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Généralités sur les dynamiques sociales

• Quelques exemples de réseaux dynamiquesExamples for temporal networks

C. Tantipathananandh, et.al. (2007)!Temporal network of zebras

Temporal network of sex buyers and sellers

A

B

C

D

Temporal networks of mobile call communication
M. Karsai, et.al. (2012)!

L. E. C. Rocha, et.al.  (2010!

• Person-to-person communication 
• Mobile-phone calls 
• Email communication 
• Face-to-face interactions 

• One-to-many information dissemination 
• Information broadcasting 
• Microblogging 

• Distributed computing 
• Communication between computational units 

• Infrastructural systems 
• Transportation 

• Cell biology 
• Protein-protein interactions 
• Gene regulatory networks 

• …

Human proximity Van der Broeck et.al. (2011)

Study of group interaction 
in co-located conferences  

RFID badges

Detection of face-to-face 

proximity 

in the conference setting 

A typical conference

RFID readers

Previous deployments

You are invited to participate in a research study about the conversation time between individuals attending two different 
meetings of the American Physical Society that have been scheduled at the same time and location. You have been asked 
to participate because you have registered for either the annual meeting of the Division of Plasma Physics or the annual 
Gaseous Electronics Conference. The purpose of the research is to measure the effectiveness of co-locating two related 
conferences, through the use of radio frequency ID tags that measure the face-to-face contact time between individuals at 
the conferences. This research is a part of the ongoing SocioPatterns project (www.sociopatterns.org). The research will 
be conducted at the convention center starting when the participants register and pick up their badges and end when they 
return their badges.

Scientists in charge:

Mark Nornberg, Jean-François Pinton, Nicolas Tremblay, Pierre Borgnat

REGISTER TO PARTICIPATE

DO  NOT FORGET TO RETURN YOUR BADGE UPON DEPARTURE!

DO NOT FORGET TO RETURn 

A day at the museum

Téléphones Sociopatterns: One day in a museum
[Dublin, 2011]

• Article de review :
[Holme & Saramäki, “Temporal networks”, 2012]
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Généralités sur les dynamiques sociales

• Dynamique non stationnaire : rythmes cycliques,
“burstiness”,...Temporal correlations - Burstiness

Sings and measures of temporal correlations!
• Daily and weekly patterns!

• induced by the circadian rhythm of human activities!
• Triggered events!

• Count of inter-event times!
• It has a peak at ~20 sec assigning the typical reaction 

time between two consecutive correlated events!
• Size of bursty trains!

• Group consecutive events in trains if the inter-event time 
between them is smaller than Δt!

• Count the E size of located event clusters!
• Sensitive measure of correlation: P(E) distribution

A

B

C

D
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Call to new person

∆t to previous
incoming call

• go through all events
• calculate Δt to previous
events
• count the number of 
events for each Δt

Monday, December 3, 12

network-level correlations

human communication dynamics: daily & weekly patterns

Monday, December 3, 12

P (E) ⇠ e�qE

P (E) ⇠ E��Correlated

Independent

Kovanen (2009)
Karsai (2012)

Temporal correlations - Burstiness
• Human behaviour and many natural phenomena show heterogeneous temporal behaviour 

on individual level!

• Intermittent switching between periods of low activity and high activity bursts!

• Individual level burstiness: inhomogeneous temporal behaviour of single entities!

• It is a sign of temporally correlated behaviour

a)

b)

c)

Earthquakes in a Japanese city

Firing of a single neuron 

Communication sequence of an individual

• Reference system: Poisson process 
where consecutive events are 
independent and homogeneously 
distributed in time

well approximated by Poisson processes1–3. In contrast, there
is increasing evidence that the timing of many human
activities, ranging from communication to entertainment and
work patterns, follow non-Poisson statistics, characterized by
bursts of rapidly occurring events separated by long periods of
inactivity4–8. Here I show that the bursty nature of human
behaviour is a consequence of a decision-based queuing
process9,10: when individuals execute tasks based on some per-
ceived priority, the timing of the tasks will be heavy tailed, with
most tasks being rapidly executed, whereas a few experience very
long waiting times. In contrast, random or priority blind
execution is well approximated by uniform inter-event statistics.
These finding have important implications, ranging from
resource management to service allocation, in both communi-
cations and retail.
Humans participate on a daily basis in a large number of distinct

activities, ranging from electronic communication (such as sending
e-mails or making telephone calls) to browsing the Internet,
initiating financial transactions, or engaging in entertainment and
sports. Given the number of factors that determine the timing of
each action, ranging from work and sleep patterns to resource
availability, it seems impossible to seek regularities in human
dynamics, apart from the obvious daily and seasonal periodicities.
Therefore, in contrast with the accurate predictive tools common in

physical sciences, forecasting human and social patterns remains a
difficult and often elusive goal.

Current models of human activity are based on Poisson pro-
cesses, and assume that in a dt time interval an individual (agent)
engages in a specific action with probability qdt, where q is the
overall frequency of themonitored activity. This model predicts that
the time interval between two consecutive actions by the same
individual, called the waiting or inter-event time, follows an
exponential distribution (Fig. 1a–c)1. Poisson processes are widely
used to quantify the consequences of human actions, such as
modelling traffic flow patterns or accident frequencies1, and are
commercially used in call centre staffing2, inventory control3, or to
estimate the number of congestion-caused blocked calls in calls in
mobile communication4. Yet, an increasing number of recent
measurements indicate that the timing of many human actions
systematically deviates from the Poisson prediction, the waiting or
inter-event times being better approximated by a heavy tailed or
Pareto distribution (Fig. 1d–f). The differences between Poisson
and heavy-tailed behaviour are striking: a Poisson distribution
decreases exponentially, forcing the consecutive events to follow
each other at relatively regular time intervals and forbidding very
long waiting times. In contrast, the slowly decaying, heavy-tailed
processes allow for very long periods of inactivity that separate
bursts of intensive activity (Fig. 1).

