Q"y = A 2Q"us; + A ZQYN
= gsi+b

b is a white Gaussian noise.
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MMSE Receiver

Defineg — A TQ"u
The output SINR is maximized with:

gf!_j-r — gHgSl _|_th
As a consequence, the receiver is:

P —1
gnﬂ-{;qﬁ — (qﬁ—lqﬁj - (UUH + {'FEI_.-.,')
Remark: The usual MMSE receiver is the unbiased one:

1

_ 0 (UUH N JIEI_.-.,-]_J
1 +uf (UWUY +02Iy) u

! (WW 4 oty) =

NS
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MMSE Receiver

After MMSE filtering, we obtain:

gf{j-r _ EHESl +EHh

with g = ﬁ"i’q”u
Signal to Interference plus Noise Ratio (SINR):

H !EE_ & 2'] ) 1
8y = (g7g) H[ 1 7)) _ o'y =y (UUH ‘|‘J_]_-‘v') "
E°E

Depends strongly on the choice of U.
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Example: the i.i.d. model case

—1
gy =u” (VU +0ly) u
Suppose the matrix W = [W;;] has ii.d. elements, E [W;;| =0, E [Wt-f,-] = 1/N.
Example : 1595.

You remember that important lemma?
uvector N = 1 with i.i.d elements. Each element : zero mean and variance 1/N.
A matrix N = N independent of u. Then, under some assumptions,

uﬂﬂu—?tr&ce (A) —+ 0 as.
Fi

when N — oo.

Application : u et U independent, so

- H 2 !
By — ﬁtrace (UU + T I_.-.,-) — 0 a.s.

1
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Example: the i.i.d. model case

1 3 —1 1
ﬁtram ((UU” - G'_I_.".,') ) = Etrace (f (UU“))

where f(t) = 1/(t + o°).

Since UU" has a limiting Marchenko-Pastur distribution law u, we have

1 g
By — 3 = [ — Ej,u{dtj = Gu(—07) as.

Solution :

l-a 1 [(1-a)? (14a) 1
307 2\ i T2 T
The SINR at the output of the MMSE receiver is exactly the Cauchy-Stieltjes transform.

B =
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MMSE and Capacity

S].qRI"r“MSE = GF* [—'5"2]'

ac 2 . 2
dtl._?:cr — 0 Gu(—0")
dC’ 1
—7 — SINRMMSE — 3

The derivative of the capacity is strongly related to the periormance of the MMSE receiver!
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Randomness in 1980°s

What can one say about the distribution of C = A + B

¢ In general, we cannot find the eigenvalues of sums/products of independent random
matrices from the eigenvalues of individual matrices.
e The exception is when the matrices have the same eigenvectors, as for diagonal

matrices.
e If this is not the case, it is hard to combine the eigenvectors of A and B to find the

eigenvectors of A + B.
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The empirical eigenvalue distributionof C — A + B

N

dFY(\) = %Z 5 (A=ay)

g

In many cases, the asymptotic moments of C can be expressed only with the asymptotic

moments of A and B.

- 1 :
i ' . A
m; = hlrl_r};lc—m_tr{{:,} = f(my,....my,my,...,my)

In other words, the asymptotic empirical eigenvalue distribution of C depends only on the
asymptotic empirical eigenvalue distribution of A and B.

When this happens, we say that the matrices are free and the framework falls in the realm
of free probability theory. The same holds for C = AB.
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Applications
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Optimal channel training
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Optimal Number of Base Stations
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Network MIMO Uplink Channel

dy
L
x)(yil BS, HNe - — ——i:_@
dg x; j’f
_ L . N
S vy LTy
|\ES e I\\j{_/‘“ BSQ EH ; H ) ;\ET_E/)'
da K i
‘L e - ; —
Oe—2 s, e L —?{IT}J
/ NG

e B BSs and B UTs, each equipped with a single antenna.

e The BSs forward their received signals to the CS via high capacity
backhaul links.

e The backhaul links fail randomly with probability ¢ (modeled by d;).

e [ he CS detects which links are defective, estimates the channel H and
Jjointly processes all received signals.
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Motivation

The potential gain of network MIMO increases with B.

0

In practice, the CS needs to estimate the uplink channels during a fixed
coherence time T'. This overhead becomes quickly paramount when B
Zrows.

1. What is the optimal fraction of the coherence time T used for
channel training?

2. How many BSs should cooperate to maximize the per-cell rate?
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Related work

e Practical limitations of network MIMO arise from many factors:
limited backhaul capacity, local connectivity, processing complexity
and delay, imperfect/local CSI [Shamai et al."07, Shamai et al.'08,
Gesbert et al."10].

e Information theoretic treatment of a source communicating via
randomly failing relays to a destination [Simeone et al.’09].

e Optimal 'training-data’-tradeoff has been studied for
point-to-point MIMO [Hassibi-Hochwald'03] and multi-user
downlink [Kobayashi-Jindal-Caire’09].
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System Model

v=D (Hx+nps) + ncs
forwarded from BSs

where
dy
D = ,  di ~ Bernoulli(l — €)
dp
1
X = : , Eflz?] <P
TR
nes ~ Ne (0, G%SIE}
ncs ~ Ne(0,081B) , OB + 08 =1.
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Path loss: Extended Wyner Model

1 fa o'} fa's
¥ e --‘*"-'7“*' o ey o 1 o a® o
1} e j V=|a" « 1 a o a € [0,1]
] I .
- |:" ! 8 a’ a’ fa 1 '
o Tl (r 4 2 2
iy o e} e} fa's 1
E!i'

e The entries of the channel matrix H are modeled as independent,
complex Gaussians hui ~ Ne (0, vpg ).

e The variance vy, captures the path loss between UT k and BS b.

e Due to the circular symmetry, the sums of the entries of every row and
every column of V are identical, i.e.,

E E

X = Z Vig = Z V4, Vi, .

i=1 i=1
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Channel Estimation

coherence time T

training T data transmission

e The CS estimates the channel from UT % to BS b based on
bk = VT Phpg + npg., if dp =1
where np ~ Ne(0,1).
e Taking the MMSE estimate yields
hoe = hor + Bk

with variances

. A s 7P (vor)*

Upk(T) = E [”1“*'2] - TP?,’E;;;L- —: 1
UhL S JT . 2] = bk .
Ubk (T} E [' LH" TPup + 1
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Net Ergodic Achievable Rate
e The CS decomposes the received signal vector into

y = DHx + D (ﬁx + 1155) + Ncs

>
effective noise

e The ergodic achievable rate per cell is given by

o A |
where i
IDB -, ™
A[\’T é _ . () = 1 (7—
A7) K(r)P + 1 ) ; 15(7)

e Qur goal is to maximize the net ergodic achievable rate

amh)é(r—%)ﬂhj
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Deterministic Equivalent

