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Qui je suis

• Membre de l’équipe SISYPHE du laboratoire de Physique
de l’ENS de Lyon : traitement statistique du signal,
en particulier pour les approches multi-échelles
ou non stationnaires

• Traitement du signal sur les graphes
/ Traitement de graphes comme signaux

• Exemples de sujets d’étude et de données :

métrologie des réseaux technologiques (internet,
téléphones portables,...), réseaux de capteurs,
réseaux sociaux, réseaux de mobilité (Vélo’v),
réseaux neurones (par fMRI), réseaux génomiques,
...
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1. Introduction : des signaux et des graphes

Enjeux scientifiques :

• Problèmes d’estimation non triviaux (ex.: mesures sans
répétition et non stationnaires)

→ méthodes statistiques avancées
• grands graphes

→ méthodes multi-échelles
• graphes dynamiques

→ méthodes non stationnaires
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Quelques réseaux de notre monde numérique

LinkedIn Citations scientifiques Véhicle

USA Power grid Web Protéines
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Exemples de signaux sur graphes

Minnesota Roads USA Temperature fcMRI Brain Network

Image Grid Color Point Cloud Image Database
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Exemples de (quelques) données sociales
• Les outils numériques permettent de reprendre des

problèmes d’analyse de données sociales ou liées aux
activités humaines avec des données riches (grandes !)

• Les activités laissent des traces numériques :
téléphonie, traces de déplacements (GPS, cartes métro ou
bus, Vélo’v/Vélib’,...)

Modules often overlap with 

properties/functions of nodes

Data mining perspective:

Uncovering communities might 

help to uncover hidden properties 

between nodes

Why looking for modules?

4

FIG. 3: Structure of flows at 20% and 40% of the total flow. At 20% of the total flow, we observe sources (represented as squares)
with outdegree kout = 3 such as London Bridge, Stratford, or Waterloo connecting to three different centers (represented as
circles), as well as sources with kout = 2 (eg. Victoria) and kout = 1 (eg. Elephant and Castle). We also show how the pattern of
flows is constructed iteratively when we go to larger fraction of the total flow (from 20% shown in black to 40% shown in red).
We represent in red the new sources, centers and connections. The new sources connect to the older centers (eg. West End,
City, etc) and the existing sources (eg. Victoria) connect to new centers (eg. Northern stations, Museums, and Parliament).

tailing a map starting with highways, then concentrat-
ing on roads, and then on streets. If we consider the
flows up to W = 20% of the total flow, we obtain the
structure that we show in Figure 3.

At this scale, it is clear that we have three main cen-
ters and sources (with various outdegree values), which
mostly correspond to intermodal rail-subway connec-
tions. Adding more links, we reach a fraction W = 40%
of the total flow and we then investigate smaller flows
at a smaller scale. We see that we have new sources ap-
pearing at this level and new connections from sources
that were present at W = 20%. We can quantify in a
more precise way how the structure of flows evolves
when we investigate smaller flows by exploring the list
of flows wiC in decreasing order and by introducing the
transition matrix T , which describes how the outdegree
of a source varies with increasing W (see Appendix C).
Essentially, we observe that there is a continuous ad-
dition of new sources along with connections to new
and old centers. Besides, for a total flow less than 50%,
there is a relatively stable proportion of sources (about
20%) where outdegree varies when W increases. More
precisely, when we zoom into finer scales (i.e., smaller
values of total flows), new sources appear and connect
preferentially to the existing largest centers, while the
existing sources connect to the new centers through
secondary connections. This yields two types of con-
nection only. The first type goes from new sources to
old centers, and the second type from old sources to
new centers. We can summarize this result with the

graph shown in Figure 4 where we divide the centers
into three groups according to their inflow (decreasing
from first Group I to the last Group III). When we ex-
plore smaller flows, we see that the pattern of connec-
tions from sources to centers becomes richer and more
complex, but can nonetheless be described by the sim-
ple iterative process described above: the most impor-
tant link of a source goes to the most important cen-
ters, the second most important link connects to the
second most important centers, and so on. It is in-
teresting to note that even if the organization of flows
follows a simple iterative scheme, it leads to a com-
plex and rich structure, which is not strictly hierarchi-
cal since it mixes different levels of flows consisting of
different orders of magnitude. In addition, the fact that
the most important flows always connect to the same
center naturally leads to the question of efficiency and
congestion in such a system. In this respect, London
appears as a ‘natural’ city as opposed to an ‘artificial’
city for which flows would be constructed according to
an optimized, hierarchical schema [16, 17].

World cities such as London have tended to defy un-
derstanding hitherto because simple hierarchical sub-
division has ignored the fact that their polycentric-
ity subsumes a pattern of nested urban movements.
These movements define a series of subcenters at dif-
ferent levels where complex pattern of flows can be un-
packed using our simple iterative scheme based on the
representation of ever smaller scales defined by smaller
weights. Casual observation suggests that this kind of

Téléphones portables Vélo’v à Lyon Métro Londres
[Blondel et al., 2008] [Borgnat et al., 2013] [Roth et al., 2011]
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Exemples de (quelques) données sociales
• Réseaux sociaux : de la sociologie classique...

  

Laboratoire de physique ENSL 
sous-thématiques, taille nœud = nb articles

réseau plutôt bien connecté (hors physique théorique)
Question : quels ponts entre sous-thématiques ?

Zachary Karatee Club (1977) Co-citations pour scientometrie
[Newman, 2006] [Jensen et al., 2011]
• ... aux réseaux sociaux en ligne : Facebook et autres

Blogosphère des élections
présidentielles US de 2004

Communauté Perl (CPANTS data,
vizualization Gephi)p. 7
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Exemples de (quelques) données sociales
• Des expériences conçues pour suivre les activités et les

contacts entre personnes
• IMOTE : 41 nœuds, 3 jours [Chaintreau et al. 2006]
• MIT Reality Mining : 100 nœuds, 9 mois [Eagle et al. 2007]
• Projet MOSAR : 200 nœuds, qq mois[Fleury et al., 2010]
• Sociopatterns : qq 100 nœuds, qq jours [ISI, depuis 2009]

Study of group interaction 
in co-located conferences  

RFID badges

Detection of face-to-face 

proximity 

in the conference setting 

A typical conference

RFID readers

Previous deployments

You are invited to participate in a research study about the conversation time between individuals attending two different 
meetings of the American Physical Society that have been scheduled at the same time and location. You have been asked 
to participate because you have registered for either the annual meeting of the Division of Plasma Physics or the annual 
Gaseous Electronics Conference. The purpose of the research is to measure the effectiveness of co-locating two related 
conferences, through the use of radio frequency ID tags that measure the face-to-face contact time between individuals at 
the conferences. This research is a part of the ongoing SocioPatterns project (www.sociopatterns.org). The research will 
be conducted at the convention center starting when the participants register and pick up their badges and end when they 
return their badges.