Figure 1 The difference between the activity patterns predicted by a Poisson process and
the heavy-tailed distributions observed in human dynamics. a, Succession of events
predicted by a Poisson process, which assumes that in any moment an event takes place

with probability q. The horizontal axis denotes time, each vertical line corresponding to an

individual event. Note that the inter-event times are comparable to each other, long

delays being virtually absent. b, The absence of long delays is visible on the plot showing
the delay times t for 1,000 consecutive events, the size of each vertical line

corresponding to the gaps seen in a. c, The probability of finding exactly n events within a
fixed time interval is P(n; q) ¼ e 2qt(qt )n/n!, which predicts that for a Poisson process the

inter-event time distribution follows P(t) ¼ qe 2qt, shown on a log-linear plot in c for the

events displayed in a, b. d, The succession of events for a heavy-tailed distribution.
e, The waiting time t of 1,000 consecutive events, where the mean event time was
chosen to coincide with the mean event time of the Poisson process shown in a–c. Note
the large spikes in the plot, corresponding to very long delay times. b and e have the same
vertical scale, allowing the comparison of the regularity of a Poisson process with the

intermittent nature of the heavy-tailed process. f, Delay time distribution P(t) . t 22 for

the heavy-tailed process shown in d, e, appearing as a straight line with slope22 on a

log–log plot. The signal shown in d–f was generated using g ¼ 1 in the stochastic

priority list model discussed in the Supplementary Information.

letters to nature

NATURE |VOL 435 | 12 MAY 2005 | www.nature.com/nature208
© 2005 Nature Publishing Group 

 

Barabási (2005)

Karsai (2012)
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Généralités sur les dynamiques sociales

• Les durées contact et inter-contact suivent une loi de
puissance

• Exemple sur le conférence à SLC

Durée de contact Durées d’inter-contact
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Réseaux dynamiques

• Complexification progressive :
topologie fixe ; réseaux en croissance ;
processus dynamiques sur topologie
fixe ; processus dynamique en
co-évolution avec réseaux
dynamiques ; réseaux temporels

• Contextes : épidémies, diffusion
d’information (de rumeur), réseaux de
communication ad-hoc, sans fil,
micro-blogs, réseaux d’évolution en
biologie, etc.

• => Réseaux temporels
• Quels modèles, quels outils ?

p. 5
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[Scherrer et al. "Description and simulation of dynamic mobility network", Computer

Networks (2008)]

• Methodology: empirical analyses from data
• Available datasets at that time:

• IMOTE: 41 nodes, 3 days, sampling 2’ [Chaintreau et al.,
2006]

• MIT: 100 nodes, 9 months, sampling 5’ [Eagle et al., 2007]

• Power-laws strike back:
-Contact and inter-contact duration PDF

[Chaintreau et al., 2006]

-Scale-free networks, Small worlds networks,...

[Barabasi, 1999]

p. 6
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Analysis of Dynamical Network
Scale invariance in dynamical networks

[IMOTE dataset]

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Contact Duration

P
[X

>x
]

10
1

10
2

10
3

10
4

10
5

10
6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Inter−contact Duration

P
[X

>x
]

Contacts Inter-contacts
Model: P(τ > T ) ∼ cT−α.

Data Type α c Mean (s)
IMOTE Inter-contact 0.60 156 3680
IMOTE Contact 1.66 98 140
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Analysis of Dynamical Network
Basic Statistics [IMOTE, 2006]

Prop. Data PDF Mean Std. Corr. T (s)
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Analysis of Dynamical Network
Joint Distribution
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• Large Variability
For a given number of connected nodes, the # of
connected links may be widely spread.
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Dynamical properties: link creation/deletion process
Prop. Data PDF Mean Std.

Dev.
Corr. T (s)
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• Link creation/deletion is not much correlated along time
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• Not many correlation between evolution of different nodes.
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Exemple d’un modèle de réseau dynamique

• Travail de [Scherrer et al. "Description and simulation of dynamic
mobility network", Computer Networks (2008)]

• Principe de base pour proposer un modèle de réseau
dynamique :
modèle dynamique d’activation / inactivation des liens

• Objectif : respecter les contraintes mesurées = statistiques
globales

• Nombre de nœuds / liens connectés
• Degré des nœuds
• Nombre de triangles, etc.

p. 11
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Exemple d’un modèle de réseau dynamique

• Simulation du processus d’ajout/suppression de lien, pour
chaque lien et chaque pas de temps indépendamment

• Contraintes : on garde les distrib. temporelles des temps
de contacts / inter-contacts

• On force la création de triangles

For i=0..Simulation-Time
For each link e
Pr = Uniform(0,1);
Ptr(e,t) = TransitionProbability(e,t);
if (Pr ≤ Ptr(e,t))
ChangeState(e);

p. 12
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Prise en compte des contacts / inter-contacts
• Objectif ? Reproduire la distribution stationnaire des temps

de contact PON(t) / inter-contact POFF (t).
• Pourquoi ? Ces distributions ont une queue lourde.
• Comment ? Calculer P+(t) et P−(t)) en fonction de PON(t)

et POFF (t).

PON(t) = P−(t)×
t−1∏

i=1

(1− P−(i))

On peut inverser cette relation pour obtenir P−(t)
récursivement:

P−(t) =
PON(t)

∏t−1
i=1(1− P−(i))

, t ≥ 2, P−(1) = PON(1)

P+(t) =
POFF (t)

∏t−1
i=1(1− P+(i))

, t ≥ 2, P+(1) = POFF (1)
p. 13
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Prise en compte des créations de triangles
• Objectif ? Favoriser les ajouts de liens qui créent un

nouveau triangle.
• Pourquoi ? Reproduire la proportion de ces évènements

observée dans les données.
• Comment ? Pondération de la probabilité de transition

P+(t).

