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Many interesting new contributions with a SP perspective!
[Coifman, Maggioni, Kolaczyk, Ortega, Ramchandran, Moura, Lu, Borgnat]!
or IP perspective [ElMoataz, Lezoray]!
See review in 2013 IEEE SP Mag
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! Introduction: 
- Graphs and elements of spectral graph theory 

! Kernel Convolution: 
- Localization, filtering, smoothing and applications 

! Spectral Graph Wavelets 
! Multiresolution 
! From Graphs to Manifolds
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Elements of Spectral Graph Theory

Reference: F. Chung, Spectral Graph Theory



Definitions
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A graph G is given by a set of vertices and «relationships »  
between them encoded in edges G = (V,E)
A set V of vertices of cardinality |V| = N
A set E of edges: e ∈ E, e = (u, v) with u, v ∈ V

Directed edge: e = (u, v), e′ = (v, u) and e != e′

Undirected edge: e = (u, v), e′ = (v, u) and e = e′

A graph is undirected if it contains only undirected edges

A weighted graph has an associated non-negative weight function:
w : V × V → R+ (u, v) /∈ E ⇒ w(u, v) = 0



Matrix Formulation
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Connectivity captured via the (weighted) adjacency matrix                         
W (u, v) = w(u, v)

Let d(u) be the degree of u and D = diag(d) the degree matrix 

with obvious restriction for unweighted graphs

L = D−W

Graph signal: f : V → R

W (u, u) = 0 no loops

Lnorm = D−1/2LD−1/2

Laplacian as an operator on space of graph signals
Lf(u) =

∑

v∼u

(
f(u)− f(v)

)

Graph Laplacians, Signals on Graphs



Some differential operators 
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L = SS∗

S=

e=(u,v)

u

v

-1

1( )
S∗f(u, v) = f(v)− f(u)

Sg(u) =
∑

(u,v)∈E

g(u, v)−
∑

(v′,u)∈E

g(v′, u)

The Laplacian can be factorized as

Explicit forms:

is a gradient

is a negative divergence



Properties of the Laplacian
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Laplacian is symmetric and has real eigenvalues

Moreover:

positive semi-definite, non-negative eigenvalues

Spectrum: 0 = λ0 ≤ λ1 ≤ . . .λmax

Dirichlet form

G connected: λ1 > 0

λi = 0 and λi+1 > 0 G has i+1 connected components

〈f,Lg〉 = f tLgNotation:

〈f,Lf〉 =
∑

u∼v

(
f(u)− f(v)

)2 ≥ 0



Measuring Smoothness
11

is a measure of « how smooth » f is on G

Using our definition of gradient:

Local variation

∇uf = {S∗f(u, v), ∀v ∼ u}

‖∇uf‖2 =

√∑

v∼u

|S∗f(u, v)|2

Total variation |f |TV =
∑

u∈V

‖∇uf‖2 =
∑

u∈V

√∑

v∼u

|S∗f(u, v)|2

〈f,Lf〉 =
∑

u∼v

(
f(u)− f(v)

)2 ≥ 0



Notions of Global Regularity for Graph 
12

∂f

∂e

∣∣∣∣
m

:=
√

w(m,n) [f(n)− f(m)]Edge 
Derivative
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!mf :=

[{
∂f

∂e

∣∣∣∣
m

}

e∈E s.t. e=(m,n)

]
Graph 

Gradient

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Further Reading
Tutorial Overviews

D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, “Signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular domains,” Signal Process. Mag.,
to appear May 2013.

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc.

IEEE, vol. 98, no. 6, pp. 1045–1057, Jun. 2010.

Spectral Graph Theory and Graph Laplacian Eigenvectors

F. K. Chung, Spectral Graph Theory, vol. 92 of the CBMS Reg. Conf. Ser. Math., AMS Bokstore, 1997.
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Smoothness of Graph Signals
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Incorporation of the Underlying Graph Connectivity 5

For notions of global smoothness, the discrete p-Dirichlet
form of f is defined as

Sp(f) :=
1

p

∑

i∈V

‖!if‖p2 =
1

p

∑

i∈V




∑

j∈Ni

Wi,j [f(j)− f(i)]2





p
2

.

(5)

When p = 1, S1(f) is the total variation of the signal with
respect to the graph. When p = 2, we have

S2(f) =
1

2

∑

i∈V

∑

j∈Ni

Wi,j [f(j)− f(i)]2

=
∑

(i,j)∈E

Wi,j [f(j)− f(i)]2 = fTLf . (6)

S2(f) is known as the graph Laplacian quadratic form [17],
and the semi-norm ‖f‖L is defined as

‖f‖L := ‖L 1
2 f‖2 =

√
fTLf =

√
S2(f).

Note from (6) that the quadratic form S2(f) is equal to zero
if and only if f is constant across all vertices (which is why
‖f‖L is only a semi-norm), and, more generally, S2(f) is small
when the signal f has similar values at neighboring vertices
connected by an edge with a large weight; i.e., when it is
smooth.

Returning to the graph Laplacian eigenvalues and eigen-
vectors, the Courant-Fischer Theorem [35, Theorem 4.2.11]
tells us they can also be defined iteratively via the Rayleigh
quotient as

λ0 = min
f∈RN

‖f‖2=1

{fTLf} , (7)

and λ! = min
f∈RN

‖f‖2=1
f⊥span{u0,...,u!−1}

{fTLf} , " = 1, 2, . . . , N − 1, (8)

where the eigenvector u! is the minimizer of the "th prob-
lem. From (6) and (7), we see again why u0 is constant
for connected graphs. Equation (8) explains why the graph
Laplacian eigenvectors associated with lower eigenvalues are
smoother, and provides another interpretation for why the
graph Laplacian spectrum carries a notion of frequency.