Theorem 1 (Hachem-Loubaton-Najim'07, Theorem 4) For any fixed
SNR p, fixed diagonal matrix D and variance profile V, the ergodic
achievable rate converges almost surely for B — oo to

- a1y p’ T (p)"DVY(p)
Rip:D) = 52 log (‘I’f{PJTa-(ﬁ)) - B2p

where the vectors W(p) and Y (p) are the unique solutions to the set of 2B

i=1

fixed point equations

o .
lyi{pjl — N . 1 i: i E B
1+ 4 Zil divi; T;(p)

e, .
’ L+ 5 52, ity Wi(p)
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Deterministic Equivalent (I1)

Corollary 1 For any fixed SNR p, variance profile V' and backhaul link

failure probability ¢, the ergodic achievable rate converges almost surely for
M — oo to

Nn
RY*(p) 2 Ep, [R(p, D)] = Z S e) > Ti(p. D)

Nn

where N, = (¥) and D™ = {DY},.... D}, } is the set of all matrices D
such that the number of ‘s’ on the diagonal is equal to n and

f(n,f}:(B)(l— )P, 1<n<B.

']

The computation of the expectation becomes quickly prohibitive for
large B since one needs to consider all 27 possible realizations of D.
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Heuristic Approximation

Theorem 2 (Tulino-Verdi’05, Theorem 4) For any fixed SNR p, backhaul
link failure probability e = 0 and variance profile V, the ergodic achievable
rate converges almost surely to

— (K
R(] (E,ﬂa 1)
where

Ro(p, /B) = log(1+ pB — F(p.B)) + Blog(l + p— F(p.3)) — F(p. B)/p

- 2
_— - a1
= ;-uug F(z,y) = 1(,,1;,-'1+:r:'il—|—,~/§]|2-_ 1:.,.14_;,;{1_@)2) .

For € # 0, the variance profile is not symmetric any more. By the LLN,
(1 — €) elements of D are equal to one. This motivates the heuristic

_ (K
Rheur{P} = R (EP__ 1 — E)

approximation
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Optimization of the Training Length

. T
maximize (1 — T) R(T)
subjectto B <7+ <T
e Assuming that the objective function is concave in 7, we look for
7% satisfying
l—i R’{*—AR{”‘—D
T )T =

e Using the following approximations

Rdﬁ Cx Rdet’ 5(+
PN £ (CCO N Pl ()

Rreur((p(T)) Rreur’ ((p(1))

7% can be found by a simple line search.
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Numerical Results (1): Tightness of Approximations

I I |
—— deterministic equivalent 4
- - - heuristic approximation e
6H « simulation f,f”’ 7
~ A e=0
=S -
=~ - = |
LH'“ 4 H.’__,.-r"'ff P ]
g - —
— - N e= 04
Iil_lil __.-"--.--f e
:: ,..a-'"f.’- ,_...f--""'ﬁ . -
2 e ; B -
T - " * e = 0.7
0 | | |
0 3 10 15 20
P [dB]

T=1000, 7=40, M =8, a=0.7
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Numerical Results (I1): Concavity of the Objective Function

4 | [ | [
xfﬂ e=0.1 n
i
N 3 e ——— EELES e G Rpe—
I ‘. ’..._-'b- —4
S I e=10.3
£ r.;
5 !
B it
ST -
II deterministic equivalent
1 - - - heuristic approximation
« simulation
1 l | I |
20 40 60 80 100
training length 7
T =1000, P=10dB, M =8, a=07
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Numerical Results (l11): Optimal Training Length

| | |

60 | S {]._T - —
*[-.. ##: - :__: -
. PP
[ Al
2 50| s 8
E :_.,r:'.'-' ".---.____,:-'_,
c e
= a =029
% 40 —
4
"o
E
é‘. 30 N

—e=10
———e=10.5
20 ] ] I
5 10 15 20
number of BSs B
T =1000, P =10dB
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Numerical Results (IV): Optimal Number of Cooperative BSs
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Answers?

1. What is the optimal fraction of the coherence time T used for
channel training?
In general, non-trivial dependence of the optimum training length
on the path loss, number of BSs, transmit powers, etc. For
reasonably small networks:

#BS B | — ——
path loss factor o | — * 1
link failure probability € | . * ~ const.

2. How many BSs should cooperate to maximize the per-cell rate?

T =1000, «=0.9 — B* = 30
T =1000, «=0.1 — B™ =3
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Polynomial expansion detectors
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Problem setting and motivation

Consider the N x K MIMO channel

K

y:HX—I—Jn:thXk+{Tﬂ
k=1

where x ~ CN(0,lx), n ~ CN(0,ly) and H & CN*K random but known to the receiver.

Several linear detectors require the matrix inversion (v > 0):

(HH” + alm) B

o This operation is expensive (complexity and energy) : O(N?) [40].
@ In particular, for large (distributed) antenna arrays for multi-user communications.

e N = 100, K = 50 (or even more)

Asymptotic moments can be used calculate approximations of the matrix inverse.
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A note on matrix inversion

Let A be a non-singular N x N matrix with characteristic polynomial:

N N
det (zly — A) :H(z—)\;) = Za,-zf
i=1 i=0

where \; are the eigenvalues of A and «; depend on the eigenvalues of A.

Caley-Hamilton Theorem ( “Every matrix satisfies its own characteristic polynomial”):

Iy nN—1 N

i — ¥jy1
E:G:;AIZU — A1:§:_+A’,
- xp
I:[:I ;=D
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Polynomial expansion detectors

Assume we want to estimate x with a linear detector:

% = H" (HHH + alm)_ly ~ H" Li Wi (HHH)Jy._ L < rank(H).

The weights w = [wo, ..., wz_1]" can be chosen to minimize:
|'|| L1 | ||2'|
w = argminE | |[x — H" (Z W (HHH) ) y — d}_lap
" |
where ® € R2*E and ¢ € R% are defined as
- 1 H i~+j 5 1 H i+j—1
@], = ﬁtr(HH ) o ﬁn(HH )
_ HY'
el = 3t (HH ) .