P+(t)
P+/tri=

f+/tri=

Pour les créations de liens qui mène à une création de triangle

P+(t)
P+/tri=

f+/tri=

Pour les créations de liens qui ne mène pas à une création de
trianglep. 14
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Informations injectées dans le modèle
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Données P+/tri+ P+/tri=
IMOTE 44 % 56 %

CI 5 % 95 %
TRI 60 % 40 %
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Distributions conjointes obtenues
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• La variabilité des configurations n’est reproduite que par le
modèle favorisant les triangles
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Densités des communautés
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• La densité des communautés n’est reproduite que par le
modèle favorisant les triangles
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Autres questions ou modèles pour les réseaux
dynamiques

• Modèles écrits au niveau des groupes
cf. [Stehlé, Barrat et al., 2010, 2011]

• Flèche du temps dans les interactions sociales ?
(poser la question à Nicolas Tremblay...)

• Trouver des modèles de graphes temporels Gt = (V t , E t )
ou bien de flots de liens (Ai ,Bi , ti)

• Adapter la notion de communautés aux réseaux
dynamiques

p. 18
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Décomposition en groupes dépendant du temps

• Sur cette question, il existe plusieurs solutions et pas
encore de consensus

• Présentation ici de quelques travaux dans ce sens
• Autre piste qui ne sera pas présenté dans le cours :

dans le cadre de la thèse de Ronan Hamon
(transformation de graphes en signaux et NMF)

p. 19
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Décomposition en groupes dépendant du temps - 1
• Définition d’un groupe dynamique de manière formelle :

- sous-graphe maximal ayant au moins σ liens pendant
plus que τ pas de temps
- critère de densité : 2|E ||V |(|V | − 1) ≥ δ

• Rechercher exhaustive (en data mining) par D-miner
(utilise la monotocité de la définition)

p. 20
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Décomposition en groupes dépendant du temps -1
• Résultat sur les données IMOTE [Scherrer et al., 2008]
• Cercles = groupes ; carrés = individus

Trajectoires des individus parmi les groupes.
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Décomposition en groupes dépendant du temps -2
• Travail de [Gauvin et al. "Detecting the Community Structure and

Activity Patterns of Temporal Networks: A Non-Negative Tensor
Factorization Approach", PLOS One (2014)]

• Codage Tensoriel du cube de données des Gt = (V, E t )
4

Figure 1. Representing a temporal network as a 3-way tensor. Each frontal slice of the tensor
is the adjacency matrix describing the network at one discrete point in time.

can be achieved by means of the so-called canonical decomposition (canonical polyadic decomposition,
CP). CP in 3 dimensions aims at writing a tensor T 2 RN⇥N⇥S in a factorized fashion:

tijk =

RTX

r=1

airbjrckr , (1)

where the smallest value of RT for which such a relation can hold is the rank of the tensor T . In other
words, the tensor T can always be expressed as a sum of rank-1 tensors in the form

T =

RTX

r=1

ar � br � cr , (2)

i.e., as the sum of outer products of three vectors. The set of vectors a{1,2,...,RT } (resp. b{1,2,...,RT },

c{1,2,...,RT }) can be re-written as a matrix Â 2 RN⇥RT (resp. B̂ 2 RN⇥RT and Ĉ 2 RS⇥RT ), where each
of the RT vectors is a column of the matrix. The decomposition of Eq. 2 can therefore be represented
in terms of the three matrices Â, B̂, Ĉ as JÂ, B̂, ĈK. A visual representation of this factorization, also
known as the Kruskal decomposition, is shown in Fig. 2.
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Figure 2. Pictorial representation of the Kruskal decomposition. The cube on the left is the
original 3-way tensor, which is represented as the sum of rank-1 tensors (on the right), each generated
as the outer product of three 1-dimensional vectors (thin rectangles). Each of the rank-1 terms on the
right corresponds to one component.

data were fully encrypted. No personal information of participants
was associated with the identifier of the corresponding RFID
badge. The only piece of information associated with the unique
identifier of the badge was the class the corresponding individual
was associated with.

Tensor Representation of the Empirical Data
The temporal network dataset we use comprises two days of

recorded social interactions with a temporal resolution of 20
seconds. The schedule of classes and social activities that we use as
a ground truth for the activity timelines, however, is defined on a
coarser temporal scale. Hence for the present study we aggregate
the raw sensor data over longer time intervals, comparable to this
temporal scale. Different levels of aggregation can be chosen,
according to the temporal scale of the activity timelines to be
explored.

In what follows, we divide the dataset timeline into S~150
consecutive intervals of approximately 13 minutes, and we
aggregate the temporal network for each interval. We also
considered intervals of 5,15,30,60 minutes, which are comparable
to the typical temporal scale of activities at school, to study the
robustness of the results with regards to the choice of aggregation
level (details of the comparison are found in the Supporting
Information). The division of the total duration of the experiment
in 150 intervals and the subsequent aggregation yields 150
network snapshots, built so that one link is drawn between two
nodes if those nodes had at least one contact during the
corresponding interval. The state of a network during one interval

is represented by an adjacency matrix M[RN|N , where the
binary-valued entry Mij indicates the presence of the i-j link. The

temporal network can thus be represented as 150 successive

adjacency matrices combined into a 3-way tensor, T [RN|N|S .