Scientists in charge:

Mark Nornberg, Jean-François Pinton, Nicolas Tremblay, Pierre Borgnat

REGISTER TO PARTICIPATE

DO  NOT FORGET TO RETURN YOUR BADGE UPON DEPARTURE!

DO NOT FORGET TO RETURn 

A day at the museum

p. 8



1. Introduction 2. Communities in networks Using Graph Wavelets Statistical relevance of groups Conclusion +

Aspects temporels

• Dynamiques temporelles non triviales
• Souvent, on a plutôt des flots temporels de relations que

des réseaux statiques

Complex Networks

Dr. Márton Karsai!
ENS Lyon 2014

Temporal networks 
Class 4

116 P. Holme, J. Saramäki / Physics Reports 519 (2012) 97–125

a

b

c

Fig. 12. Illustration of two types of randomization null-models for contact sequences. (a) shows a contact sequence (the same as in Fig. 1). In (b) it is
randomized by the Randomly Permuted times procedure such that contacts happen the same number of time per edge, and the aggregated network
topology is the same. In (c) the contact sequence in (a) is randomized by the Randomized edges (RE) procedure. With RE, the time sequence of the contacts
along an edge is conserved, and so is the degree sequence of the original network, but all other structure of the topology is destroyed. (The latter statement
is perhaps not so well illustrated by this figure as there are not so many graphs with the degree sequence of the original, aggregate graph.)

the process—if removing a certain type of correlations changes the dynamics a lot, then obviously those play an important
role for the dynamics.

Below, we review temporal null models introduced in the literature, essentially following Holme [91] and Karsai
et al. [26]. For this section, we assume that the temporal network is a contact sequence. Some of the methods work
for interval graphs too; others can be modified to interval graphs quite straightforwardly. In the end of the section, we
summarize and provide some guidelines for choosing reference models.

6.3.1. Randomized edges (RE)
This method is similar to the configuration model for static graphs mentioned above, with the additional ingredient that

contact sequences of edges follow the edges when these are rewired. Algorithmically, the method is defined as follows:
1. Go over all edges sequentially.
2. For every edge (i, j), pick another edge (i0, j0).
3. With a probability 1/2 replace (i, j) and (i0, j0) by (i, j0) and (i0, j), otherwise replace them by (i, i0) and (j, j0).
4. If the move in step 3 created a self-edge or multiple edge, then undo it and start over from step 2.
The times of contact over an edge are kept constant. Note that the two alternatives in step 3 where one is randomly selected
are needed to remove spurious correlations if the data structure that is used returns the vertices of an edge in a specific
order; otherwise one would keep the number of times a vertex appears in the first argument conserved, which in practice
can give quite big differences for empirical graphs, whether the graph is small or not. To speed up the process, one can skip
edges that already have been rewired in step 1 (by being selected in a previous step 2). On the other hand, this procedure is
linear inM and rarely a computational bottleneck.

This null model can be used to study the effect of the network topology, that is, the wiring diagram of the original
network. The model also assumes that it is the edges rather than the vertices that govern the times of contacts—after
the randomization procedure, both the numbers and timings of contacts for each vertex will have changed; however their
degrees in the aggregated network are retained. As the contact sequences follow their edges when rewiring, all temporal
correlations and inhomogeneities associated with individual edges, such as burstiness and the distribution of inter-contact
times of edges, are retained, as is the overall event rate at every point in time. The RE procedure is illustrated in Fig. 12.

(On reprendra cela en fin de cours)
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Quelques propriétés de ces réseaux complexes

• Ces données sont-elles massives ?

Why now?

Slide from CCNR Complex Networks Course!
A. L. Barabási 2012

[Barabasi, 2012]
• Oui, mais pas vraiment dans cet exposé...

p. 10
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Quelques propriétés de ces réseaux complexes

• Propriété de petit monde : chemins courts

Six degrees - the experiment
Milgram small-world experiment (1967)!
!
!
• 1. ADD YOUR NAME TO THE ROSTER AT THE BOTTOM 

OF THIS SHEET, so that the next person who receives this 
letter will know who it came from.!

• 2. DETACH ONE POSTCARD. FILL IT AND RETURN IT TO 
HARVARD UNIVERSITY. No stamp is needed. The postcard 
is very important. It allows us to keep track of the progress of 
the folder as it moves toward the target person.!

• 3. IF YOU KNOW THE TARGET PERSON ON A 
PERSONAL BASIS, MAIL THIS FOLDER DIRECTLY TO 
HIM (HER). Do this only if you have previously met the target 
person and know each other on a first name basis.!

• 4. IF YOU DO NOT KNOW THE TARGET PERSON ON A 
PERSONAL BASIS, DO NOT TRY TO CONTACT HIM 
DIRECTLY. INSTEAD, MAIL THIS FOLDER (POST CARDS 
AND ALL) TO A PERSONAL ACQUAINTANCE WHO IS 
MORE LIKELY THAN YOU TO KNOW THE TARGET 
PERSON. You may send the folder to a friend, relative or 
acquaintance, but it must be someone you know on a first 
name basis.

Chose people randomly from Omaha (Nebraska) and asked them the following:

• Results:!
• ~20% of the letters reached the target!
• For these, there were on average 5.5 

inter-mediaries!
• Conclusions:!

• Short chains exist...and people 
somehow manage to find them!

The Watts-Strogatz model
A model to capture large clustering coefficient and short 
distances observed in real networks!
• It interpolates between and ordered finite lattice and a random graph!
• Fixed parameters:!

• N - system size!
• K - initial coordination number!

• Variable parameters:!
• p - rewiring probability!

• Algorithm:!
1.Start with a ring lattice with N nodes in which every node is connected to its 

first K neighbours (K/2 on either side).!
2.Randomly rewire each edge of the lattice with probability p such that self-

connections and duplicate edges are excluded.!

By varying p the network can be transformed from a completely ordered (p=0) to!
a completely random (p=1) structure

D.J. Watts and S. Strogatz, Nature (1998)!

The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter

The model:

• Take a regular clustered 
network

• Rewire the endpoint of each 
link to a random node with 
probability p
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Monday, February 1, 2010

Exp. Milgram (1967) Modèles de Watts et Strogatz (1998)
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Quelques propriétés de ces réseaux complexes

• Propriété “scale free” : pas d’échelles (ou lois d’échelles)
[Barabasi, 1999]Scale-free networks - other examples

Scientific collaborations
• Nodes: scientists (here geo-localised)!
• Links: common papers

Newman (2001)!

how small it is. The hundreds strong megacollaborations of
CERN and Fermilab are sufficiently diluted by theoretical
and smaller experimental groups that the number is only 9,
and not 100.!
Distributions of numbers of authors per paper are shown

in Fig. 2, and appear to have power-law tails with widely
varying exponents of !6.2(3) "Medline!, !3.34(5) "Los
Alamos Archive!, !4.6(1) "NCSTRL!, and !2.18(7)
"SPIRES!. The SPIRES data, which are again shown in a
separate inset, also display a pronounced peak in the distri-
bution around 200–500 authors. This peak presumably cor-
responds to the large experimental collaborations that domi-
nate the upper end of this histogram.
The largest number of authors on a single paper was 1681

"in high-energy physics, of course!.