Idea: Replace the moments % tr (HHH)R by their deterministic approximations M.
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Related works and existing moment results

Asymptotic moment results:

[12]

141] :
[41] :

142] :

143] :

[44]

H as i.i.d. entries with zero mean and variance 1/K.

H; have zero mean and variance %Vg.

H = [Aihs, ..., Akhgk| B, where h; are vectors of i.i.d. entries with zero mean and

variance 1/K, B is diagonal and A; are absolutely summable Toeplitz matrices.

H = TWP%, where T is Toeplitz, P is diagonal and W has either i.i.d. elements
with zero mean and variance 1/K or is created by taking K < N columns from a
random Haar (unitary) matrix.

1
H = [bhi, ... hk] where hx = R wk and wy are vectors of i.i.d. with zero mean
and variance 1/K.

H is a random Vandermonde matrix.

Related works on polynomial expansion receivers:
[45, 46, 47, 48, 40, 49, 50, 43, 51]
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Polynomial expansion receivers : Numerical results

Average received SINR [dB]

' : T T T | T T T T —
o Matched Filter s
oL =2 _ 1
15 | o — 3 10-1 Matched Filter i
e : .o
L=2 1
= LMMSE E TR
10 5 1072 5
= T L=3
% T
g 1 © Matched Filter L—=6 1
5

5 Z 1073 yel=2 S
Ho L =3 .
faL =6 LMMSE .
| = LMMSE )

ﬂ | | | 1[]—4 x | | | |

0 2 4 6 8 10 12 14
Transmit SNR [dB]

N =100, K = 40

Channel with a generalized variance profile

0o 2 4 6 & 10 12 14
Transmit SNR [dB]

. Correlation matrices Ry randomly

created (extended version of Jake's model) (see [43] for details)

Uncoded BER = E [Q (\/W)}

One can also derive a deterministic equivalent of the SINR for a given approximation
order L, as shown by solid lines in the left plot (see, e.g., [40, 43]).
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Some remarks

@ Polynomial expansion detectors are a low complexity receiver architecture for large
MIMO channels (also for CDMA).

@ Polynomial expansion detectors allow to trade-off complexity against performance
with a very fine granularity (L = 1: matched filter, L = rank(H): MMSE detector).

@ If the channel coherence time is large and the channel statistics are known, the

asymptotic moments can be precomputed and only the matrices
(HH™M) 1 =1,... L, must be calculated.

@ [he asymptotic moments for a wide range of channel models are known and could
be used.

@ Practical implementations?
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Massive MIMO
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Where to start from?

* Tons of Plenary Talks and Overview Articles
- Fulfilling dream of ubiquitous wireless connectivity

» Expectation: Many Metrics Should Be Improved in 5G
- Higher user data rates
- Higher area throughput
- Great scalability in number of connected devices
- Higher reliability and lower latency
- Better coverage with more uniform user rates
- Improved energy efficiency

» These are Conflicting Metrics!
- Higher user data rate




The clean slate approach

“David vs Goliath™ or " Small Cells vs Massive MIMO“

——

E/lJTHjﬂ"mﬂla J

How to densify: “More antennas or more BSs?"




What if we are only interested in the average throughput per UT?

A thought experiment

Consider an infinite large network of randomly uniformly distributed base
stations and user terminals.

What would be better?

2 X more base stations

B 2 X more antennas per base station




How to optimally deploy your antennas?

A thought experiment

Consider an infinite large network of randomly uniformly distributed base
stations and user terminals.

What would be better?

2 X more base stations

B 2 X more antennas per base station

Stochastic geometry can provide an answer.




What if we are only interested in the average throughput per UT?

System model: Downlink

Received signal at a tagged UT at the origin:

[o- ]
1 ' n H
y ﬁhgxo—i— E ﬁh,x, + n
desired signal interference

» h; ~ CN(0, ly): fast fading channel vectors
» ri: distance to ith closest BS

» P=E [xf-Hx;]: average transmit power constraint per BS

Assumptions:

» infinitely large network of uniformly randomly distributed BSs and UTs
with densities Ags and Ayt, respectively

» single-antenna UTs, N antennas per BS
» each UT is served by its closest BS

» distance-based path loss model with path loss exponent o > 2

» total bandwidth W, re-used in each cell




What if we are only interested in the average throughput per UT?

Transmission strategy: Zero-forcing

Assumptions:
» K = LL;; UTs need to be served by each BS on average

» total bandwidth W divided into L > 1 sub-bands

» K =K/L < N UTs are simultaneously served on each sub-band

Transmit vector of BS i:

K
X 1/ P E w
i = - ik Sik
K 1
k=1

» sik ~ CN(0,1): message determined for UT k from BS i

> Wi € (CNXI: ZF-beamforming vectors




What if we are only interested in the average throughput per UT?

Performance metric: Average throughput
Received SINR at tagged UT:

N oo ihﬁHWO-lf _ rh oS

oo _—a K Hus. | |2 K 0O T K
i1 i Zk:l‘hfw*-ki T p -1t & TP

Coverage probability:

PCD‘I.I’(T) = ]P("‘Ir’ 2 T)

Average throughput per UT:

c = %xE[Iog(lJrv)}:%x/ Peoy (6* — 1) dz
0

Remarks:

» expectation with respect to fading and BSs locations

> S= |hfwosi|  ~T(N—K+1,1), g =3k [hlwi|]” ~T(K,1)

» K impacts the interference distribution, N impacts the desired signal
» for P — oo, the SINR becomes independent of Ags




What if we are only interested in the average throughput per UT?

A closed-form result

Theorem (Combination of Baccelli'09, Andrews’10)

fro (ro) dsdrg

oo 2mrf TK \ Ls(—i2ws) — 1
Peov(T) = / / Ly, (i2mry Ts)exp (—! ™0 5) s (zi2ms)
=0 J —oo P

= 1
Ly (s)=-exp —271')\35/ 1— vdv
’ ro (1+ SV_Q)K

1 N—K+1
1+ s)

I127S

where

Ls(s) = (

X 2
fm(m) = 2TA Bsho€ BS™p

The computation of Peoy(T) requires in general three numerical integrals.

J. G. Andrews, F. Baccelli, R. K. Ganti, "A Tractable Approach to Coverage and Rate in Cellular Networks"” IEEE

Trans. Wireless Commun., submitted 2010.
F. Baccelli, B. Bfaszczyszyn, F. Miihlethaler, "Stochastic Analysis of Spatial and Opportunistic Aloha” Journal on

Selected Areas in Communications, 2009




What if we are only interested in the average throughput per UT?