Example 1 in the box below demonstrates the importance of
incorporating the underlying graph structure when processing
signals on graphs.

F. Other Graph Matrices
The basis {u!}!=0,1,...,N−1 of graph Laplacian eigenvectors

is just one possible basis to use in the forward and inverse
graph Fourier transforms (3) and (4). A second popular option
is to normalize each weight Wi,j by a factor 1√

didj
. Doing so

leads to the normalized graph Laplacian, which is defined as
L̃ := D− 1

2LD− 1
2 , or, equivalently,

(L̃f)(i) = 1√
di

∑

j∈Ni

Wi,j

[
f(i)√
di

− f(j)√
dj

]
.

G1

!!

f̂ !!( )

G2

!!

f̂ !!( )

G3

!!

f̂ !!( )

Example 1 (Importance of the underlying graph):
In the figure above, we plot the same signal f on
three different unweighted graphs with the same set
of vertices, but different edges. The top row shows the
signal in the vertex domains, and the bottom row shows
the signal in the respective graph spectral domains.

The smoothness and graph spectral content of the
signal both depend on the underlying graph structure.
In particular, the signal f is smoothest with respect
to the intrinsic structure of G1, and least smooth with
respect to the intrinsic structure of G3. This can be seen
(i) visually; (ii) through the Laplacian quadratic form,
as fTL1f = 0.14, fTL2f = 1.31, and fTL3f = 1.81;
and (iii) through the graph spectral representations,
where the signal has all of its energy in the low
frequencies in the graph spectral plot of f̂ on G1, and
more energy in the higher frequencies in the graph
spectral plot of f̂ on G3.

The eigenvalues {λ̃!}!=0,1,...,N−1 of the normalized graph
Laplacian of a connected graph G satisfy

0 = λ̃0 < λ̃1 ≤ . . . ≤ λ̃max ≤ 2,

with λ̃max = 2 if and only if G is bipartite; i.e., the set of
vertices V can be partitioned into two subsets V1 and V2 such
that every edge e ∈ E connects one vertex in V1 and one vertex
in V2. We denote the normalized graph Laplacian eigenvectors
by {ũ!}!=0,1,...,N−1. As seen in Figure 3(b), the spectrum of
L̃ also carries a notion of frequency, with the eigenvectors
associated with higher eigenvalues generally having more zero
crossings. However, unlike u0, the normalized graph Laplacian
eigenvector ũ0 associated with the zero eigenvalue is not a
constant vector.

The normalized and non-normalized graph Laplacians are
both examples of generalized graph Laplacians [36, Section
1.6], also called discrete Schrödinger operators. A generalized
graph Laplacian of a graph G is any symmetric matrix whose
i, jth entry is negative if there is an edge connecting vertices
i and j, equal to zero if i &= j and i is not connected to j, and
may be anything if i = j.

A third popular matrix that is often used in dimensionality-
reduction techniques for signals on graphs is the random walk
matrix P := D−1W. Each entry Pi,j describes the probability
of going from vertex i to vertex j in one step of a Markov
random walk on the graph G. For connected, aperiodic graphs,
each row of Pt converges to the stationary distribution of

Recall, a signal is smooth with respect to the intrinsic structure of its
underlying graph

Similarly, the graph spectral content also depends on the underlying graph

David Shuman Signal Processing on Graphs February 11, 2013 21 / 35
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Remark on Discrete Calculus
14

Discrete operators on graphs form the basis of an interesting field 
aiming at bringing a PDE-like framework for computational analysis 
on graphs: 
! Leo Grady: Discrete Calculus 
! Olivier Lezoray, Abderrahim Elmoataz and co-workers: PDEs on 

graphs: 
- many methods from PDEs in image processing can be  

transposed on arbitrary graphs 
- applications in vision (point clouds) but also machine learning 

(inference with graph total variation)



Walks, Paths and Distances
15

Walk: a sequence of vertices {v0, v1, . . . , vk} with (vi−1, vi) ∈ E(G){v0, v1, . . . , vk} with (vi−1, vi) ∈ E(G)

Length = cardinality or sum of edge weights along path

d(i,j) = length of shortest path between i and j

Rem: a path is a walk with no repeating edges

Wn[i, j] = number of walks of length n between i and j

For any 2 vertices i,j if d(i,j)>s then Ls[i, j] = 0

Shortest paths and adjacency/Laplacian



Graph Fourier Transform, Coherence

Laplacian eigenvectors
16

L = D−W {(λ!,u!)}!=0,1,...,N−1

µ := max
!,i

|〈u!, δi〉| ∈
[ 1√

N
, 1
[

Spectral Theorem: Laplacian is PSD with eigen decomposition

That particular basis will play the role of the Fourier basis:

2

function that assigns a non-negative weight to each edge. An
equivalent representation is G = {V, E ,W}, where W is a
N ×N weighted adjacency matrix with non-negative entries

Wij =

{
w(e), if e ∈ E connect vertices i and j

0, if no edge connects vertices i and j
.