D. Numbers of collaborators per author

The differences between the various disciplines repre-
sented in the databases are emphasized still more by the
numbers of collaborators that a scientist has, the total num-
ber of people with whom a scientist wrote papers during the
five year period. The average number of collaborators is
markedly lower in the purely theoretical disciplines (3.87 in
high-energy theory, 3.59 in computer science! than in the
wholly or partly experimental ones (18.1 in biomedicine,
15.1 in astrophysics!. But the SPIRES high-energy physics
database takes the prize once again, with scientists having an
impressive 173 collaborators, on average, over a five year
period. This clearly begs the question whether the high-
energy coauthorship network can be considered an accurate
representation of the high-energy physics community at all;
it seems unlikely that many authors would know 173 col-
leagues well.
The distributions of numbers of collaborators are shown

in Fig. 3. In all cases they appear to have long tails, but only
the SPIRES data "inset! fit a power-law distribution well,
with a low measured exponent of !1.20. Note also the small

peak in the SPIRES data around 700—presumably again a
result of the presence of large collaborations.
For the other three databases, the distributions show some

curvature. This may, as we have previously suggested #50$,
be the signature of an exponential cutoff, produced once
again by the finite time window of the study. Redner #57$ has
suggested an alternative origin for the cutoff using growth
models of networks—see Ref. #10$. Another possibility has
been put forward by Barabási #58$, based on models of the
collaboration process. In one such model #51$, the distribu-
tion of the number of collaborators of an author follows a
power law with slope !2 initially, changing to slope !3 in
the tail, the position of the crossover depending on the length
of time for which the collaboration network has been evolv-
ing. We show slopes !2 and !3 as dotted lines on the
figure, and the agreement with the curvature seen in the data
is moderately good, particularly for the Medline data. "For
the Los Alamos and NCSTRL databases, the slope in the tail
seems to be somewhat steeper than !3.!

E. Size of the giant component

In the theory of random graphs #24,59–61$ it is known
that there is a continuous phase transition with increasing
density of edges in a graph at which a ‘‘giant component’’
forms, i.e., a connected subset of vertices whose size scales
extensively. Well above this transition, in the region where
the giant component exists, the giant component fills a large
portion of the graph, and all other components "i.e., con-
nected subsets of vertices! are small, with average size inde-
pendent of the number n of vertices in the graph. We see a
situation reminiscent of this in all of the graphs studied here:
a single large component of connected vertices that fills the
majority of the volume of the graph, and a number of much
smaller components filling the rest. In Table I we show the
size of the giant component for each of our databases, both
as total number of vertices and as a fraction of system size.

FIG. 2. Histograms of the number of authors on papers in Med-
line, the Los Alamos Archive, and NCSTRL. The dotted lines are
the best fit power-law forms. Inset: the equivalent histogram for the
SPIRES database, showing a clear peak in the 200 to 500 author
range.

FIG. 3. Histograms of the number of collaborators of authors in
Medline, the Los Alamos Archive, and NCSTRL. The dotted lines
show how power-law distributions with exponents !2 and !3
would look on the same axes. Inset: the equivalent histogram for the
SPIRES database, which is well fitted by a single power law "dotted
line!.
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016131-5

Scale-free distribution

AL. Barabási, Linked (2002)

What does it mean?

Degree fluctuations have no characteristic scale (scale invariant)

In summary the key difference between a random and a scale-free 
network comes in the different shape of the Poisson and of the power-law 
function: in a random network most nodes have comparable degrees and 
hence hubs are forbidden. Hubs are not only tolerated, but are expected in 
scale-free networks Fig. 4.5.

The more nodes a scale-free network has, the larger are its hubs. The 
hubs grow polynomially with the network size, hence their size can be con-
siderable in large networks. In contrast in a random network the size of the 
largest node grows logarithmically or slower with N, implying that hubs 
will be tiny even in a very large network.

THE SCALE FREE PROPERTY HUBS11

Left column: the degrees of a random network 
follow a Poisson distribution, which is rather 
similar to the Bell curve shown in the figure. 
This indicates that most nodes have compara-
ble degree. Hence nodes with a large number 
of links are absent (top panel). Consequently 
a random network looks a bit like a national 
highway network in which nodes are cities 
and links are the major highways connecting 
them (bottom panel). Indeed, there are no ma-
jor cities with hundreds of highways and no 
city is disconnected from the highway system. 

Right column: In a network with a power-law 
degree distribution most nodes have only a 
few links. These numerous small nodes are 
held together by a few highly connected hubs 
(top panel). Consequently a scale-free net-
work looks a bit like the air-traffic network, 
whose nodes are airports and links are direct 
flights between them. Most airports are tiny, 
with only a few flights linking them to other 
airports. Yet, we can also have few very large 
airports, like Chicago or Atlanta, that hold 
hundreds of airports together, acting as major 
hubs (bottom panel). 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities (nodes). On 
the airplane network, however, we can reach 
most destinations via a single hub, like Chica-
go.

After [4].

Figure 4.6
Random versus scale-free networks

Réseaux de citations Allure des réseaux
[Newman 2001]

p. 12
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Quelques propriétés de ces réseaux complexes
Assortativité (corrélation degré, degré des NN)

Nearest neighbour degree
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exponent: 0.37+-0.11

kannd(k)  FOR REAL NETWORKS  

Network Science: Degree Correlations  March 7, 2011 
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Astrophysics co-authorship network Yeast PPI 

Assortative Disassortative 

Figures from CCNR Complex Networks Course!
A. L. Barabási 2012

Measures of degree correlationsDEGREE CORRELATIONS IN NETWORKS 

Assortative: 
hubs show a tendency to 

link to each other. 

Neutral:  
nodes connect to each 

other with the expected 

random probabilities. 

Disassortative:  
Hubs tend to avoid 

linking to each other. 

Quantifying degree correlations (three approaches): 
  ! full statistical description (Maslov and Sneppen, Science 2001) 
  ! degree correlation function (Pastor Satorras and Vespignani, PRL 2001) 
  ! correlation coefficient (Newman, PRL 2002) 

Network Science: Degree Correlations 

Figures from CCNR Complex Networks Course!
A. L. Barabási 2012

EXAMPLE: ejk  FOR A SCALE-FREE NETWORK 

Network Science: Degree Correlations  March 7, 2011 
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Hubs tend to 
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nodes. 
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Assortative: 
More strength in 
the diagonal,  
hubs tend to link to 
each other. 
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Centralité (certains nœuds sont “au centre")

Eigenvector Centrality
• Now we have:!