Example

» Density of UTs: Ayt = 16

» Constant transmit power density: P x Ags = 10
» Number of BS-antennas: N = Ayt /Ags

» Path loss exponent: @ = 4

» UT simultaneously served on each band: K = Ayr/(Ags x L)

= Only two parameters: Aps and L

Table: Average spectral efficiency C/W in (bits/s/Hz)

sub-bands L | Apgs =1 | Ags =2 | Apgs =4 | A\ps =8 | Aps = 16
1 0.6209 0.8188 1.1964 1.5215
2 1.1723 1.2414 1.3404 1.5068 X
4 0.8882 0.8973 1.1964 X X
8 0.5689 0.5952 X X
16 0.3532 X X X X

Fully distributing the antennas gives highest throughput gains!




What if we are only interested in the average throughput per UT?

» Distributed network densification is preferable over massive MIMO if the
average throughput per UT should be increased.

» More antennas increase the coverage probability, but more BSs lead to a
linear increase in area spectral efficiency (with constant total transmit

power).

» |If we use other metrics such as coverage probability or goodput, the
picture might change.




What if we are only interested in the average throughput per UT?

Cellular Dreams and
Cordless Nightmares

Life at Bell Laboratories
in Interesting Times

Richard H. Frenkiel



What if we are only interested in the average throughput per UT?

Trials and Tribulations

y 1976, the time had come to prove that our many claims could be turned nto a

ractical system. Small cell coverage over a large service area would require hundreds of
cells and cost hundreds of millions of dollars, so we applied for permission to conduct

vo separate trials. A large-cell Market Trial in Chicago would provide realistic service
o more than 2000 customers, while a small-cell “Test Bed” in Newark, New Jersey,
vould demonstrate that the smallest cells could provide good service in the presence of
nearby mterference. In combination, these trials would provide a complete
demonstration of our system.

Motorola objected to our proposal as inadequate, since neither the trial in Chicago nor the
Test Bed in Newark demonstrated a fully developed small-cell system. Chicago, they
argued, used very large cells, while Newark was only a partial grid of small cells. Since a
demonstration of small cells over a large area was clearly impractical, we were confident
that the FCC would see Motorola’s objections for what they were—another smoke screen

intended to delay progress. As it turned out, our faith was misplaced. The FCC ruled
that our proposed trials were inadequate, using virtually the same arguments that
Motorola had presented, and summarily denied our application.




What if we are only interested in the average throughput per UT?

The partial small-cell grid in Newark and the Test Van




Bi-Bop (commercial launch in

BIBOP



http://fr.wikipedia.org/wiki/1991
http://fr.wikipedia.org/wiki/1997

et us know focus on two metrics...

* Expectation: Many Metrics Should Be Improved in 5G
- Higher user data rates
- Higher area throughput
- Great scalability in number of connected devices
- Higher reliability and lower latency
- Better coverage with more uniform user rates
- Improved energy efficiency

» These are Conflicting Metrics!
- Difficult to maximize theoretically all metrics simultaneously

- Our goal: High energy efficiency (EE) with uniform user
rates




How to Measure Energy-Efficiency?

» Energy-Efficiency (EE) in bit/Joule
Average Sum Rate [bit/s/cell]

EE =
Power Consumption [Joule/s/cell]

» Conventional Academic Approaches:
- Maximize rates with fixed power
- Minimize transmit power for fixed rates

New Problem: Balance rates and power consumption

Important to account for overhead signaling and circuit

noawuwzarl

P'UVVV' Can




Single-Cell: Optimizing for Energy-Efficiency

» Clean Slate Design
- Single Cell: One base station (BS) with M antennas
- Geometry: Random distribution for user locations and pathlosses
- Multiple users: Pick K users randomly and serve with some rate R

Uniform UE
Distribution

-

Problem
Formulation

Select (M,K,R)

N |
kto maximize EE./

Channel Gain Distribution

-

o

Find expression:

Next Step )

EE as a function
of M,K,R. )




System Model: Protocol

e Time-Division Duplex (TDD) Protocol
- Uplink and downlink separated in time
- Uplink fraction ™) and downlink fraction ¢(@D

» Coherence Block
- B Hz bandwidth = B “channel uses” per second (symbol time 1/B)
- Channel stays fixed for U channel uses (symbols) = Coherence

block
- Determines how.often. we.send bpilot sianals to.estimate_channels
Uplink Uplink Downlink Downlink
> Pilots Transmission 7‘Pilots Transmission

- >

Coherence block&] channel uses

ssumption: Perfect channel estimation (relaxed later)




System Model: Channels

» Flat-Fading Channels
- Channel between BS and User k: h;, € CM h,
- Rayleigh fading: h; ~ CN(0,2,1) :
- Channel variances A;: Random variables, pdf f;(x)

* Uplink Transmission

- User k transmits signal s, with power E{|s|?} = p(“l) [Joule/channel
use]

- Received signal at BS: ( — Signals from other users
(interference)

_ y = hpsy + z h;s; K
Signal of User k ‘2 Tk Noise ~ CN(O,O‘ZI)\
- Recover s, by receive beamforming g, %

E{Isi|?ghh |} ~ Py lgi |’

(ul) _
SINR =

Siw E {ls:/?|g}h |}+E{Ig£nlz}_Ziikp?*”lg&hilz+azngkn2




System Model: Channels (2)

» Flat-Fading Channels
- Channel between BS and User k: h, € C¥
- Rayleigh fading: h, ~ CN(0,A,I)
- Channel variances A;: Random variables, pdf f;(x)

e Downlink Transmission

- BS transmits d, to User k with power E{|d,|*} = p,(cdl) [Joule/channel
use]
- Spatial directivity by beamforming vector v,

(interference)

yie = hfl i+ z hY Y g +n
Signal to User k- k” ) kll l|| '\

=1, ik _
Noise ~ CN(0,5?)

- Recover d,, at User k: \ /
(dl) hHV vV 2
SINR(dD |h; vie|* /vl

(dl) hiv. e 112 1 o2

1 U




System Model: How Much Transmit Power?

e Design Parameter: Gross rate R

Blog,(1 + SINRM™)  forall k in uplink

Blog,(1 + SINR{"") for all k in downlink
(ul)

- Make sure that R =

(dD)

- Select beamforming g, and v,, adapt transmit power p,” and p;,

- Gives K Equations:

(ul (ul 2
PV 1glh |2 = (2R/F — 1)(Tin bV |gth|” + 02llgell®)  fork=1,...K
H
Pl VL _ e 15, @ BV g2y for k=1,..,K
k

- Linear equations in transmit powers > Solve by Gaussian
elimination!