In unweighted graphs, the entries of the adjacency matrix W
are ones and zeros, with a one corresponding to an edge
between two vertices and a zero corresponding to no edge.
The degree matrix D is a diagonal matrix with an ith diagonal
element Dii = di =

∑
j∈Ni

Wij , where Ni is the set of
vertex i’s neighbors in G. Its maximum element is dmax :=
maxi∈V{di}. We denote the combinatorial graph Laplacian
by L := D − W, the normalized graph Laplacian by L̃ :=
D− 1

2LD− 1
2 , and their respective eigenvalue and eigenvector

pairs by {(λ!,u!)}!=0,1,...,N−1 and {(λ̃!, ũ!)}!=0,1,...,N−1.
Then U and Ũ are the matrices whose columns are equal to the
eigenvectors of L and L̃, respectively. We assume without loss
of generality that the eigenvalues are monotonically ordered
so that 0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λN−1, and we
denote the maximum eigenvalues and associated eigenvectors
by λmax = λN−1 and umax = uN−1. λmax is simple if
λN−1 > λN−2.

B. Graph Spectral Filtering
A graph signal is a function f : V → R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f ∈ RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
classical Laplacian operator.

More precisely, the graph Fourier transform with the com-
binatorial graph Laplacian eigenvectors as a basis is

f̂(λ!) := 〈f ,u!〉 =
N∑

i=1

f(i)u∗
! (i), (1)

and a graph spectral filter, which we also refer to as a kernel, is
a real-valued mapping ĥ(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:

f̂out(λ!) = f̂in(λ!)ĥ(λ!), (2)

or, equivalently, taking an inverse graph Fourier transform,

fout(i) =
N−1∑

!=0

f̂in(λ!)ĥ(λ!)u!(i). (3)

We can also write the filter in matrix form as fout = Hfin,
where H is a matrix function [14]

H = ĥ(L) = U[ĥ(Λ)]U∗, (4)

where ĥ(Λ) is a diagonal matrix with the elements of the
diagonal equal to {ĥ(λ!)}!=0,1,...,N−1. We can also use the
normalized graph Laplacian eigenvectors as the graph Fourier
basis, and simply replace L, λ!, and u! by L̃, λ̃!, and ũ! in
(1)-(4). A discussion of the benefits and drawbacks of each of
these choices for the graph Fourier basis is included in [2].

C. Alternative Filtering Methods for Graph Signals
We briefly mention two alternative graph filtering methods:
1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians

III. GRAPH DOWNSAMPLING

Two key components of multiscale transforms for discrete-
time signals are downsampling and upsampling.1 To down-
sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f ∈ RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} → 2V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V1 to keep. The complement Vc

1 := V\V1 =
{v ∈ V : v /∈ V1} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V1| ≈ |V|

2
(D2) It removes vertices that are not connected with edges of

high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.

Graph Coherence

L = UΛUt



Important remark on eigenvectors
17

µ := max
!,i

|〈u!, δi〉| ∈
[ 1√

N
, 1
[

What does that mean ??

Eigenvectors of modified path graph

Optimal - Fourier case



Examples: Cut and Clustering
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C(A,B) :=
∑

i∈A,j∈B

W [i, j] RatioCut(A,A) :=
1

2

C(A,A)

|A|

min
A⊂V

RatioCut(A,A)
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C(A,B) :=
∑

i∈A,j∈B

W [i, j] RatioCut(A,A) :=
1

2

C(A,A)

|A|

min
A⊂V

RatioCut(A,A)

f tLf = |V | · RatioCut(A,A)

f [i] =






√
|A|/|A| if i ∈ A

−
√
|A|/|A| if i ∈ A

‖f‖ =
√

|V | and 〈f, 1〉 = 0



Examples: Cut and Clustering
18

C(A,B) :=
∑

i∈A,j∈B

W [i, j] RatioCut(A,A) :=
1

2

C(A,A)

|A|

min
A⊂V

RatioCut(A,A)

f tLf = |V | · RatioCut(A,A)

f [i] =






√
|A|/|A| if i ∈ A

−
√
|A|/|A| if i ∈ A

‖f‖ =
√

|V | and 〈f, 1〉 = 0

‖f‖ =
√

|V | and 〈f, 1〉 = 0arg min
f∈R|V |

f tLf subject to

Relaxed problem Looking for a smooth partition function
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Ipython Notebook example !



Spectral Clustering

Examples: Cut and Clustering
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‖f‖ =
√

|V | and 〈f, 1〉 = 0arg min
f∈R|V |

f tLf subject to

By Rayleigh-Ritz, solution is second eigenvector

Remarks: Natural extension to more than 2 sets

Spectral clustering := embedding + k-MEANS

Solution is real-valued and needs to be quantized. 
In general, k-MEANS is used. 
First k eigenvectors of sparse Laplacians via Lanczos,  
complexity driven by eigengap |λk − λk+1|

u1

∀i ∈ V : i #→
(
u0(i), . . . , uk−1(i)

)



Graph Embedding/Laplacian Eigenmaps
21

Goal: embed vertices in low dimensional space, discovering geometry
(x1, . . . xN ) !→ (y1, . . . yN )

xi ∈ Rd yi ∈ Rk k < d

Good embedding: nearby points mapped nearby, so smooth map 

yi = Φ(xi)



Graph Embedding/Laplacian Eigenmaps
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Goal: embed vertices in low dimensional space, discovering geometry
(x1, . . . xN ) !→ (y1, . . . yN )

xi ∈ Rd yi ∈ Rk k < d

∑

i,j

W [i, j](yi − yj)
2minimize variations/ 

maximize smoothness of embedding 

Ly = λDyfix scale
arg min

y

ytDy = 1

ytD1 = 0

ytLy
Laplacian Eigenmaps

Good embedding: nearby points mapped nearby, so smooth map 



Laplacian Eigenmaps
23

[Belkin, Niyogi, 2003]



Remark on Smoothness
24

Linear / Sobolev case

‖∇f‖22 ≤ M ⇔ f tLf ≤ M

|f̂(!)| ≤
√
M√
λ!