!

!

• Since λ1/λi<1 for i>1 we get!

!

• In other words the x is proportional 
to v1!

!

Eigenvector centrality:!

• Eigenvector centrality x is the 
eigenvector corresponding to the 
largest eigenvalue of the adjacency 
matrix!

• Eigenvector centrality is large if a node 
has many neighbours who have many 
neighbours

Slide from BECS Complex Networks Course!
J Saramäki 2013

eigenvector centrality

eigenvector centrality 
is large, if a node 
has many neighbours 
who have many neighbours...

Wednesday, November 14, 12

eigenvector centrality

eigenvector centrality 
is large, if a node 
has many neighbours 
who have many neighbours...

Wednesday, November 14, 12

eigenvector centralities: example

Zachary’s Karate Club network (ex. 2.1, 2.2), 
colour = eigenvector centrality

eigenvector centrality often correlates with degree, but high-degree nodes 
do not always have high eigenvector centrality.

red = high
blue = low

this node has a high degree but the 
eigenvector centrality is not very high

Wednesday, November 14, 12

p. 13
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Exemples : contacts face-à-face entre personnes
[N. Tremblay, A. Barrat, et al., PRE, 2013]

• Mesures à l’aide de la plate-forme sociopatterns.org

• Collecte de contacts entre personnes, résolus en temps à
des conférences, des musées, des écoles, des hôpitaux,...

• Contacts face-à-face résolus dans le tempsThe SocioPattern platform

Nicolas Tremblay Constrained graph resampling ECCS, 03/09/2012 5 / 22
p. 14



1. Introduction 2. Communities in networks Using Graph Wavelets Statistical relevance of groups Conclusion +

Exemples : contacts face-à-face entre personnes
[N. Tremblay, A. Barrat, et al., PRE, 2013]

• Collecte 11/2011 à SLC, 2 conférences colocalisées :
DPP et GEC

• 320 participants, 5 journées, 25 000 contacts mesurés!"#$%&'$()*$'+,'-./'01$ $ $
$ 2$3.4567$6048'-$

p. 15
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Des propriétés classiques de réseaux complexes
Poids sur les liens Petit-monde : plus courts chemins
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Réseaux complexes : échelles et dynamique!"#$%&'$()*$'+,'-./'01$ $ $
$ 2$3.4567$6048'-$

[FILM]

• À quelle échelle décrire les groupes (communautés) ?
• Comment extraire des informations de la dynamique ?

p. 17
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2. Communities in complex networks

• Networks are often inhomogeneous in their contacts and
made of communities (or modules):
groups of nodes having a larger proportion of links inside
the group than with the outside

• This is observed in various types of networks: social,
technological, biological,...

• There exist several extensive surveys:

[S. Fortunato, Physic Reports, 2010]

[von Luxburg, Statistics and Computating, 2007]

...

p. 18
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Communities in social or human-related networks
• Zachary Karatee Club; Sociopatterns data

Mesure et analyse d’un réseau social Menaut Rémi

grand nombre d’évènements espacés dans le temps. En considérant l’instantanéités des courtes fenêtre
temporelle, nous pouvons construire pour une fenêtre temporelle une structure discrète (N, L) qui liste
les nœuds et les liens du réseaux pour une fenêtre temporelle donnée. Nous pouvons aussi utiliser
une représentation algébrique en considérant la matrice d’adjascence du réseau. Dans la suite, nous
utiliserons surtout cette représentation.

L’obtention de la matrice d’adjascence à partir des données bruts se fait en plusieurs étape que
nous détaillons ici. Grâce à de précédentes études, nous savons qu’il faut un temps d’interaction entre
deux badges de 20 s pour que ce contact soit enregistré avec une probabilité de plus de 99% [2]. Nous
discrétisons donc le temps en fenêtres temporelles de 20 s. Ensuite pour chaque fenêtre temporelle t,
nous construisons la matrice d’adjacence At du réseau. Il s’agit d’une matrice carrée de la taille du
nombre de participants. Ses coefficients At

ij valent 1 si les individus i et j ont eu un contact pendant
les 20 s de la fenêtre temporelle t ou 0 sinon. De plus, puisque nous ne différencions pas les cas où i
voit j aux cas où j voit i, la matrice At est symétrique.

Dans toute la suite et dans un souci d’allègement du discours, nous appellerons une fenêtre tempo-
relle un instant.

2 Premières analyses

2.1 Analyse du graphe agrégé

Une première méthode de visualisation du réseau consiste à construire son graphe agrégé. Pour cela,
il faut considérer la matrice d’adjacence agrégée du réseau : Aag =

P
t At. Le graphe obtenu est alors

statique : il ne dépend plus du temps. Le coefficient Aag
ij est appelé le poids de la liaison ij. Il correspond

au nombre d’instants pendant lesquels i et j étaient en contact. Le graphe peut alors être construit en
symbolisant chaque individu par un nœud puis en traçant un lien (d’épaisseur proportionnel au poids)
entre les nœuds i et j s’ils ont eu un contact.

Les graphes agrégés traçés sur la Figure 1 représentent les graphes agrégés des deux semaines de
mesures au laboratoire. Ils ont été tracés à l’aide du logiciel Gephi. La couleur d’un nœud donne son
appartenance à une équipe du laboratoire. Le placement des points a été fait à partir de l’algorithme
Force Atlas. Nous pouvons aussi constater un regroupement des nœuds d’une même équipe ce qui sera
étudié plus précisément dans la partie 4.

(a) Semaine 1 (b) Semaine 2

Figure 1 – Graphes agrégés des deux semaines de mesure. Chaque nœud représente un individu et
l’épaisseur d’un lien est proportionnelle à son poids. La couleur d’un nœud code l’équipe du laboratoire
dont il fait partit : Bleu : équipe 1, Rouge : équipe 2, Vert : équipe 3, Jaune : équipe 4, Orange : autre.

De nombreuses quantités peuvent être définies à partir de ce graphe agrégé [11]. Nous nous concen-

3

(Lab. physique, ENSL, 2013) (école primaire, Sociopatterns)

• Mobile phones; Scientometric networks

Modules often overlap with 

properties/functions of nodes

Data mining perspective:

Uncovering communities might 

help to uncover hidden properties 

between nodes

Why looking for modules?

  

Laboratoire de physique ENSL 
sous-thématiques, taille nœud = nb articles

réseau plutôt bien connecté (hors physique théorique)
Question : quels ponts entre sous-thématiques ?

p. 19
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Purpose of community detection?

someone

p. 20
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Purpose of community detection?

someone

ei Π=−1

p. 20
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Purpose of community detection?