Total Transmit Power [Joule/s] for g, = v, ([ |nfvy|” _\
Ublink C oen | @E e for k=
plink energy/symbol: ¢“D™"1 where [D];; =< )
Downlink energy/symbol: 2D~ 11 ' _ hivy fork + I
\Same total power: P4y = BE{c?17D 11} = BIE{aleD‘H'i} vall® )




System Model: How Much Transmit Power? (2)

» What did we Derive?
- Optimal power allocation for fixed beamforming vectors

Optimal
» Different Beamforming beamforming |

- Notation: G = [gy, ..., 8x]
V = [Vy, ..., VK],

= [hy, ..., hg], MRT/

P(ul) _ dlag(p(ul), (UD) MRC

»~

ZF

Minimize Maximize Subspace of
interference signal co-user channels
hy,....hy_i hper,... hy
- Maximum ratio trans./reception (MRT/MRC): G=V=H
- Zero-forcing (ZF) beamforming: G =V =HMHH)!

- Optimal beamforming:
G =V =

iizl ‘ “ i(ul)"Hi—lﬁalance signal and interference (iteratively!)



System Model: How Much Transmit Power? (3)

e Simplified Expressions for ZF (M = K + 1)
- Main property: HfV = HYH(H"H) ! =1

g v
fork =1 1 _ Propert
2R/B_1q 2 fork =1 perty
- Hence: [D]y; = ( iy l)znv"” = {(2"’*/‘9-1)||Vk||2 of Wishart
_ﬁ fork=1 0 fork#1  matrices

- Total transmit power:

Pirans = IE{BO-Z]-HD_ll} = BO_Z(ZR/B - 1) [E{”Vkllz}

K\ ,1\ }k \_Y_}
= BO‘Z(ZR/B — 1) M_E?@MH)_l) Call this Sa
(depends on cell)
e )

Summary: Transmit Power with ZF

Parameterize gross rate as R = Blog,(1 + a(M — K)) for some
a




Detailed Power Consumption Model

» What Consumes Power?
- Not only radiated transmission power
- Circuits, signal processing, backhaul, etc.
- Must be specified as functions of M,K,R

» Power Amplifiers

- Amplifier efficiencies: nD,nd) € (0,1]

P
GO Summary: —£28
n@ "y !

g(ub
n(uD

- Average inefficiency: +

» Active Transceiver Chains
- Py = Fixed power (control signals, oscillator at BS, standby, etc.)
- Pgg = Circuit power / BS antenna (converters, mixers, filters)
- Pyg = Circuit power / user (oscillator, converters, mixer, filters)
\ J

|
Summary: PFIX + M - PBS +K - PUE




Detailed Power Consumption Model (2)

» Signal Processing
- Channel estimation and beamforming
- Efficiency: Lgg, Lyg arithmetic operations / Joule

=

- : B (2t(Wmk?2 = 41(dDg2
e Channel Estimation: —( - + = )

- Once in uplink/downlink per coherence block
- Pilot signal lengths: t("WWg, DK for some t(D,t@) > 1

H : Cheamformin (ul) ¢ (ul)
e Linear Processing (for G = V): g beamforming | p (1 _ )K) MK

U Lgs

Lps
- Compute beamforming vector once per coherence block

- Use beamforming for all B(1 — (t") + t)K/U) symbols

- Types of beamforming:
SMK for MRT/MRC

3MK? + MK + §K3 for ZF




Detailed Power Consumption Model (3)

» Coding and Decoding: R ym(Pcop + Ppec) ‘
- Pcop= Energy for coding data / bit
- Ppec= Energy for decoding data / bit ‘ .
- Sum rate: Rgm = K ((011) - T(L;)K) R+K (((dl) _ T(?K) R
(tD + Ak
=K(1_ )R

U

» Backhaul Signaling: Pgy + RgyumPsT
- Pgy = Load-independent backhaul power
- Pgr = Energy for sending data over backhaul / bit




Detailed Power Consumption Model: Summary

* Many Things Consume Power
- Parameter values (e.qg., Pgs, Pyg) Cchange over tim
- Structure is important for analysis

/ Fixed power

K Generic Power Model
P
=+ Coo + Co1M + Cy oK + C1 {MK + Cp oK% + C30K? + C, {MK?

n\ J \ J \
(T AUy Ry [

|
\ Circuit-lde{ﬂ PETCOSE gf &gn%l%rocessing
Transmittransceiver
with
mplifiers

hain backhaul

Coding/decoding/

/

* Observations  for some parameters C;,, and 4

- Polynomial in M and K - Increases faster than linear with K
- Depends on cell geometry only through Py 4ns




Finally: Problem Formulation

Average Sum Rate [bit/s/cell]
(ul) (d)
(" + 'YK ) R

» Maximize Energy-Efficiency:
<1 -

maximize U
M,K,R : . (ul) 4 (dD)
% + X0 CioK' + Xioo Cit MK + AK (1 L +UT )L ) R
[ | i ]
Power Consumption [Joule/s/cell]
/ Closed Form Expressions with ZF \

Recall: R = Blog,(1 + a(M — K)) for some a and Pyans = aBo?8$,K
Define: t = 1) 4 ¢(dD

K (1-25) Blogy(1 + a(M — k)
M, K, 2 . . \
@ ABIRK 53 CoKi+ YR, C MK + AK (1- i) Blog,(1+ a(M — K)

o ! - v

Simple ZF expression: Used for analysis, other beamforming by simulation

maximize

—

147




Why Such a Detailed/Complicated Model?

» Simplified Model - Unreliable Optimization Results
- Two examples based on ZF
- Beware: Both has appeared in the literature!

» Example 1: Fixed circuit power and no coding/decoding/backhaul

™™
maximize K (1 =) Blogz(1+ a(M - K))
MK, «a aBo?8§ K

+ C
M 0,0

- If M - o, then log,(1 + a(M — K)) - o« and thus EE — !