Uncovering Latent Structures by Tensor Factorization
The tensor T [RN|N|S , where N is the number of nodes of the

network and S the number of network snapshots, encodes both the
topological and temporal information on the network under study.
Uncovering structures that may correspond to communities or
correlated activity patterns requires the identification and extrac-
tion of lower-dimensional factors. To this end, we use tensor
factorization techniques, i.e., we choose to represent the tensor as
a suitable product of lower-dimensional factors. This can be
achieved by means of the so-called canonical decomposition
(canonical polyadic decomposition, CP). CP in 3 dimensions aims

at writing a tensor T [RN|N|S in a factorized fashion:

tijk~
PRT

r~1

airbjrckr, ð1Þ

where the smallest value of RT for which such a relation can hold
is the rank of the tensor T . In other words, the tensor T can
always be expressed as a sum of rank-1 tensors in the form

T~
XRT

r~1

ar0br0cr, ð2Þ

i.e., as the sum of outer products of three vectors. The set of
vectors af1,2,...,RT g (resp. bf1,2,...,RT g, cf1,2,...,RT g) can be re-written

as a matrix ÂA[RN|RT (resp. B̂B[RN|RT and ĈC[RS|RT ), where
each of the RT vectors is a column of the matrix. The
decomposition of Eq. 2 can therefore be represented in terms of

the three matrices ÂA,B̂B,ĈC as ½½ÂA,B̂B,ĈC$$. A visual representation of
this factorization, also known as the Kruskal decomposition, is
shown in Fig. 1.

Factorization Methodology
In the present case, each rank-1 tensor, that we henceforth call

component, corresponds to a set of nodes whose activities are
correlated. The aim here is not to find an exact factorization, but
rather to approximate the tensor with a number of components
smaller than the rank of the original tensor. Such an approxima-
tion of the tensor is equivalent to minimizing the difference
between T and ½½A,B,C$$ (PARAFAC decomposition),

min
A,B,C

ET{A,B,CE2
F , ð3Þ

where A,B,C respectively have dimensions N|R, N|R and

S|R, RvRT , and EAE2
F ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ijk jaijkj2

q
is the Frobenius norm.

In the following A,B,C will always indicate the approximate
decomposition, to avoid confusion with the exact decomposition

ÂA,B̂B,ĈC mentioned above.
Solving this problem amounts to finding the R rank-1 tensors

that best approximate the tensor T . The number R of components
is chosen on the basis of the desired level of detail: a low number of
components only yields the strongest structures, potentially
overlooking important features, whereas using a high number of
components faces the risk of overfitting noise. Choosing R
amounts to an optimization problem in which we seek the
number of components that best explain the structure of the tensor
without describing the possible noise of the data. In this respect,
the tensor factorization method is similar to community detection
techniques where the number of communities is fixed a priori: the
number of components we choose to approximate the tensor is the
number of communities or activity patterns we extract (see also
Fig. 2).

We transform the 3-dimensional problem of Eq. 3 into 2-
dimensional sub-problems by unfolding the tensor T through a
process called matricization: The mode-i matricization consists in
linearizing all the indices of the tensor except i. In our case this
yields three modes: X(1),X(2),X(3). The three resulting matrices

have respectively a size of N|NS, N|NS and S|N2. Each
element of the matrix X(i~1,2,3) corresponds to one element of the
tensor T , i.e., each mode contains all the values of the original
tensor. Thanks to matricization, the factorization problem of Eq. 2
can be reframed in terms of individual factorizations of the three
modes. In other words, minimizing the difference between T and
½½A,B,C$$ is equivalent to minimizing the difference between each
of the modes and their respective approximation in terms of

Figure 1. Pictorial representation of the Kruskal decomposi-
tion. The cube on the left is the original 3-way tensor, which is
represented as the sum of rank-1 tensors (on the right), each generated
as the outer product of three 1-dimensional vectors (thin rectangles).
Each of the rank-1 terms on the right corresponds to one component.
doi:10.1371/journal.pone.0086028.g001
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time of the day, from morning to evening. The components are
numbered according to the order of Fig. 4 (left to right). On visual
inspection, two main activity patterns can be seen for the extracted
components: either the activity is concentrated during class times,
with a dip during lunch hours (12 pm–2 pm), as seen for
components 1–9, or the activity peaks during lunch hours, as
seen for component 10 and 12. The mutually disjoint components
corresponding to the blocks in Fig. 4 display the former patterns
while the overlapping components 10 and 12 display the second
pattern. In all cases, activity levels exhibit large fluctuations over
time. In the following sections we will validate these patterns by
mining for the correspondence between the extracted components
and the available metadata on the temporal network we study.

Structural Validation
An important peculiarity of the dataset we use is that a ground

truth for several important structures is available from node
metadata and known activity schedules. Here we validate the
community structure extracted by means of non-negative tensor
factorization by using the class labels we have for each node, which
provide a ground truth on the class structure of the school
population. Since teachers, strictly speaking, are not uniquely
associated with only one class (although, behaviorally, this seems to
be the case) we carry out the following analysis by considering
students only, for which our metadata provide an unambiguous
association to school classes. We want to assess to which extent the
components found through factorization correlate with actual
classes, as a function of the number of components R. In order to
carry out the validation, we need to match (when possible) the
extracted components to the school classes, and then we proceed
to quantify how much of known class structure is recalled, and the
corresponding accuracy.

In order to match components to classes, we proceed as follows:
as discussed above, for each component r~1, . . . ,R of a
factorization with R components, we classify the networks nodes
as belonging or not belonging to r. Then we compute the Jaccard
overlap between the set of nodes of component r and the set of
nodes corresponding to the known 10 classes (the Jaccard overlap
of two sets is the cardinality of their intersection divided by the
cardinality of their union), obtaining for each component a vector
with the 10 overlap scores with each known class. When such a
vector has only one non-zero value, the corresponding component
r is said to match one known class.