1) It gives us a sketch of the network:

ei Π=−1

p. 21
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Purpose of community detection?
1) It gives us a sketch of the network:

ei Π=−1

2) It gives us intuition about its components:

ei Π=−1 ?
p. 21
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Methods to find communities

• No pretention of a full survey... Some important steps are:
• Cut algorithms (legacy from computer science)
• Spectral clustering (relaxed cut problem)
• Modularity optimization (there arrive the physicists)

[Newman, Girvan , 2004]
• Greedy modularity optimization a la Louvain (computer

science strikes back) [Blondel et al., 2008]
• Ideas from information compression [Rosvall, Bergstrom,

2008]

p. 22
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From graph bisection to spectral clustering

• Graph bisection (or cuts): find the partition in two (or more)
groups of nodes that minimize the cut size (i.e., the number
of links cut)

• Exhaustive search can be computationally challenging
• Also, the cut is not normalized correctly to find groups of

relevant sizes
• Spectral interpretation: compute the cut as function of the

adjacency matrix A

Wait... What means spectral for networks ?

p. 23
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Spectral analysis of networks
Spectral theory for network
This is the study of graphs through the spectral analysis
(eigenvalues, eigenvectors) of matrices related to the graph:
the adjacency matrix, the Laplacian matrices,....

Notations
G = (V ,E ,w) a weighted graph

N = |V | number of nodes
A adjacency matrix Aij = wij
d vector of strengths di =

∑
j∈V wij

D matrix of strengths D = diag(d)
f signal (vector) defined on V

p. 24
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Definition of the Laplacian matrix of graphs

Laplacian matrix
L laplacian matrix L = D − A

(λi) L’s eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λN − 1

(χi) L’s eigenvectors Lχi = λi χi

Note: χ0 = 1.

A simple example: the straight line

←→ L =




...

... −1 0 0 0 0

... 2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2 ...
0 0 0 0 −1 ...

...




For this regular line graph, L is the 1-D classical laplacian operator
(i.e. double derivative operator).

p. 25
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Going back to spectral clustering
• Let R =

1
2

∑

i,j in 6=groups

Aij .

This is equal to the cut size between the two groups
• Let us note si = ±1 the assignment of node i to group

labelled +1 or −1

• R =
1
2

∑

i,j

Aij(1− sisj) =
1
4

∑

i,j

Lijsisj =
1
4

s>Ls

• Spectral decomposition of the Laplacian:

Lij =
N−1∑

k=1

λk (χk )i(χk )j

• The optimal assignment vector (that minimizes R) would
be si = (χ1)i . . . if there were no constraints on the si ’s...

• However, si = +1 or −1.
p. 26
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Spectral clustering

• Problem with relaxed constraints:

mins s>Ls
such that s>1 = 0, ||s||2 =

√
N

• Simplest solution of this spectral bisection: si = sign((χ1)i)

• This estimates communities that are close to χ1 (known as
the the Fiedler vector)

• This allows also for Spectral clustering of data represented
by networks

cf. [von Luxburg, Statistics and Computating, 2007]

p. 27
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Spectral clustering

• Example of spectral bisection on an irregular mesh

 

 

 

 

 

 

 

 

� It is not guaranteed to minimize �, but it often does very well. 

 

� The spectral partitioning based on the Laplacian (Fiedler, 1973, 

Pothen, Simon and Liou, 1990) is a poor approach for detecting 
natural community structure in real-world networks. 

- 8 - 

• Not really good for natural modules / communities

p. 28
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Spectral clustering

• More general spectral clustering: Use all (or some) of the
eigenvectors χi of L (embedding !)

• Then, use a classical K -means on these first K non-null
eigenvectors of L
(each node a having the (χk )a as feature)

• If large heterogeneity of degrees: the normalized Laplacian
gives better results

Normalized Laplacian matrix

L Laplacian matrix L = I − D−1/2AD−1/2

(λi) L ’s eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λN − 1

(χi) L ’s eigenvectors L χi = λi χi

p. 29
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Interpretation as random walks (part 1)

• A random walk on a graph can be described by means on
the adjacency operator. In particular, the occupancy
probability p(t) at time t evolves like:

p(t) = AD−1p(t − 1) = Wp(t − 1)

• Transition matrix W has a symmetrized version

S = D−1/2AD1/2

which has same eigenvalues
• Many properties of random walks derives from the

normalized Laplacian (symmetric or not)

p. 30
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Interpretation as random walks (part 1)

• Example 1: lazy random walk (which stays in place with
prob. 1/2) converges to equilibrium π in

||pa(t)− π(a)||2 ≤

√
d(a)

minu d(u)
(1− λN−1(W ))t

and 1− λN−1(W ) = λ1(L ).
• Example 2: relation to normalized cuts

λ1(L ) = min
s, d>s=0

s>Ls
s>Ds

p. 31
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Quality of a partition: the Modularity
• Problems with spectral clustering:

1) No assessment of the quality of the partitions
2) No reference to comparison to some null hypothesis (or
“mean field”) situation

• Improvement: the modularity [Newman, 2003]

Q =
1

2m

∑

ij

[
Aij −

didj

2m

]
δ(ci , cj)

where 2m =
∑

i di .
• Q is between −1 and +1

(in fact, lower than 1− 1/nc if nc groups)

• Algebraic form: modularity matrix B = A
2m −

dd>
(2m)2 and

Q = Tr(c>Bc) for a partition vector c of the nodes.

p. 32
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Quality of a partition: the Modularity
• Interpretation: di dj

2m is, for a null model as a Bernoulli
random graph (with prob. 2m/N/(N − 1) of existence of
each edge), the fraction of edges expected between nodes
i and j .
(Note: in fact, it’s best seen as a Chung-Lu model (2002))

• Re-written in term of groups, it gives

Q =
nc∑

c=1

[
lc
m
−
(

dc

2m

)2
]

where lc is the number of edges in group c and dc is the
sum of degrees of nodes in group c.

• Consequence: the larger Q is, the most pronounced the
communities are

p. 33
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Community detection with modularity

• By optimization of Q
• For instance: by simulated annealing, by spectral

approaches,...
• Works well, better than spectral clustering.

 

 

 

 

 

 

 

 

 

 

� Example: (the division into equal-sized group by the standard 
spectral partitioning method) and (modularity method) 

- 16 - 

p. 34



1. Introduction 2. Communities in networks Using Graph Wavelets Statistical relevance of groups Conclusion +

Communities from modularity for big data network
• An algorithm suited for this task: the greedy Louvain

approach (ok for millions of nodes !) [Blondel et al., 2008]
• Principle: consider each node i in turn and put it in the

community C of it with its neighbor j that maximally
increases the modularity:

∆Q =

[∑
in +2ki,in

2m
−
(∑

tot +ki

2m

)2
]
−

[∑
in

2m
−
(∑

tot
2m

)2( ki

2m

)2
]

• Each community is now a super-node
• Calculate the links and weights between super nodes as

the sum of link weights connecting the merged nodes in
the two super nodes

• Iterate (hence, it depends of the order on the nodes)

p. 35
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Communities from modularity for big data network

• Illustrating the algorithm
The Louvain method - a greedy algorithm

J.S
tat.M

ech.
(2008)

P
10008

Fast unfolding of communities in large networks

Figure 1. Visualization of the steps of our algorithm. Each pass is made of
two phases: one where modularity is optimized by allowing only local changes
of communities; one where the communities found are aggregated in order to
build a new network of communities. The passes are repeated iteratively until
no increase of modularity is possible.