Smoothness, loosely defined, has been used to motivate various 
methods and algorithms. But in the discrete, finite dimensional  
case, asymptotic decay does not  mean much

⇔
∑

!

λ!|f̂(")|2 ≤ M

EK(f) = ‖f − PK(f)‖2 EK(f) ≤ ‖∇f‖2√
λK+1



fTL1f = 0.14 fTL2f = 1.31 fTL3f = 1.81

Smoothness of Graph Signals Revisited
25

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Incorporation of the Underlying Graph Connectivity 5

For notions of global smoothness, the discrete p-Dirichlet
form of f is defined as

Sp(f) :=
1

p

∑

i∈V

‖!if‖p2 =
1

p

∑

i∈V




∑

j∈Ni

Wi,j [f(j)− f(i)]2





p
2

.

(5)

When p = 1, S1(f) is the total variation of the signal with
respect to the graph. When p = 2, we have

S2(f) =
1

2

∑

i∈V

∑

j∈Ni

Wi,j [f(j)− f(i)]2

=
∑

(i,j)∈E

Wi,j [f(j)− f(i)]2 = fTLf . (6)

S2(f) is known as the graph Laplacian quadratic form [17],
and the semi-norm ‖f‖L is defined as

‖f‖L := ‖L 1
2 f‖2 =

√
fTLf =

√
S2(f).

Note from (6) that the quadratic form S2(f) is equal to zero
if and only if f is constant across all vertices (which is why
‖f‖L is only a semi-norm), and, more generally, S2(f) is small
when the signal f has similar values at neighboring vertices
connected by an edge with a large weight; i.e., when it is
smooth.

Returning to the graph Laplacian eigenvalues and eigen-
vectors, the Courant-Fischer Theorem [35, Theorem 4.2.11]
tells us they can also be defined iteratively via the Rayleigh
quotient as

λ0 = min
f∈RN

‖f‖2=1

{fTLf} , (7)

and λ! = min
f∈RN

‖f‖2=1
f⊥span{u0,...,u!−1}

{fTLf} , " = 1, 2, . . . , N − 1, (8)

where the eigenvector u! is the minimizer of the "th prob-
lem. From (6) and (7), we see again why u0 is constant
for connected graphs. Equation (8) explains why the graph
Laplacian eigenvectors associated with lower eigenvalues are
smoother, and provides another interpretation for why the
graph Laplacian spectrum carries a notion of frequency.

Example 1 in the box below demonstrates the importance of
incorporating the underlying graph structure when processing
signals on graphs.

F. Other Graph Matrices
The basis {u!}!=0,1,...,N−1 of graph Laplacian eigenvectors

is just one possible basis to use in the forward and inverse
graph Fourier transforms (3) and (4). A second popular option
is to normalize each weight Wi,j by a factor 1√

didj
. Doing so

leads to the normalized graph Laplacian, which is defined as
L̃ := D− 1

2LD− 1
2 , or, equivalently,

(L̃f)(i) = 1√
di

∑

j∈Ni

Wi,j

[
f(i)√
di

− f(j)√
dj

]
.

G1

!!

f̂ !!( )

G2

!!

f̂ !!( )

G3

!!

f̂ !!( )

Example 1 (Importance of the underlying graph):
In the figure above, we plot the same signal f on
three different unweighted graphs with the same set
of vertices, but different edges. The top row shows the
signal in the vertex domains, and the bottom row shows
the signal in the respective graph spectral domains.

The smoothness and graph spectral content of the
signal both depend on the underlying graph structure.
In particular, the signal f is smoothest with respect
to the intrinsic structure of G1, and least smooth with
respect to the intrinsic structure of G3. This can be seen
(i) visually; (ii) through the Laplacian quadratic form,
as fTL1f = 0.14, fTL2f = 1.31, and fTL3f = 1.81;
and (iii) through the graph spectral representations,
where the signal has all of its energy in the low
frequencies in the graph spectral plot of f̂ on G1, and
more energy in the higher frequencies in the graph
spectral plot of f̂ on G3.

The eigenvalues {λ̃!}!=0,1,...,N−1 of the normalized graph
Laplacian of a connected graph G satisfy

0 = λ̃0 < λ̃1 ≤ . . . ≤ λ̃max ≤ 2,

with λ̃max = 2 if and only if G is bipartite; i.e., the set of
vertices V can be partitioned into two subsets V1 and V2 such
that every edge e ∈ E connects one vertex in V1 and one vertex
in V2. We denote the normalized graph Laplacian eigenvectors
by {ũ!}!=0,1,...,N−1. As seen in Figure 3(b), the spectrum of
L̃ also carries a notion of frequency, with the eigenvectors
associated with higher eigenvalues generally having more zero
crossings. However, unlike u0, the normalized graph Laplacian
eigenvector ũ0 associated with the zero eigenvalue is not a
constant vector.

The normalized and non-normalized graph Laplacians are
both examples of generalized graph Laplacians [36, Section
1.6], also called discrete Schrödinger operators. A generalized
graph Laplacian of a graph G is any symmetric matrix whose
i, jth entry is negative if there is an edge connecting vertices
i and j, equal to zero if i &= j and i is not connected to j, and
may be anything if i = j.