Table 1 reports our results for a number of components ranging
from R~2 to R~20. For a given number of components r we
report the core consistency metric, the number of matched

classes/components, the fraction of nodes spanned by the matches
components with respect to the known number of nodes belonging
to the matched classes, and other metrics described in the table
caption. For small values of R, the extracted structures commu-
nities correspond to relevant groups (classes or mixed classes) of the
dataset, but they only cover part of the network’s nodes: only the
most prominent set of nodes (in terms of size, presence,
connectivity) are initially uncovered. As R increases, the number
of components that can be matched to the classes increases and
finally reaches (for R~12) the total number of classes of the
school. We remark that the criteria for matching we use (a vector
of Jaccard indices with a single non-zero component) is extremely
strict, and yet the factorization technique recovers communities
that can be matched to classes for any number of components, and
when a match is achieved, the attribution of nodes to classes is
almost perfect, as seen in the table. In fact, for all choices of R,
approximately 99% of the nodes that are part of the extracted
components are assigned to the right known community (class).
The missing (not assigned) fractions typically exhibits weak
interaction patterns with the rest of the nodes that make their
class association behaviourally ambiguous (we notice that this can
arise because of improper sensor behavior or participant
compliance). Overall, non-negative tensor factorization applied
to the adjacency tensor affords an extremely accurate recovery of
the independently known class structure, with a coverage that
increases with the number of components R and ultimately recalls
almost perfectly all the 10 known classes. We remark that for a
number of components which is too small to capture the existing
class structures, the technique does not yield partial classes, but
rather returns a fewer number of class communities, or mixed class
communities, with high accuracy.

To illustrate the fact that our methodology is efficient at the

level of the individual classes, we focus on the case R~R̂R~13 and
we report in Table 2 the number of nodes recovered in each of the
10 mutually disjoint communities that can be matched to the
known classes: There is a perfect matching between 9 components
and 9 classes, and for the remaining class there is one student (out
of more than 20) who is not assigned to the component even
though they are known to be part of the class that component
represents. The components that can be matched to classes are
marked as ‘‘class’’ in Fig. 6.

Spatio-temporal Validation
We notice that for R~13, three of the extracted components

(10, 12, 13) are not matched to classes, have temporal activity
patterns (Fig. 6) that set them apart from the other class-related

Figure 5. Distribution of the membership weights. Sample histogram of the membership weights for one component of the decomposition
(one column of factor A for R~13).
doi:10.1371/journal.pone.0086028.g005

Community-Activity Structure of Temporal Networks

PLOS ONE | www.plosone.org 7 January 2014 | Volume 9 | Issue 1 | e86028

time of the day, from morning to evening. The components are
numbered according to the order of Fig. 4 (left to right). On visual
inspection, two main activity patterns can be seen for the extracted
components: either the activity is concentrated during class times,
with a dip during lunch hours (12 pm–2 pm), as seen for
components 1–9, or the activity peaks during lunch hours, as
seen for component 10 and 12. The mutually disjoint components
corresponding to the blocks in Fig. 4 display the former patterns
while the overlapping components 10 and 12 display the second
pattern. In all cases, activity levels exhibit large fluctuations over
time. In the following sections we will validate these patterns by
mining for the correspondence between the extracted components
and the available metadata on the temporal network we study.

Structural Validation
An important peculiarity of the dataset we use is that a ground

truth for several important structures is available from node
metadata and known activity schedules. Here we validate the
community structure extracted by means of non-negative tensor
factorization by using the class labels we have for each node, which
provide a ground truth on the class structure of the school
population. Since teachers, strictly speaking, are not uniquely
associated with only one class (although, behaviorally, this seems to
be the case) we carry out the following analysis by considering
students only, for which our metadata provide an unambiguous
association to school classes. We want to assess to which extent the
components found through factorization correlate with actual
classes, as a function of the number of components R. In order to
carry out the validation, we need to match (when possible) the
extracted components to the school classes, and then we proceed
to quantify how much of known class structure is recalled, and the
corresponding accuracy.

In order to match components to classes, we proceed as follows:
as discussed above, for each component r~1, . . . ,R of a
factorization with R components, we classify the networks nodes
as belonging or not belonging to r. Then we compute the Jaccard
overlap between the set of nodes of component r and the set of
nodes corresponding to the known 10 classes (the Jaccard overlap
of two sets is the cardinality of their intersection divided by the
cardinality of their union), obtaining for each component a vector
with the 10 overlap scores with each known class. When such a
vector has only one non-zero value, the corresponding component
r is said to match one known class.

Table 1 reports our results for a number of components ranging
from R~2 to R~20. For a given number of components r we
report the core consistency metric, the number of matched

classes/components, the fraction of nodes spanned by the matches
components with respect to the known number of nodes belonging
to the matched classes, and other metrics described in the table
caption. For small values of R, the extracted structures commu-
nities correspond to relevant groups (classes or mixed classes) of the
dataset, but they only cover part of the network’s nodes: only the
most prominent set of nodes (in terms of size, presence,
connectivity) are initially uncovered. As R increases, the number
of components that can be matched to the classes increases and
finally reaches (for R~12) the total number of classes of the
school. We remark that the criteria for matching we use (a vector
of Jaccard indices with a single non-zero component) is extremely
strict, and yet the factorization technique recovers communities
that can be matched to classes for any number of components, and
when a match is achieved, the attribution of nodes to classes is
almost perfect, as seen in the table. In fact, for all choices of R,
approximately 99% of the nodes that are part of the extracted
components are assigned to the right known community (class).
The missing (not assigned) fractions typically exhibits weak
interaction patterns with the rest of the nodes that make their
class association behaviourally ambiguous (we notice that this can
arise because of improper sensor behavior or participant
compliance). Overall, non-negative tensor factorization applied
to the adjacency tensor affords an extremely accurate recovery of
the independently known class structure, with a coverage that
increases with the number of components R and ultimately recalls
almost perfectly all the 10 known classes. We remark that for a
number of components which is too small to capture the existing
class structures, the technique does not yield partial classes, but
rather returns a fewer number of class communities, or mixed class
communities, with high accuracy.