» Example 2: Ignore pilot overhead and signal processing

M
maximize KB logz(l + CZ(M — K)) _ B lng(l + (XK(? - 1))
M, K, 2 B 2 C
“ ab “n‘S’*K + Cop+ CroK + Co1M %8 & 2 90 4 ¢1o+ Cor

- If M,K - oo with %z constant > 1, then log,(1 + ocK(% — 1)) » « and
EE — ool




Optimization of Energy-Efficiency




Preliminaries

e Our Goal
- Optimize number of antennas M
- Optimize number of active users K For ZF processing
- Optimize the (normalized) transmit power «

e Outline
- Optimize each variable separately
- Devise an alternating optimization algorithm

/ Definition (Lambert W function) \

- Lambert W function, W(x), solves equation W (x)e"™® = x

« The function is increasing and satisfies W(0) =0

« e"® behaves as a linear function (i.e., e"™ = x):




Solving Optimization Problems

* How to Solve an Optimization Problem?
- Simple if the function is “nice”:

/ Quasi-Concave Function

For any two points on the graph of the function,
the line between the points is below the graph

«— Maximum

Property: Goes up and then

Line between any two points Examples: —x?,log(x)

\

/

* Maximization of a Quasi-Concave Function ¢(x):

1. Compute the first derivative %(p(x)

2. Find switching point by setting %(p(x) =0

3. Only one solution - It is the unique maximum!




Optimal Number of BS Antennas

e Find M that maximizes EE with ZF:

™K
maximize K (1 B 7) Bloga(1 +a(M —K)) -
M>K+1 2 / i
> K + CZBO'nfS}\K n Z?:o Ci,OKl + lezo Ci,lMKl + AK (1 — %) Blog,(1+ a(M —K)
/ Theorem 1 (Optimal M) \

EE is quasi-concave w.r.t. M and maximized by

W<a(3025ﬂ</n+2;?’=0 CioKY) | aK—1> '
2 . i e
. e e Li=o CiaK +aK —1

- @ /
» Observations
- Increases with circuit coefficients independent of M (e.q., Pgx, Pyg)
- Decreases with circuit coefficients multiplied with M (e.qg., Pgs,1/Lgs)

- Independent of cost of coding/decoding/backhaul
- Increases with power a approx. as @ (almost linear)

26 August 2014




Optimal Transmit Power

e Find a that maximizes EE with ZF:
K(1- i) Blog,(1 + a(M — K))

maximize U |
> O 2 . :
a= aBUnSAK + Z?:o Ci oK' + Zi2=0 Ci1MK'+ AK (1 — %) Blog,(1+ a(M — K)
a Theorem 2 (Optimal «) A

EE is quasi-concave w.r.t. « and maximized by

3 [ 2 i
W( n M-K)Qj=g CioK'+Xj=g Ci1 MK") 1>+1
e Bo?2$ e e —1

*

N MK Y,
» Observations
- Increases with all circuit coefficients (e.qg., Pgx, Pgs, PUE,l/qu)

- Independent of cost of coding/decoding/backhaul

. M .
- Increases with M approx. as Tog 1 (almost linear) More circuit power >
More transmit power

153




Optimal Number of Users

e Find K that maximizes EE with ZF:

™K _ =
maximize K (1 — F) B logz(l + CZ(,B — 1))
K>0 @aBo2s . _ K - '
A B CoK 4 BEg Cia BK 1 + AK (1-7) Blog,(1+ a(g — 1),

where @ = aK and =% are fixed

4 Theorem 3 (Optimal K) R

EE is quasi-concave w.r.t. K

Maximized by the root of a quartic polynomial:
\_ Closed form for K* but very “large” expressions )

e Observations
- Increases with fixed circuit power (e.qg., Pgx)

- Decreases with circuit coefficients multiplied with M or K (Pgg, Pyg, 1/
Lgs)




Impact of Cell Size

* Are Smaller Cells More Energy Efficient?
- Recall: 8, = IE{%}

- Smaller cells > A is larger 2 §, is smaller

e For any given parameters M,a,K
- Smaller S, > smaller transmit power aBs?S,K
- Higher EE!

» Expressions for M*,a*,K*

. .. _ Smaller cells:
- M* and K* increases with S,

_ Less hardware and fewer users per cell
- a* decreases with §, Use shorter distances to reduce power

4 )
Dependence on Other Parameters

Many other observations can be made
_ Example: Impact of bandwidth B, coherence block length U,

/

CcLC.




Alternating Optimization Algorithm

Joint EE Optimization
- EE is a function of M, «, and K

- Theorems 1-3 optimize one parameter, when the other two are

fixed

- Can we nntimize all of them?

Algorithm: Alternating Optimization
1. Assume that an initial set (M, a, K) is given
2. Update number of users K (and implicitly M and «a) using
Theorem 3
3. Update number of antennas M using Theorem 1

~

/

]

4. Update transmit power (a) using Theorem 2
5. Repeat 2.=-5. untit COonvergence
N [

/
N

Theorem 4

The algorithm convergences
to a local optimum to the
oint EE optimization problem

Disclaimer

M and K should be integers
Theorems 1 and 3 give real

\ ') i numbers > Take one of the 2 ;



Single-Cell Simulation Scenario

Uniform UE Channel Gain Distribution
Distribution

» Main Characteristics

Circular cell with radius 250 m
Uniform user distribution
Uncorrelated Rayleigh fading
Typical 3GPP pathloss model

» Many Parameters in the System Model
- We found numbers from = 2012 in the literature:

Parameter Value Parameter Value
Cell radius (single-cell): dmax 250 m Fraction of downlink transmission: ¢ (dD) 0.6
Minimum distance: dyin 35 m Fraction of uplink transmission: ¢ (ul) 0.4
Large-scale fading model: [(x) 107353 /||x||3-7© PA efficiency at the BSs: (4l 0.39
Transmission bandwidth: B 20 MHz PA efficiency at the UEs: 5("D) 0.3
Channel coherence bandwidth: B¢ 180 kHz Fixed power consumption (control signals, backhaul, etc.): Prix 18 W
Channel coherence time: T 10 ms Power consumed by local oscillator at BSs: Pgyn 2W
Coherence block (channel uses): U 1800 Power required to run the circuit components at a BS: Ppg 1W
Total noise power: Bo? —96 dBm Power required to run the circuit components at a UE: Pyg 0.1 W
Relative pilot lengths: () 7 (dD) 1 Power required for coding of data signals: Pcop 0.1 W/(Gbit/s)
Computational efficiency at BSs: Lps 12.8 Gflops/W Power required for decoding of data signals: Ppgc 0.8 W/(Gbit/s)
Computational efficiency at UEs: Lyg 5 Gflops/W Power required for backhaul traffic: P 0.25 W/(Ghit/s)
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Optimal Single-Cell System Design: ZF Beamforming

/Optimum\

M = 165
K =104
oa = 0.87

User rates:

\_ ®64-QAM )

4 Massive N
MIMO!
Name for

multi-user
MIMO with

very many

K antennas /

__Global Ofptimum:

o) M =165, K = 104
3 304 EE = 30.7 Mbit/J.
2 LN : B X
o 254"
=3
5 20+ g g LAY j
S 154 — Optimization :
= ~Algorithm
>‘10\- T
o
S 5y
L

0

100

100 50

150

Number of Antennas (M) 0 0 Number of Users (K)




User rates:

Kz64—QAM/
4 Not )

optimal!