A third popular matrix that is often used in dimensionality-
reduction techniques for signals on graphs is the random walk
matrix P := D−1W. Each entry Pi,j describes the probability
of going from vertex i to vertex j in one step of a Markov
random walk on the graph G. For connected, aperiodic graphs,
each row of Pt converges to the stationary distribution of

Recall, a signal is smooth with respect to the intrinsic structure of its
underlying graph

Similarly, the graph spectral content also depends on the underlying graph

David Shuman Signal Processing on Graphs February 11, 2013 21 / 35



Remark on Smoothness / Sparsity
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Non-Linear / Besov Case:

|f |Bp =
( N∑

k=1

|〈φk, f〉|p
)1/p

0 < p < 2

Bp,α =
{
f s.t. |f |Bp ≤ α with α ≤ N1/p−1/2, ‖f‖ = 1

}

ε[M ] =
∑

k>M

|〈φmk , f〉|2Best M-term approximation error:

ε[M ] ≤ |f |2Bp
τ
(
M−τ −N−τ

)
≤ α2τ

(
M−τ −N−τ

)
Let f ∈ Bp,α, 0 < p < 2

with τ = 2/p− 1

Jackson-type Inequality and Sparsity



Borel functional calculus for symmetric matrices

Functional calculus
27

Symmetric matrices admit a (Borel) functional calculus

f(L) =
∑

!∈S(L)

f(λ!)u!u
t
!

Use spectral theorem on powers, get to polynomials
From polynomial to continuous functions by Stone-Weierstrass
Then Riesz-Markov (non-trivial !)

It will be useful to manipulate functions of the Laplacian
f(L), f : R !→ R

Lku! = λk
!u! polynomials



Example: Diffusion on Graphs
28

Consider the following « heat » diffusion model
∂f

∂t
= −Lf ∂

∂t
f̂(", t) = −λ!f̂(", t) f̂(!, 0) := f̂0(!)

f̂(!, t) = e−tλ! f̂0(!) f = e−tLf0 by functional calculus

Explicitly: 

e−tL[i, j] =
∑

!

e−tλ!u!(i)u!(j)

e−tL =
∑

!

e−tλ!u!u
t
!

f(i) =
∑

j∈V

∑

!

e−tλ!u!(i)u!(j)f0(j)

=
∑

!

e−tλ!u!(i)
∑

j∈V

u!(j)f0(j)

=
∑

!

e−tλ! f̂0(!)u!(i)



Example: Diffusion on Graphs
29

examples of heat kernel on graph

f0(j) = δk(j)

f(i) =
∑

!

e−tλ! f̂0(!)u!(i)

=
∑

!

e−tλ!u!(k)u!(i)



Simple De-Noising Example
30

Suppose a smooth signal f on a graph
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But you observe only a noisy version y

‖∇f‖22 ≤ M ⇔ f tLf ≤ M

|f̂(!)| ≤
√
M√
λ!

y(i) = f(i) + n(i)



Simple De-Noising Example
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Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
"=0 e−tλ! ŷ($)χ"(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλ! acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
‖f − y‖2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

argmin
f

‖f − y‖22 s.t. f tLf ≤ M
De-Noising by Regularization

f̂(!)ĝ(λ!; τ, r) ⇒ g(L; τ, r)
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1: Set
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n
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2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
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α
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n
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α
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. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)
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.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
"=0 e−tλ! ŷ($)χ"(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλ! acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
‖f − y‖2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
!

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:

L̂rf∗(#) = χ∗
!Lrf∗ = (Lrχ!)

∗ f∗ = λr
!χ

∗
!f∗ = λr

! f̂∗(#). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
τ

τ + 2λr
!

ŷ(#), ∀# ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

!=0

f̂∗(#)χ!(n) =
N−1∑

!=0

[
τ

τ + 2λr
!

]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

argmin
f

‖f − y‖22 s.t. f tLf ≤ M
De-Noising by Regularization

f̂(!)ĝ(λ!; τ, r) ⇒ g(L; τ, r)
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Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
"=0 e−tλ! ŷ($)χ"(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλ! acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
‖f − y‖2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
!

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:

L̂rf∗(#) = χ∗
!Lrf∗ = (Lrχ!)

∗ f∗ = λr
!χ

∗
!f∗ = λr

! f̂∗(#). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
τ

τ + 2λr
!

ŷ(#), ∀# ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

!=0

f̂∗(#)χ!(n) =
N−1∑

!=0

[
τ

τ + 2λr
!

]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
!

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:

L̂rf∗(#) = χ∗
!Lrf∗ = (Lrχ!)

∗ f∗ = λr
!χ

∗
!f∗ = λr

! f̂∗(#). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
τ

τ + 2λr
!

ŷ(#), ∀# ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

!=0

f̂∗(#)χ!(n) =
N−1∑

!=0

[
τ

τ + 2λr
!

]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

Graph Fourier

argmin
f

‖f − y‖22 s.t. f tLf ≤ M
De-Noising by Regularization

f̂(!)ĝ(λ!; τ, r) ⇒ g(L; τ, r)
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Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
"=0 e−tλ! ŷ($)χ"(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλ! acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
‖f − y‖2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
!

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:

L̂rf∗(#) = χ∗
!Lrf∗ = (Lrχ!)

∗ f∗ = λr
!χ

∗
!f∗ = λr

! f̂∗(#). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
τ

τ + 2λr
!

ŷ(#), ∀# ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

!=0

f̂∗(#)χ!(n) =
N−1∑

!=0

[
τ

τ + 2λr
!