To illustrate the fact that our methodology is efficient at the

level of the individual classes, we focus on the case R~R̂R~13 and
we report in Table 2 the number of nodes recovered in each of the
10 mutually disjoint communities that can be matched to the
known classes: There is a perfect matching between 9 components
and 9 classes, and for the remaining class there is one student (out
of more than 20) who is not assigned to the component even
though they are known to be part of the class that component
represents. The components that can be matched to classes are
marked as ‘‘class’’ in Fig. 6.

Spatio-temporal Validation
We notice that for R~13, three of the extracted components

(10, 12, 13) are not matched to classes, have temporal activity
patterns (Fig. 6) that set them apart from the other class-related

Figure 5. Distribution of the membership weights. Sample histogram of the membership weights for one component of the decomposition
(one column of factor A for R~13).
doi:10.1371/journal.pone.0086028.g005
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temporally, overlapping communities, and in general patterns
arising from the social and organizational structure of the
environment. We find that non-negative tensor factorization can
fully recover the known class structure of the school and the
activity patterns of classes over time. It also yields communities
that span multiple classes, which we validate by using spatio-
temporal metadata and link to known social activities in the public
spaces of the school.

Detecting temporal network structures by means of non-negative
tensor factorization (NTF) provides several advantages. NTF can
naturally deal with the time-varying topology of a temporal network
represented as a three-way tensor, and can yield components that
correspond to network communities as well as to correlated activity
patterns of network links. The extracted components/communities
can be overlapping, that is, a node can be a member of different
components and the weight of this association is an output of the
method and can be used, if necessary, to induce a binary association
between nodes and communities. The method we study does not
depend or rely on temporal continuity: the temporal index of the
tensor is treated as an unordered axis, just like the axes of the
adjacency matrices that compose the tensor. This allows to capture
long-range correlations and abrupt changes in the community
structure of the network. The non-negativity constraint affords a
simple interpretation of the tensor decomposition in terms of
additive factors that can be linked to known properties or metadata
of the system at hand. The complexity of the model can be tuned to
the needs of a specific application or research question by suitably
choosing the number of components used for factorization.
Indicators such as core consistency can be used to assess the
robustness of the detected structures and to diagnose overfitting.
Finally, given the broad use of NTF in surfacing latent signals across
a variety of disciplinary domains, efficient and scalable computa-
tional methods for factorization are available.

Several limitations of the described method should be also
discussed. Not relying on the continuity of the tensor along the
temporal direction allows to capture global correlations over time
but does not allow to exploit temporal continuity in the (many) cases
where continuity is known to be relevant for the evolution of the
network. Properly handling temporal continuity in computing a
tensor decomposition may help to extract robust structures in the
presence of noise or missing data. Exposing and extracting
hierarchically-organized or nested community structures requires
to compute multiple tensor factorizations with different numbers of
components, and then to separately establish the correspondence
relations or hierarchical relations between the obtained components.

Possible extensions of the method discussed here include
supporting directed temporal networks and weighted temporal
networks. The former is a straightforward extension of the
approach presented here. Incremental non-negative tensor factor-
ization techniques could be developed to deal with an incoming
stream of network data, continuously updating the decomposition
as new data arrive. Non-negative tensor factorization could be also
used to detect latent structures in multiplex (multi-layer) networks,
which can be equally represented as three-way tensors in which
the temporal dimension is replaced by the index of the network
layer. For instance, let us consider a multiplex social network
where each layer corresponds to a different kind of social tie
(Twitter, Facebook, email exchange, etc.). Let’s assume that there
are two groups of nodes, group A and group B: nodes belonging to
group A are linked with one another in all layers of the multiplex,
whereas nodes belonging to group B are only linked in the first
layer. Non-negative tensor factorization allows us to expose
correlated linking patterns across different layers of the multiplex.
In this sample case we would find one component comprising the
nodes of group A, with their associations to all the layers of the
multiplex, and one component comprising the nodes of group B,
uniquely associated with the first layer of the multiplex.

Finally, we close by highlighting the need for benchmark
datasets, containing known synthetic structures, that could be used
to systematically characterize the behavior of different structure
detection methods for temporal networks. The broad availability
of empirical temporal network data with a ground truth is also a
key enabling factor for advancing the state of the art in detecting
community structures and activity patterns in temporal networks.

Supporting Information

Figure S1 Activity patterns of the extracted compo-
nents, second day. Each panel corresponds to one component
obtained by non-negative tensor factorization of the school temporal
network, with R~13, and provides the activity level of the component
as a function of the time of the day. Components that can be matched
to classes are marked as class. The other three components that
correspond to mixed classes exhibit activity patterns that can be
understood in terms of gatherings in the social spaces of the school.
(TIFF)

Figure S2 Component-node matrix for the number of
components ranging from R~1 to R~13. Rows correspond
to network nodes and columns to components. The matrix is

Table 3. Reference score matrix containing the correct
number of students in each class.

23 0 0 0 0 0 0 0 0 0

0 25 0 0 0 0 0 0 0 0

0 0 22 0 0 0 0 0 0 0

0 0 0 26 0 0 0 0 0 0

0 0 0 0 23 0 0 0 0 0

0 0 0 0 0 22 0 0 0 0

0 0 0 0 0 0 21 0 0 0

0 0 0 0 0 0 0 23 0 0

0 0 0 0 0 0 0 0 22 0

0 0 0 0 0 0 0 0 0 24

0

BBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCA

doi:10.1371/journal.pone.0086028.t003

Table 4. Matrix WNTF obtained through NTF containing the
number of students in each community projected over the
different classes.