This simple algorithm has several advantages. First, its steps are intuitive and easy to
implement, and the outcome is unsupervised. Moreover, the algorithm is extremely fast,
i.e. computer simulations on large ad hoc modular networks suggest that its complexity
is linear on typical and sparse data. This is due to the fact that the possible gains
in modularity are easy to compute with the above formula and that the number of
communities decreases drastically after just a few passes so that most of the running
time is concentrated on the first iterations. The so-called resolution limit problem of
modularity also seems to be circumvented thanks to the intrinsic multi-level nature of our
algorithm. Indeed, it is well known [22] that modularity optimization fails to identify
communities smaller than a certain scale, thereby inducing a resolution limit on the
community detected by a pure modularity optimization approach. This observation is
only partially relevant in our case because the first phase of our algorithm involves
the displacement of single nodes from one community to another. Consequently, the
probability that two distinct communities can be merged by moving nodes one by one is
very low. These communities may possibly be merged in the later passes, after blocks
of nodes have been aggregated. However, our algorithm provides a decomposition of the
network into communities for different levels of organization. In order to illustrate this
feature, let us focus on the ring of 30 cliques discussed in [22], where the cliques are
composed of 5 nodes and are interconnected through single links. The first pass of the
algorithm finds the natural partition of the network, where each community corresponds
to one clique. The second pass finds the global maximum of modularity where cliques
are combined into groups of 2. Consequently, if the cliques are indeed merged in the final

doi:10.1088/1742-5468/2008/10/P10008 5

Blondel (2008)

The Louvain method - a greedy algorithm

J. Stat. Mech. (2008) P10008
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Features!
• Greedy: always chooses the local maxima of modularity!

• Non-deterministic: The order of nodes are taken is arbitrary!

•  It does not affect the maximal modularity considerably!

•  It effects the running time of the algorithm (better heuristics can be found)!

• Change of modularity can be calculated locally ➜ fast performance!

• Assigns hierarchical structure of the network!

• Performs well on large networks!

Blondel (2008)

Mobile-phone user communities in 
Belgium

p. 36
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Existence of multiscale community structure in a graph
finest scale (16 com.):

coarser scale (4 com.):

fine scale (8 com.):

coarsest scale (2 com.):

p. 37
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Multiscale community structure in a graph

Classical community detection algorithms do not have this
“scale-vision“ of a graph. Modularity optimisation finds:

Where the modularity function reads:
Q = 1

2m
∑

ij

[
Aij −

di dj
2m

]
δ(ci , cj)

p. 38
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Multiscale community structure in a graph
Q=0.80 :

Q=0.74 :

Q=0.83 :

Q=0.50 :

All representations are correct but
modularity optimisation favours one.

• Added to that: limit in resolution for modularity [Fortunato,
Barthelemy, 2007]p. 39
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Integrate a scale into modularity

• [Arenas et al., 2008] Remplace A by A + rI in Q. Self-loops.

• [Reichardt and Bornholdt, 2006]

Qγ =
1

2m

∑

ij

[
Aij − γ

didj

2m

]
δ(ci , cj)

• Equivalent for regular graph if γ = 1 +
r
d̄

.

• “Corrected Arenas modularity”: use Aij + r
di

d̄
δij ;

equivalent to Reichardt and Bornholdt [Lambiotte, 2010]

p. 40
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Interpretation as random walks (part 2)
• Let us recall that p(t) = AD−1p(t − 1) = Wp(t − 1)

• Equilibrium distribution: πi =
di

2m
• One step of random walk; the probability of staying in the

same community is

R(1) =
∑

ij

[
Aij

dj

dj

2m
−

didj

(2m)2

]
δ(ci , cj) = Q

• Random walk after t steps (even if t continuous)

R(t) =
∑

ij

[(
et(D−1A−I)

)
ij

dj

2m
−

didj

(2m)2

]
didj

(2m)2

This is called stability.

p. 41
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Interpretation as random walks (part 2)

• If t = 0, R(0) = 1−
∑

ij

didj

(2m)2
didj

(2m)2 ;

best partition = single nodes
• If t small, R(t) ' (1− t)R(0) + tQc ;

trade-off between single nodes and modularity; falls down
in the Reichardt and Bornholdt formulation

• If t = 1, classical modularity
• If t large, the optimum partition is in 2 groups, as given by

spectral clustering (Fiedler vector)

• In practice, optimization with same methods as for
modularity

• It works well

p. 42
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Referenced works on multiscale communities
• Lambiotte, ”Multiscale modularity in complex networks“ [WiOpt,

2010]

• Schaub, Delvenne et al., ”Markov dynamics as a zooming lens
for multiscale community detection: non clique-like communities
and the field-of-view limit” [PloS One, 2012]

• Arenas et al., ”Analysis of the structure of complex networks at
different resolution levels” [New Journal of Physics, 2008]

• Reichardt and Bornholdt, ”Statistical Mechanics of Community
Detection” [Physical Review E, 2006]

• Mucha et al., ”Community Structure in Time-Dependent,
Multiscale, and Multiplex Networks” [Science, 2010]

In the following: use wavelets on graphs to define a proper
scale.

p. 43
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Relating the Laplacian of graphs to Signal Processing

Laplacian matrix

L or L laplacian matrix L = D − A or L = I − D−1/2AD−1/2

(λi) L’s eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λN − 1

(χi) L’s eigenvectors Lχi = λi χi

A simple example: the straight line

←→ L =




...

... −1 0 0 0 0

... 2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2 ...
0 0 0 0 −1 ...

...




For this regular line graph, L is the 1-D classical laplacian operator
(i.e. double derivative operator):

its eigenvectors are the Fourier vectors, and its eigenvalues the
associated (squared) frequenciesp. 44
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Objective and Fundamental analogy
[Shuman, Vandergheynst et al., IEEE SP Mag, 2013]

Objective: Definition of a Fourier Transform adapted to
graph signals

f : signal defined on V ←→ f̂ : Fourier transform of f

Fundamental analogy
On any graph, the eigenvectors χi of the Laplacian matrix L or
L will be considered as the Fourier vectors, and its
eigenvalues λi the associated (squared) frequencies.