]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
!

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to
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2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:

L̂rf∗(#) = χ∗
!Lrf∗ = (Lrχ!)

∗ f∗ = λr
!χ

∗
!f∗ = λr

! f̂∗(#). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
τ

τ + 2λr
!

ŷ(#), ∀# ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
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f̂∗(#)χ!(n) =
N−1∑

!=0

[
τ

τ + 2λr
!

]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
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Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
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2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:
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∗
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Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
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Finally, taking the inverse graph Fourier transform of (18), we
have
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f̂∗(#)χ!(n) =
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τ + 2λr
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]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

“Low pass” filtering !

argmin
f

‖f − y‖22 s.t. f tLf ≤ M
De-Noising by Regularization

f̂(!)ĝ(λ!; τ, r) ⇒ g(L; τ, r)
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Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
"=0 e−tλ! ŷ($)χ"(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλ! acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
‖f − y‖2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
!

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:

L̂rf∗(#) = χ∗
!Lrf∗ = (Lrχ!)

∗ f∗ = λr
!χ

∗
!f∗ = λr

! f̂∗(#). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
τ

τ + 2λr
!

ŷ(#), ∀# ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

!=0

f̂∗(#)χ!(n) =
N−1∑

!=0

[
τ

τ + 2λr
!

]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
!

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:

L̂rf∗(#) = χ∗
!Lrf∗ = (Lrχ!)

∗ f∗ = λr
!χ

∗
!f∗ = λr

! f̂∗(#). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
τ

τ + 2λr
!

ŷ(#), ∀# ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

!=0

f̂∗(#)χ!(n) =
N−1∑

!=0

[
τ

τ + 2λr
!

]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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f

‖f − y‖22 s.t. f tLf ≤ M
De-Noising by Regularization
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Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
"=0 e−tλ! ŷ($)χ"(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλ! acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
‖f − y‖2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
!

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:

L̂rf∗(#) = χ∗
!Lrf∗ = (Lrχ!)

∗ f∗ = λr
!χ

∗
!f∗ = λr

! f̂∗(#). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
τ

τ + 2λr
!

ŷ(#), ∀# ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

!=0

f̂∗(#)χ!(n) =
N−1∑

!=0

[
τ

τ + 2λr
!

]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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argminf
{
||f − y||22 + γfTLf

}

Filtering:

2

function that assigns a non-negative weight to each edge. An
equivalent representation is G = {V, E ,W}, where W is a
N ×N weighted adjacency matrix with non-negative entries

Wij =

{
w(e), if e ∈ E connect vertices i and j

0, if no edge connects vertices i and j
.

In unweighted graphs, the entries of the adjacency matrix W
are ones and zeros, with a one corresponding to an edge
between two vertices and a zero corresponding to no edge.
The degree matrix D is a diagonal matrix with an ith diagonal
element Dii = di =

∑
j∈Ni

Wij , where Ni is the set of
vertex i’s neighbors in G. Its maximum element is dmax :=
maxi∈V{di}. We denote the combinatorial graph Laplacian
by L := D − W, the normalized graph Laplacian by L̃ :=
D− 1

2LD− 1
2 , and their respective eigenvalue and eigenvector

pairs by {(λ!,u!)}!=0,1,...,N−1 and {(λ̃!, ũ!)}!=0,1,...,N−1.
Then U and Ũ are the matrices whose columns are equal to the
eigenvectors of L and L̃, respectively. We assume without loss
of generality that the eigenvalues are monotonically ordered
so that 0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λN−1, and we
denote the maximum eigenvalues and associated eigenvectors
by λmax = λN−1 and umax = uN−1. λmax is simple if
λN−1 > λN−2.

B. Graph Spectral Filtering
A graph signal is a function f : V → R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f ∈ RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
classical Laplacian operator.

More precisely, the graph Fourier transform with the com-
binatorial graph Laplacian eigenvectors as a basis is

f̂(λ!) := 〈f ,u!〉 =
N∑

i=1

f(i)u∗
! (i), (1)

and a graph spectral filter, which we also refer to as a kernel, is
a real-valued mapping ĥ(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:

f̂out(λ!) = f̂in(λ!)ĥ(λ!), (2)

or, equivalently, taking an inverse graph Fourier transform,

fout(i) =
N−1∑

!=0

f̂in(λ!)ĥ(λ!)u!(i). (3)

We can also write the filter in matrix form as fout = Hfin,
where H is a matrix function [14]

H = ĥ(L) = U[ĥ(Λ)]U∗, (4)

where ĥ(Λ) is a diagonal matrix with the elements of the
diagonal equal to {ĥ(λ!)}!=0,1,...,N−1. We can also use the
normalized graph Laplacian eigenvectors as the graph Fourier
basis, and simply replace L, λ!, and u! by L̃, λ̃!, and ũ! in
(1)-(4). A discussion of the benefits and drawbacks of each of
these choices for the graph Fourier basis is included in [2].

C. Alternative Filtering Methods for Graph Signals
We briefly mention two alternative graph filtering methods:
1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians

III. GRAPH DOWNSAMPLING

Two key components of multiscale transforms for discrete-
time signals are downsampling and upsampling.1 To down-
sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f ∈ RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} → 2V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V1 to keep. The complement Vc

1 := V\V1 =
{v ∈ V : v /∈ V1} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V1| ≈ |V|

2
(D2) It removes vertices that are not connected with edges of

high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.
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define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f ∈ RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} → 2V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V1 to keep. The complement Vc

1 := V\V1 =
{v ∈ V : v /∈ V1} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V1| ≈ |V|
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(D2) It removes vertices that are not connected with edges of

high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.

Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
"=0 e−tλ! ŷ($)χ"(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλ! acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
‖f − y‖2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
!

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:

L̂rf∗(#) = χ∗
!Lrf∗ = (Lrχ!)

∗ f∗ = λr
!χ

∗
!f∗ = λr

! f̂∗(#). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
τ

τ + 2λr
!

ŷ(#), ∀# ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

!=0

f̂∗(#)χ!(n) =
N−1∑

!=0

[
τ

τ + 2λr
!

]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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Chebyshev polynomial approximations are shown in Figure 4,
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is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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Lc

Lr

X[movie, user] = movie rating

argmin
X

γn‖X‖∗ + ‖AΩ ◦ (X−M)‖+ γrXLrX
t + γcX

tLcX

Solved using ADMM
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Convolution with a kernel and localization
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argminf
{
||f − y||22 + γfTLf

}

Filtering:

2

function that assigns a non-negative weight to each edge. An
equivalent representation is G = {V, E ,W}, where W is a
N ×N weighted adjacency matrix with non-negative entries

Wij =

{
w(e), if e ∈ E connect vertices i and j

0, if no edge connects vertices i and j
.

In unweighted graphs, the entries of the adjacency matrix W
are ones and zeros, with a one corresponding to an edge
between two vertices and a zero corresponding to no edge.
The degree matrix D is a diagonal matrix with an ith diagonal
element Dii = di =

∑
j∈Ni

Wij , where Ni is the set of
vertex i’s neighbors in G. Its maximum element is dmax :=
maxi∈V{di}. We denote the combinatorial graph Laplacian
by L := D − W, the normalized graph Laplacian by L̃ :=
D− 1

2LD− 1
2 , and their respective eigenvalue and eigenvector

pairs by {(λ!,u!)}!=0,1,...,N−1 and {(λ̃!, ũ!)}!=0,1,...,N−1.
Then U and Ũ are the matrices whose columns are equal to the
eigenvectors of L and L̃, respectively. We assume without loss
of generality that the eigenvalues are monotonically ordered
so that 0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λN−1, and we
denote the maximum eigenvalues and associated eigenvectors
by λmax = λN−1 and umax = uN−1. λmax is simple if
λN−1 > λN−2.

B. Graph Spectral Filtering
A graph signal is a function f : V → R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f ∈ RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
classical Laplacian operator.

More precisely, the graph Fourier transform with the com-
binatorial graph Laplacian eigenvectors as a basis is

f̂(λ!) := 〈f ,u!〉 =
N∑

i=1

f(i)u∗
! (i), (1)

and a graph spectral filter, which we also refer to as a kernel, is
a real-valued mapping ĥ(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:

f̂out(λ!) = f̂in(λ!)ĥ(λ!), (2)

or, equivalently, taking an inverse graph Fourier transform,

fout(i) =
N−1∑

!=0

f̂in(λ!)ĥ(λ!)u!(i). (3)

We can also write the filter in matrix form as fout = Hfin,
where H is a matrix function [14]

H = ĥ(L) = U[ĥ(Λ)]U∗, (4)

where ĥ(Λ) is a diagonal matrix with the elements of the
diagonal equal to {ĥ(λ!)}!=0,1,...,N−1. We can also use the
normalized graph Laplacian eigenvectors as the graph Fourier
basis, and simply replace L, λ!, and u! by L̃, λ̃!, and ũ! in
(1)-(4). A discussion of the benefits and drawbacks of each of
these choices for the graph Fourier basis is included in [2].

C. Alternative Filtering Methods for Graph Signals
We briefly mention two alternative graph filtering methods:
1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians

III. GRAPH DOWNSAMPLING

Two key components of multiscale transforms for discrete-
time signals are downsampling and upsampling.1 To down-
sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f ∈ RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} → 2V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V1 to keep. The complement Vc

1 := V\V1 =
{v ∈ V : v /∈ V1} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V1| ≈ |V|

2
(D2) It removes vertices that are not connected with edges of

high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.
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in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
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2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians
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Two key components of multiscale transforms for discrete-
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sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f ∈ RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} → 2V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V1 to keep. The complement Vc

1 := V\V1 =
{v ∈ V : v /∈ V1} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V1| ≈ |V|

2
(D2) It removes vertices that are not connected with edges of

high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.

Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
"=0 e−tλ! ŷ($)χ"(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλ! acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
‖f − y‖2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ!) = τ

τ+2λr
!

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(#) + τ
2

(
f̂∗(#) − ŷ(#)

)
= 0, (16)

∀# ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ! = λ!χ!), we have:

L̂rf∗(#) = χ∗
!Lrf∗ = (Lrχ!)

∗ f∗ = λr
!χ

∗
!f∗ = λr

! f̂∗(#). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(#) =
τ

τ + 2λr
!

ŷ(#), ∀# ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

!=0

f̂∗(#)χ!(n) =
N−1∑

!=0

[
τ

τ + 2λr
!

]
ŷ(#)χ!(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λ!) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

“Low pass” filtering !