Gives
optimal
beamforming
but
computations

costly

(O]
(6))
{

i Global Optimum:

NN (€]
o
/

o
i

—_
o
!

Energy Efficiency [Mbit/Joule]
5 5 8
{

100
100 50

M=145K =95
EE30-3 Mbit/J .'

150

Number of Antennas (M) 0 0 Number of Users (K)
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Optimal Single-Cell System Design: MRT/MRC Beamforming

/Optimum\

M =81
K =177
a=0.24

User rates:

—_
N
{

s
o

1

oo

1

\_ ~2-PSK Y.

€ Observatio\
n

Lower EE
than with ZF

Also Massive

Energy Efficiency [Mbit/Joule]

o
/

MIMO setup

\—I:ew—Fa-Ees—/

Number of Antennas (M)

Global Optimum:
Lo M=81,K=17
EE =9.86 Mbit/J

150

100

Number of Users (K)




Multi-Cell Scenarios and Imperfect Channel Knowledge

e Limitations in Previous Analysis
- Perfect channel knowledge
- No interference from other cells

e Consider a Symmetric Multi-Cell Scenario:

. 500 meters .
I 1 -
Cluster 1 | Cluster 2 | Cluster 1 | Cluster 2 | Cluster 1 ASSU m ptl O n S

Typical cell:
All cells look the same >
Jointly optimized

Cluster 3 | Cluster 4 | Cluster 3 | Cluster 4 er 3 @ @ )

All cells transmit in
parallel

Cell under @
Cluster I | Cluster2 | study | Cluster2 | Cluster 1

(Cluster 1) 2

Fractional pilot reuse:
Divide cells into clusters

~ ~ N antennas at BS : ; (ul)
Cluster 1 | Cluster 2 | Cluster 1 | Cluster 2 | Cluster 1
R B I el K uniformly disuibuted UEs \_ O PINK p”(glt) length 7K
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Multi-Cell Scenarios and Imperfect Channel Knowledge (2)

e Inter-Cell Interference
- A;; = Channel attenuation between a random user in cell [ and BS
J
-7 =Xz E Pﬂ% is relative severity of inter-cell interference

Lemma (Achievable Rate) \
Consider same transmit power as before: Py = aBo?8K

Achievable rate under ZF and pilot-based channel estimation:

R = Blog, (1
\

yan | ) PN l
LL\IVI 1\}

+

K a(M — K)Jpc + (1 + Jpc + ﬁ) (1 +'c>x) —aK(1+ jpcz)/

PHBE fita M ibai ony (P@ster E { }an@nbeﬁrierfaeummnem‘e[ﬁ{ ;;e)}

(Strong interference) (Weaker)




Multi-Cell Scenarios and Imperfect Channel Knowledge (3)

» Multi-Cell Rate Expression not Amenable for Analysis
- No closed-form optimization in multi-cell case
- Numerical analysis still possible

e Similarities and Differences
- Power consumption is exactly the same

- Rates are smaller: Upper limited by pilot contamination:
a(M K)
<
a(M— K)ﬂpc+(1+7pc+ =e l))(1+ouf<{7) aK(1+7PC2)) Blog, (1 +7Pc)

R=Blog2(1+

- Overly high rates not possible (but we didn’t get that...)
- Clustering (fractional pilot reuse) might be good to reduce interference




Optimal Multi-Cell System Design: ZF Beamforming

/Optimum\

M =123
K =40
o= 0.28
) =4

User rates:

N ~4-QAM Y.
4 Massive\
MIMO!

Many BS
antennas

Note that

\_ M/K = 3 .

| Global Optimum:g
M = 123, K: 403
EE =758 Moit/J -

Energy Efficiency [Mbit/Joule]
S

150

100
100 50

Number of Antennas (M) 0 0 Number of Users (K)




Different Pilot Reuse Factors

/ Higher Pilot Reuse \
Higher EE and rates!

Controlling inter-cell
interference is very

important!

. /
/ Area Throughput \

We only optimized EE

Achieved 6 Gbit/s/km?
over 20 MHz bandwidth

METIS project mentions
100 Gbit/s/km? as 5G goal

\ - Need higher /

Energy Efficiency [Mbit/Joule]

Area Throughput [Gbit/s/ka]

N
]

e — — — ZF (Imperfect CSI): Reuse 4| |
, — ZF (Imperfect CSl): Reuse 2
N ZF (Imperfect CSl): Reuse 1

100 150 200

0 50
Number of Antennas (M)
gl| — — — ZF (Imperfect CSI): Reuse 4 PR
— ZF (Imperfect CSI): Reuse 2 g
----- ZF (Imperfect CSI): Reuse 1 -

0

0

50 100 150 200

Number of Antennas iMi



Energy Efficient to Use More Transmit Power?

e Recall from Theorem 2: Transmit power increases M
- Figure shows EE-maximizing power for different M

Essentially
o linear
growth
E N Total RE power EE-optimal points :
g o | — — — ZF (Imperfect CSl): Reuse 4|
10 | Radiated power —— ZF (Imperfect CSl): Reuse 2| 7
E- \~ perBSantenna ZF (Imperfect CSI): Reuse 1| { Power per
< 10:15'

EE-optimal points antenna
Yy / decreases

0 50 100 150 200
. . . N f Ant M .
e Intuition: More Circuit Pow'én?bgéo lﬁg%nﬁ%(re? Transmit Power

- Different from 1/4/M scaling laws in recent massive MIMO
literature

- Power per antennas decreases, but only logarithmically




Summary

" si : R

. imulations

» Optimization Results
- EE is a quasi-concave function of (M, K, a) Depends on
- Closed-form optimal M, K, or a for single-cell parameters

- Alternating optimization algorithm

Increases with Decreases with

Antennas M  Power «, coverage area S, and M- related CIrCUIt power
M—independent circuit power

Reveals Users K Fixed circuit power C,, and K-related circuit power

=

how — coverage area S
variables Transmit Circuit power, coverage area Sy, -
are power antennas M, and users K
connected | aBo*$)K
Large Cell ) /Massive MIMO\ /More Circuit\ /Limits of M, K
Appears Power
More antennas, Naturally Use more Circuit power

users, RF power/ \ Fractional pilot / \transmit power/ \that scales with/

S ressedmportantt A




Optimize more than Energy-Efficiency

» Recall: Many Metrics in 5G Discussions
- Average rate (Mbit/s/active user)
- Average area rate (Mbit/s/km?2)
- Energy-efficiency (Mbit/Joule)
- Active devices (per km?2)
- Delay constraints (ms)

Communications

e So Far: Only cared about EE
- Ignored all other metrics

4 Optimize Multiple Metrics

We want efficient operation w.r.t. all objectives

Is this possible?
For all at the same time?