23 0 0 0 0 0 0 0 0 0 0 13 0

0 25 0 0 0 0 0 0 0 0 0 15 14

0 0 22 0 0 0 0 0 0 0 0 12 0

0 0 0 26 0 0 0 0 0 0 23 16 0

0 0 0 0 23 0 0 0 0 0 22 17 0

0 0 0 0 0 22 0 0 0 0 0 9 2

0 0 0 0 0 0 21 0 0 0 0 3 12

0 0 0 0 0 0 0 23 0 0 0 1 8

0 0 0 0 0 0 0 0 21 0 0 1 12

0 0 0 0 0 0 0 0 0 24 0 1 13

0

BBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCA

doi:10.1371/journal.pone.0086028.t004
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temporally, overlapping communities, and in general patterns
arising from the social and organizational structure of the
environment. We find that non-negative tensor factorization can
fully recover the known class structure of the school and the
activity patterns of classes over time. It also yields communities
that span multiple classes, which we validate by using spatio-
temporal metadata and link to known social activities in the public
spaces of the school.

Detecting temporal network structures by means of non-negative
tensor factorization (NTF) provides several advantages. NTF can
naturally deal with the time-varying topology of a temporal network
represented as a three-way tensor, and can yield components that
correspond to network communities as well as to correlated activity
patterns of network links. The extracted components/communities
can be overlapping, that is, a node can be a member of different
components and the weight of this association is an output of the
method and can be used, if necessary, to induce a binary association
between nodes and communities. The method we study does not
depend or rely on temporal continuity: the temporal index of the
tensor is treated as an unordered axis, just like the axes of the
adjacency matrices that compose the tensor. This allows to capture
long-range correlations and abrupt changes in the community
structure of the network. The non-negativity constraint affords a
simple interpretation of the tensor decomposition in terms of
additive factors that can be linked to known properties or metadata
of the system at hand. The complexity of the model can be tuned to
the needs of a specific application or research question by suitably
choosing the number of components used for factorization.
Indicators such as core consistency can be used to assess the
robustness of the detected structures and to diagnose overfitting.
Finally, given the broad use of NTF in surfacing latent signals across
a variety of disciplinary domains, efficient and scalable computa-
tional methods for factorization are available.

Several limitations of the described method should be also
discussed. Not relying on the continuity of the tensor along the
temporal direction allows to capture global correlations over time
but does not allow to exploit temporal continuity in the (many) cases
where continuity is known to be relevant for the evolution of the
network. Properly handling temporal continuity in computing a
tensor decomposition may help to extract robust structures in the
presence of noise or missing data. Exposing and extracting
hierarchically-organized or nested community structures requires
to compute multiple tensor factorizations with different numbers of
components, and then to separately establish the correspondence
relations or hierarchical relations between the obtained components.

Possible extensions of the method discussed here include
supporting directed temporal networks and weighted temporal
networks. The former is a straightforward extension of the
approach presented here. Incremental non-negative tensor factor-
ization techniques could be developed to deal with an incoming
stream of network data, continuously updating the decomposition
as new data arrive. Non-negative tensor factorization could be also
used to detect latent structures in multiplex (multi-layer) networks,
which can be equally represented as three-way tensors in which
the temporal dimension is replaced by the index of the network
layer. For instance, let us consider a multiplex social network
where each layer corresponds to a different kind of social tie
(Twitter, Facebook, email exchange, etc.). Let’s assume that there
are two groups of nodes, group A and group B: nodes belonging to
group A are linked with one another in all layers of the multiplex,
whereas nodes belonging to group B are only linked in the first
layer. Non-negative tensor factorization allows us to expose
correlated linking patterns across different layers of the multiplex.
In this sample case we would find one component comprising the
nodes of group A, with their associations to all the layers of the
multiplex, and one component comprising the nodes of group B,
uniquely associated with the first layer of the multiplex.

Finally, we close by highlighting the need for benchmark
datasets, containing known synthetic structures, that could be used
to systematically characterize the behavior of different structure
detection methods for temporal networks. The broad availability
of empirical temporal network data with a ground truth is also a
key enabling factor for advancing the state of the art in detecting
community structures and activity patterns in temporal networks.

Supporting Information

Figure S1 Activity patterns of the extracted compo-
nents, second day. Each panel corresponds to one component
obtained by non-negative tensor factorization of the school temporal
network, with R~13, and provides the activity level of the component
as a function of the time of the day. Components that can be matched
to classes are marked as class. The other three components that
correspond to mixed classes exhibit activity patterns that can be
understood in terms of gatherings in the social spaces of the school.
(TIFF)

Figure S2 Component-node matrix for the number of
components ranging from R~1 to R~13. Rows correspond
to network nodes and columns to components. The matrix is

Table 3. Reference score matrix containing the correct
number of students in each class.

23 0 0 0 0 0 0 0 0 0

0 25 0 0 0 0 0 0 0 0

0 0 22 0 0 0 0 0 0 0

0 0 0 26 0 0 0 0 0 0

0 0 0 0 23 0 0 0 0 0

0 0 0 0 0 22 0 0 0 0

0 0 0 0 0 0 21 0 0 0
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0 0 0 0 0 0 0 0 22 0

0 0 0 0 0 0 0 0 0 24
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Table 4. Matrix WNTF obtained through NTF containing the
number of students in each community projected over the
different classes.