• Works exactly for all regular graphs (+ Beltrami-Laplace)
• Conduct to natural generalizations of signal processing

p. 45
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The graph Fourier transform

• f̂ is obtained from f ’s decomposition on the eigenvectors χi :

f̂ =




< χ0, f >
< χ1, f >
< χ2, f >

...
< χN − 1, f >




Define χ = (χ0|χ1|...|χN − 1) : f̂ = χ> f

• Reciprocally, the inverse Fourier transform reads: f = χ f̂

• Parseval theorem: ∀(g,h) < g,h >=< ĝ, ĥ >
• Filtering: apply g(λi) in the Fourier domain on the f̂ (i).

p. 46
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Fourier modes: examples in 1D and in graphs
LOW FREQUENCY: HIGH FREQUENCY:

• Alternative Fourier transform: use the adjacency matrix A
[Sandryhaila, Moura, IEEE TSP, 2013]

p. 47
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Spectral analysis: the χi and λi of a multiscale toy graph
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Spectral Graph Wavelets
[Hammond et al., ACHA 2011]

• Fourier is a global analysis. Fourier modes (eigenvectors of
the laplacian) are used in classical spectral clustering, but
do not enable a jointly local and scale dependent analysis.

• For that classical signal processing (or harmonic analysis)
teach us that we need wavelets.

• Wavelets : local functions that act as well as a filter around
a chosen scale.
A wavelet:

– Translated:

– Scaled
• Classical wavelets

by analogy−−−−−−→ Graph waveletsp. 49
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Recall the classical wavelets
• Usual definition: ψs,a(x) =

1
s
ψ

(
x − a

s

)

• Equivalently, in the Fourier domain:

ψs,a(x) =
∫∞
−∞ δ̂a(ω)ψ̂(sω) expiωx dω

• In this definition, ψ̂(sω) acts as a filter bank defined by
scaling by a factor s a filter kernel function defined in
the Fourier space: ψ̂(ω)

• The filter kernel function ψ̂(ω) is necessarily a
bandpass filter with:

• ψ̂(0) = 0 : the mean of ψ is by definition null
• lim

ω→+∞
ψ̂(ω) = 0 : the norm of ψ is by definition finite

(Note: the actual condition is the admissibility property)
p. 50
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Classical wavelets
by analogy−−−−−−→ Graph wavelets

[Hammond et al. ACHA ’11]

Classical (continuous) world Graph world

Real domain x node a

Fourier domain ω eigenvalues λi

Filter kernel ψ̂(ω) g(λi)⇔ Ĝ

Filter bank ψ̂(sω) g(sλi)⇔ Ĝs

Fourier modes exp−iωx eigenvectors χi

Fourier transf. of f f̂ (ω) =
∫∞
−∞ f (x) exp−iωx dx f̂ = χ> f

The wavelet at scale s centered around node a is given by:

ψs,a(x) =

∫ ∞

−∞
δ̂a(ω)ψ̂(sω) expiωx dω −−→ ψs,a = χ Ĝsδ̂a = χ Ĝsχ> δa

p. 51
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Examples of graph wavelets
A WAVELET:

TRANSLATING: SCALING:

p. 52
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Examples of wavelets: they encode the local topology

ψs=1,a

ψs=35,a

ψs=25,a

ψs=50,a

p. 53
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Example of wavelet filters
• More precisely, we will use the following kernel:

g(x ;α, β, x1, x2) =





x−α1 xα for x < x1

p(x) for x1 ≤ x ≤ x2

xβ2 x−β for x > x2.

• To emphasize χ1, the parameters are:

smin =
1
λ2
, x2 =

1
λ2
, smax =

1
λ2

2
, x1 = 1, β = 1/log10

(
λ3

λ2

)

• This leads to: (choice α = 2)

0 1 2
0

2

4

6

8

          λ

g
(s

λ
)
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Purpose of the next slides
Develop a scale dependent community mining tool using

concepts from graph signal processing.
Why ? For joint processing of graph signals and networks.

General Ideas
• Take advantage of local topological information encoded in

Graph Wavelets.
Wavelet = ego-centered vision from a node

• Group together nodes whose local environments are
similar at the description scale

• This will naturally offer a multiscale vision of communities

p. 55
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Examples of networks with communities at different
scales

Three examples of community detections:
• (A) A complex sensor network (non-uniform swiss roll

topology)
• (B) A contact network in a primary school [Stehle ’11]
• (C) A hierarchical graph benchmark [Sales-Pardo ’07]

A
B C

p. 56
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A new method for multiscale community detection
[N. Tremblay, P. Borgnat, 2013]

The problem of community mining is considered as a problem
of clustering. We then need to decide upon:

1. feature vectors for each node
2. a distance to measure two given vectors’ closeness
3. a clustering algorithm to separate nodes in clusters

The method uses:
1. wavelets (resp. scaling functions) as feature vectors
2. the correlation distance
3. the complete linkage clustering algorithm

p. 57
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1) Wavelets as features
Each node a has feature vector ψs,a.
Globally, one will need Ψs, all wavelets at a given scale s, i.e.

Ψs =
(
ψs,1|ψs,2| . . . |ψs,N

)
= χGsχ

>.

NODE

A:

NODE

B:

AT SMALL SCALE: AT LARGE SCALE:

p. 58



1. Introduction 2. Communities in networks Using Graph Wavelets Statistical relevance of groups Conclusion +

2) Correlation distances

Ds(a,b) = 1−
ψ>s,aψs,b

||ψs,a||2 ||ψs,b||2
.

NODE

A:

NODE

B:
CORR.
COEF.: -0.50 0.97

p. 59
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3) Complete linkage clustering and dendrogram

• Bottom to top hierarchical algorithm:
start with as many clusters as nodes and work the way up
to fewer clusters (by linking subclusters together) until
reaching one global cluster.

• Computation of the distance between two subclusters:
the average distance between all pairs of nodes, taking
one from each cluster

• Output: a dendrogram

p. 60
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Dendrogram cut at maximal gap

To avoid the cumbersome multiscale modularity optimization,
we can simply cut the dendrogram at its maximal gap.

At small scale:
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Dendrogram cut at maximal gap

To avoid the cumbersome multiscale modularity optimization,
we can simply cut the dendrogram at its maximal gap.

At small scale:
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Dendrogram cut at maximal gap
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The Sales-Pardo benchmark
• Three community structures nested in one another
• Parameters:

• sizes of the communities (N = 640)
• ρ tunes how well separated the different scales are
• k̄ is the average degree; the sparser is the graph, the

harder it is to recover the communities.

p. 63
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Results on the Sales-Pardo benchmark
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Results on the Sales-Pardo benchmark
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The case of larger networks

• Limit of the method: computation of the N ×N matrix of the
wavelets Ψs.

• Improvement: use of random features.
• Let r ∈ RN be a random vector on the nodes of the graph,

composed of N independent normal random variables of
zero mean and finite variance σ2.