Multi-Objective Network Optimization




Basic Assumptions: Multi-Objective Optimization

e Consider N Performance Metrics
- Objectives to be maximized

- NOtatlon' gl(x)th(x)l---th(x)
- Example: individual user rates, area rates, energy-efficiency

e Optimization Resources
- Resource bundley
- Example: power, resource blocks, network architecture, antennas,

users xeX

- Feasible allocation:
A Resource bundle X

x3

Attainable
objective

. Objective \ setG
2 functions




Single or Multiple Performance Metrics

e Conventional Optimization
- Pick one prime metric: g;(x)

- Turn gl(x)ng(X): "'lgN(X) |nt0
constraints

- Optimization problem:
maximize g1 (X)

subjectto x € X,
92(xX) = Cy, ..., gy(X) = Cy.

- Solution: A scalar number

- Cons: Is there a prime metric?
How to select
constraints?

g2

» Multi-Objective
Optimization
- Consider all N metrics

- No order or
preconceptions!

1 [91(X), g2(X), ..., gy (X)]
Sub-je%)tr%glm;(zgt)gn problem:

maximize

4 )

Solution:
A set

/

Pareto
Boundary

Improve a metric

\ > Degrading

g1




Why Multi-Objective Optimization?

e Study Tradeoffs Between Metrics
- When are metrics aligned or conflicting?
- Common in engineering and economics — new in communication

the=-
A Posteriori Approach
Generate region (computationally demanding!)
Look at region and select operating point
A, Utopia A
93(x) 5 93(x) :
Highly Relatively |
conflicting aligned
> >

Aligned Conflicting 1(x) Aligned Conflicting 92(x)




A Priori Approach

* No Objectively Optimal Solution

- Utopia point outside of region - Only subjectively "good” solutions
exist

» System Designer Selects Utility Function f: RY - R
- Describes subjective preference (larger is better)

Aggregate
E . 1) =2k o A metric
* Examples: Sum performance: flg) =TI, ¢
Proportional fairness: k u —1y—1
Harmonic mean: f(g) (Zk Ik ) Fairness
' f(g) = ming gy Y oalmes
Max-min fairness: OoT metrics

We obtain a simplified problem: _ Solution: A scalar number

maximize f(g;(x), g>(X), ..., gy (X)) (Gives one Pareto optimal
* point)

subjectto x e X




Example: Optimization of 5G Networks

» Design Cellular Network
- Symmetric system

3 Cell 14

Cell 15

250 meters

M transmit antennas

K uniformly
distributed users

( 500

- 16 base stations (BSs)
_ Select: 4 Cell 1 Cell 2 Cell - ﬁu/ (
M = # BS antennas Cell 8 Cell 5 Cell 6 Cell 7 Cell 8
K = # users
P = power/antenna Cell 12| Cell9 | Cell10 | Cell 11 Cell 12
6 Cell 13 Cell 14 Cell 15 Cell 16
» Resource bundle:
( 1<K<g, )
X={[KMP': 2<M< My
\ 0 < P< MBuS]

20 W



Example: Optimization of 5G Networks (2)

e Downlink Multi-Cell Transmission
- Each BS serves only its own K users
- Coherence block length: U
- BS knows channels within the cell (cost: K/ @’
=4

- ZF beamforming: no intra-cell interference S
- Interference leaks between cells

SR}
|
A\‘ 'lA
NN
N7
Y P~

* Average User Rate

Power/user, Array gain
P
K 7 M —K)
Raverage =B (1 - 5) log, | 1+ S,02 + 7

/ et 7
Bandwidth CSI estimation

(10 MHz) overhead (U = 1000) Noise /  Relative inter-cell
pathloss interference

(1.72 - 107%) (0.54)

2 July 2014



Example: Optimization of 5G Networks (3)

» What Consumes Power?
- Transmit power (+ losses in amplifiers)
- Circuits attached to each antenna
- Baseband signal processing
- Fixed load-independent power

=

» Total Power Consumption

P B Cyheamformi
Piotal = —E Coo + C10K + Co1M + eanlll mEe
Kn / \ U BS
Amplifier le?;:lop\)/:l);/ver Circuit power K .
efficiency per antenna ZF%omplthlng_
(0.31) Circuit power (1 W) camiorming

(2.3-107¢ - MK?)

per user
(0.3 W)




Example: Results

" 1. Average user rate ¢1(X) = Ruverage bit /s /user]
K .
3 Objectives< 2. Total area rate g2(x) = 1 Haverage bit /s /km?]
KRavera c r1 .
3. Energy-efficiency g3(x) = ——— bit/J]

Rotal

12

—
o
/

/ Observations \

Area and user rates
are conflicting
objectives

. |_9W User Bates,

High AreaRates . . . - ,0“\\\ e
R it
g

‘(Il % ‘
",
i,
(7

VLN

84 .

[

64

AN
0%

il

Energy Efficiency [Mbit/Joule]

Only energy efficient

) 2 High User Rates, ¢
at high area rates

Low Area Rates

Different number /

of users

Average Area Rate 20 - ' - 40 20
[Gbit/s/km?] 0 100 80 60

Average User Rate [Mbit/s/user]



Example: Results (2)

* Energy-Efficiency vs. User Rates
- Utility functions 45

normalized by | . . . Utopia pon
utopia point S Max weighted -
101 sum performance i
8f \* ™ Max weighted 1

proportional fairness

/ Observations \

Aligned for small

user rates & Max weighted

max-min fairness

Energy Efficiency [Mbits/Joule]
o

Conflicting for high

user rates
o %

0 | | | | . |
0 20 40 60 80 100
Average User Rate [Mbits/user]

Aligned Conflicting
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