23 0 0 0 0 0 0 0 0 0 0 13 0

0 25 0 0 0 0 0 0 0 0 0 15 14

0 0 22 0 0 0 0 0 0 0 0 12 0

0 0 0 26 0 0 0 0 0 0 23 16 0

0 0 0 0 23 0 0 0 0 0 22 17 0

0 0 0 0 0 22 0 0 0 0 0 9 2

0 0 0 0 0 0 21 0 0 0 0 3 12

0 0 0 0 0 0 0 23 0 0 0 1 8

0 0 0 0 0 0 0 0 21 0 0 1 12
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• Travail de [Xu, Kliger, Hero "Tracking Communities in Dynamic Social

Networks", (2011, 2013)]

• Introduire de la continuité temporelle dans les méthodes
de recherches de groupes ou clusters

• Idée principale : Adaptive Forgetting Factor for
Evolutionary Clustering and Tracking (AFFECT)

• Modèle supposé :
W t = Ψt + N t

• Suivi à la Kalman
• Au premier ordre : du lissage exponentiel de la matrice

d’adjacence

W̄ t = αtW̄ t−1 + (1− αt )W t
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• Estimation de αt : minimisation du MSE

(αt )∗ =

∑n
i=1

∑n
j=1 var(w t

ij)
∑n

i=1
∑n

j=1

[
(w̄ t−1

ij − ψt
ij)

2 + var(w t
ij)
]

K. S. Xu et al.

Table 4 Mean spectral
clustering Rand indices for MIT
Reality Mining experiment

Bolded number denotes best
performer in each category

Method Parameters Rand index
Entire trace School year

Static − 0.853 0.905

AFFECT Estimated αt (3 iterations) 0.893 0.953

Estimated αt (1 iteration) 0.891 0.953

αt = 0.5 0.882 0.949

PCQ Cross-validated α 0.856 0.905

α = 0.5 0.788 0.854

PCM Cross-validated α 0.866 0.941

α = 0.5 0.554 0.535
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Fig. 18 Estimated αt over entire MIT Reality Mining data trace. Six important dates are indicated. The
sudden drops in the estimated αt indicate change points in the network
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Fig. 19 Cluster structure before (left) and after (right) beginning of winter break in MIT Reality Mining
data trace. Darker entries correspond to greater time spent in physical proximity. The empty cluster to the
upper left consists of inactive participants during the time step

of the similarity matrix, along with the knowledge that the fall term ended and the
winter break began around this time, suggests that the low estimated forgetting factor
at time 19 is appropriate.
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• Comparaison entre le clustering ainsi obtenue et celui
sans continuité temporelleTracking Communities in Dynamic Social Networks 223
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Fig. 1. Heat maps of community structure over time for the proposed method (left)
and ordinary community detection (right) in the Reality Mining experiment
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Fig. 2. Estimated forgetting factor αt by time step in the Reality Mining experiment

community detection, the community memberships fluctuate highly over time.
Thus we can see that tracking communities by the proposed method results in
more stable and accurately identified communities.

The estimated forgetting factor αt at each time step is plotted in Fig. 2. Six
important dates are labeled on the plot. Notice that the estimated forgetting
factor drops several times, suggesting that the structure of the proximity network
changes, around these dates. This is a reasonable result because the proximity
network should be different when students are not in school compared to when
they are in school. Thus αt also appears to be a good identifier of change points
in the network.

3.2 Project Honey Pot

Data Description. Project Honey Pot [8] is an ongoing project targeted at
identifying spammers. It consists of a distributed network of decoy web pages
with trap email addresses, which are collected by automated email address har-
vesters. Both the decoy web pages and the email addresses are monitored, pro-
viding us with information about the harvester and email server used for each
spam email received at a trap address. A previous study on the Project Honey
Pot data [9] found that harvesting is typically done in a centralized manner.
Thus harvesters are likely to be associated with spammers, and in this study
we assume that the harvesters monitored by Project Honey Pot are indeed rep-
resentative of spammers. This allows us to associate each spam email with a
spammer so that we can track communities of spammers.
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• Changement des groupes instantanés obtenus juste avant
et après les vacances d’hiver

K. S. Xu et al.

Table 4 Mean spectral
clustering Rand indices for MIT
Reality Mining experiment

Bolded number denotes best
performer in each category

Method Parameters Rand index
Entire trace School year

Static − 0.853 0.905

AFFECT Estimated αt (3 iterations) 0.893 0.953

Estimated αt (1 iteration) 0.891 0.953

αt = 0.5 0.882 0.949

PCQ Cross-validated α 0.856 0.905

α = 0.5 0.788 0.854

PCM Cross-validated α 0.866 0.941

α = 0.5 0.554 0.535
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Fig. 18 Estimated αt over entire MIT Reality Mining data trace. Six important dates are indicated. The
sudden drops in the estimated αt indicate change points in the network
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Fig. 19 Cluster structure before (left) and after (right) beginning of winter break in MIT Reality Mining
data trace. Darker entries correspond to greater time spent in physical proximity. The empty cluster to the
upper left consists of inactive participants during the time step

of the similarity matrix, along with the knowledge that the fall term ended and the
winter break began around this time, suggests that the low estimated forgetting factor
at time 19 is appropriate.

123

• Développements à reprendre ou faire :
nombre de groupes ? réseaux multiplexés ?
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Conclusion

• Beaucoup de ces sujets sont très actifs
- Analyse des données sociales numériques
- Étude des réseaux complexes, avec l’apport du
traitement du signal
- Réseaux dynamiques

• Beaucoup d’enjeux, d’opportunités, de sujets
• Des données et des questions originales par rapport au

TSI habituel

http://perso.ens-lyon.fr/pierre.borgnat

Remerciements: merci à Nicolas Tremblay et à Marton Karsai
(LIP, ENSL) à qui j’ai emprunté beaucoup de figures ou diapo.
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