• Define the feature fs,a ∈ R at scale s associated to node a
as

fs,a = ψ>s,ar =
N∑

k=1

ψs,a(k)r(k).

p. 66
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The case of larger networks
• Let us define the correlation between features

Cor(fs,a, fs,b)=
E((fs,a − E(fs,a))(fs,b − E(fs,b)))√

Var(fs,a)Var(fs,b)
.

• It is easy to show that:

Cor(fs,a, fs,b) =
ψ>s,aψs,b

||ψs,a||2 ||ψs,b||2
.

• Therefore, the sample correlation estimator Ĉab,η satisfies:

lim
η→+∞

Ĉab,η =
ψ>s,aψs,b

||ψs,a||2 ||ψs,b||2
= 1− Ds(a,b).

• This leads to a faster algorithm.

p. 67
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Results on the Sales-Pardo benchmark

• As a function of η, the number of random vectors used
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Stability of the communities
• Not all partitions are relevant: only those stable enough

convey information about the network

• Modularity optimization is based on an objective function:
the higher the modularity is, the better the partition is
→ discard partitions with low modularity (threshold ?)

• For multiscale: Lambiotte’s approach to stability:
Create B resampled graphs by randomly adding ±p%
(typically p = 10) to the weight of each link and computing
the corresponding B sets of partitions {Pb

s }b∈[1,B],s∈S .
Then, stability:

γr (s) =
2

B(B − 1)

∑

(b,c)∈[1,B]2,b 6=c

ari(Pb
s ,P

c
s ), (1)

→ keep local maximum of stability
p. 69
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Stochastic Stability of the communities

• A new approach for the stochastic algorithm with wavelets:
Consider J sets of η random signals and compute the
associated sets of partitions {P j

s}j∈[1,J],s∈S . Let stability be:

γa(s) =
2

J(J − 1)

∑

(i,j)∈[1,J]2,i 6=j

ari(P i
s,P

j
s). (2)

p. 70
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Results with stabilities on the Sales-Pardo benchmark
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In addition: statistical test of relevance of the
communities

• It is possible to design a data-driven test on γa (not
explained here).

• Result: threshold for 1− γa above which the partition in
communities is irrelevant.

Sales-Pardo graph Chung-Lu graph
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Comparison on larger Sales-Pardo graphs

N = 6400 nodes

Schaub-Delvenne
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Sensor network on the swiss roll manifold
• Three scale ranges of relevant community structure
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The dynamic social network of a primary school

Collaboration with A. Barrat (CPT Marseille), C. Cattuto (ISI, Turin)
Sociopatterns project

• Acquisition of face-to-face human contacts (resolved in
time) using active RFID tags and + fixed antenna

The SocioPattern platform

Nicolas Tremblay Constrained graph resampling ECCS, 03/09/2012 5 / 22

• Interest: social studies, spreading processes (of
information, of epidemic,...), contact dynamics,...

• Time for a movie!p. 75
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Multi-scale Communities in Primary School
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Multi-scale Communities in Primary School

p. 77
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Tests statistiques sur des propriétés de groupe
[N. Tremblay, A. Barrat, et al., soumis, 2012]

• Question sur les données SLC : existe-t-il 2 groupes
différents (communautés) (GEC / DPP) ? Se mélangent-ils
bien ?

• Difficulté : une seule réalisation.
Comment caractériser le comportement normal ?

• Méthode proposée : bootstrap pour test statistique des
propriétés de groupes dans un graphe!"#$%&'$()*$'+,'-./'01$ $ $

$ 2$3.4567$6048'-$

p. 78
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Tests statistiques sur des propriétés de groupe
Bootstrap par tirage de graphes contraints

Objectif: test statistique sur les propriétés d’un groupe X 0 qui
est un sous-graphes du graphe de contact, confronté à une
hypothèse nulle H0 : “comportement normal”
• Décider d’un ensemble d’observables O qui peuvent dire

en quoi un groupe apparaît comme “normal”
• Traduire H0 comme étant des contraintes sur les

sous-graphes “normaux”
Exemples : même cardinalité que X 0 ; mêmes interactions
dans le groupe ; etc.

• Construire un ensemble de bootstrap de sous-graphes
contraints par H0, tirage par recuit simulé avec remise

• Etablir les statistiques attendues sous H0 grâce à
l’ensemble de bootstrap

• Décider si H0 peut être rejeté ou non pour le groupe
d’intérêt X 0

p. 79
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Tests statistiques sur des propriétés de groupe
Bootstrap par tirage de graphes contraints

• Variable de contrôle de la taille de l’ensemble de bootstrap
- σu est l’écart type du nombre fois qu’un nœud donné est
pris par le bootstrap
- χ2 est la distance entre les distributions attendues et
empiriques du nombre de nœud pris dans X 0 dans chaque
échantillon bootstrap.

H0 même cardinal H0 même modularité
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Tests statistiques sur des propriétés de groupe
Bootstrap par tirage de graphes contraints

• Test appliqué sur les groupes GEC et STP (étudiants de
DPP) : d est la distance à l’intervalle de confiance à 5%

GEC
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STP
• Conclusion: GEC ne se comporte pas comme les groupes

“normaux”, contrairement aux autres groupes identifiables
→ mélange faible entre les conférences

• Conclusion plus affinée : données filtrées par lieux.
GEC et DPP se mélangent surtout dans les espaces
communs !p. 81
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Conclusion (partie 2)

• Wavelet ψs,a gives an “egocentered view” of the network
seen from node a at scale s

• Correlation between these different views gives us a
distance between nodes at scale s

• This enables multi-scale clustering of nodes in
communities

• Notion of stability and of statistical detection of relevance
of groups

http://perso.ens-lyon.fr/pierre.borgnat

Acknowledgements: thanks to Nicolas Tremblay and Marton
Karsai for the borrowing many of their figures or slides.
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Dendrogram cut at maximal gap: non robust to outliers
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Dendrogram cut at maximal average gap
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Dendrogram cut at maximal average gap
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Dendrogram cut at maximal average gap

For the previous graph:
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Recall: The Adjusted Rand Index
Let:

• C and C′ be two partitions we want to compare.
• a be the # of pairs of nodes that are in the same

community in C and in the same community in C′

• b be the # of pairs of nodes that are in different
communities in C and in different communities in C′

• c be the # of pairs of nodes that are in the same
community in C and in different communities in C′

• d be the # of pairs of nodes that are in different
communities in C and in the same community in C′

a + b is the number of “agreements“ between C and C′.
c + d is the number of “disagreements“ between C and C′.
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The Adjusted Rand Index

The Rand index, R, is:

R =
a + b

a + b + c + d
=

a + b(n
2

)

The Adjusted Rand index AR is the corrected-for-chance
version of the Rand index:

AR =
R − ExpectedIndex

MaxIndex − ExpectedIndex

p. 88
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