Example: Diffusion on Graphs
37

examples of heat kernel on graph

f0(j) = δk(j)

f(i) =
∑

!

e−tλ! f̂0(!)u!(i)

=
∑

!

e−tλ!u!(k)u!(i)
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Inherits a lot of properties of the usual convolution

associativity, distributivity, diagonalized by GFT

4. Distributivity:

f ∗ (g + h) = f ∗ g + f ∗ h. (19)

5. Associativity:

(f ∗ g) ∗ h = f ∗ (g ∗ h). (20)

6. Define a function g0 ∈ RN by g0(n) :=
∑N−1

!=0 χ!(n). Then g0 is an identity for the generalized
convolution product:

f ∗ g0 = f. (21)

7. An invariance property with respect to the graph Laplacian (a difference operator):

L(f ∗ g) = (Lf) ∗ g = f ∗ (Lg). (22)

8. The sum of the generalized convolution product of two signals is a constant times the product of the
sums of the two signals:

N∑

n=1

(f ∗ g)(n) = 1√
N

[
N∑

n=1

f(n)

][
N∑

n=1

g(n)

]
=

√
Nf̂(0)ĝ(0). (23)

4.2. Generalized Translation of Signals on Graphs

Now the application of the classical translation operator Tu defined in (1) to a function f ∈ L2(R) can
be seen as a convolution with δu:

(Tuf)(t) := f(t− u) = (f ∗ δu)(t)
(14)
=

∫

R
f̂(k)δ̂u(k)ψk(t)dk =

∫

R
f̂(k)ψ∗

k(u)ψk(t)dk,

where the equalities are in the weak sense. Thus, for any signal f ∈ RN defined on the the graph G and any
i ∈ {1, 2, . . . , N}, we also define a generalized translation operator Ti : RN → RN via generalized convolution
with a delta centered at vertex i:

(Tif) (n) :=
√
N(f ∗ δi)(n)

(15)
=

√
N

N−1∑

!=0

f̂($)χ∗
! (i)χ!(n). (24)

The translation (24) is a kernelized operator. The window to be shifted around the graph is defined in the
graph spectral domain via the kernel f̂(·). To translate this window to vertex i, the $th component of the
kernel is multiplied by χ∗

! (i), and then an inverse graph Fourier transform is applied. As an example, in
Figure 4, we apply generalized translation operators to the normalized heat kernel from Figure 1(c). We
can see that doing so has the desired effect of shifting a window around the graph, centering it at any given
vertex i.

4.3. Properties of the Generalized Translation Operator

Some expected properties of the generalized translation operator follow immediately from the generalized
convolution properties of Proposition 1.

Corollary 1: For any f, g ∈ RN and i, j ∈ {1, 2, . . . , N},

1. Ti(f ∗ g) = (Tif) ∗ g = f ∗ (Tig).

2. TiTjf = TjTif .

7
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Use convolution to induce translations

(f ∗ g)(n) =
∑

!

f̂(!)ĝ(!)u!(n)

g0(n) :=
∑

!

u!(n)

(
Tif

)
(n) :=

√
N(f ∗ δi)(n) =

√
N

∑

!

f̂(")u∗
! (i)u!(n)
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T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs, Springer, 2007.

D. Spielman, “Spectral graph theory” in Combinatorial Scientific Computing, Chapman and Hall, 2012.

Dictionaries for Signals on Graphs

R. R. Coifman and M. Maggioni, “Diffusion wavelets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp.

53–94, Jul. 2006.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, Mar. 2011.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for graph structured

data,” IEEE Trans. Signal Process., vol. 60, pp. 2786–2799, Jun. 2012.

D. I Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph Fourier transform,”in Proc. IEEE Stat.

Signal Process. Wrkshp., Ann Arbor, MI, Aug. 2012.

David Shuman Signal Processing on Graphs February 11, 2013 34 / 35

Hammond et al., Wavelets on graphs via spectral graph theory, ACHA, 2011



Spectral Graph Wavelets

! Generalized translation
‣ Classical setting:

39

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Further Reading
Tutorial Overviews

D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, “Signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular domains,” Signal Process. Mag.,
to appear May 2013.

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc.

IEEE, vol. 98, no. 6, pp. 1045–1057, Jun. 2010.

Spectral Graph Theory and Graph Laplacian Eigenvectors

F. K. Chung, Spectral Graph Theory, vol. 92 of the CBMS Reg. Conf. Ser. Math., AMS Bokstore, 1997.
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T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs, Springer, 2007.

D. Spielman, “Spectral graph theory” in Combinatorial Scientific Computing, Chapman and Hall, 2012.

Dictionaries for Signals on Graphs

R. R. Coifman and M. Maggioni, “Diffusion wavelets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp.

53–94, Jul. 2006.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, Mar. 2011.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for graph structured

data,” IEEE Trans. Signal Process., vol. 60, pp. 2786–2799, Jun. 2012.

D. I Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph Fourier transform,”in Proc. IEEE Stat.

Signal Process. Wrkshp., Ann Arbor, MI, Aug. 2012.

David Shuman Signal Processing on Graphs February 11, 2013 34 / 35

Hammond et al., Wavelets on graphs via spectral graph theory, ACHA, 2011

(Tsg)(t) = g(t− s) =

∫

R
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The Graph Fourier and Kronecker bases are not necessarily mutually 
unbiased

(a)

!!

f̂ (!) =Ce!5!!

f̂ (!)

(b)

Figure 2: A signal represented in two domains. (a) The vertex domain. (b) The graph spectral domain.

eigenvalues (frequencies) are relatively smooth, whereas those associated with higher eigenvalues oscillate
more rapidly. The graph Laplacian eigenvalues and associated eigenvectors satisfy

λ! = χT
!Lχ! =

∑

(m,n)∈E

Wmn[χ!(m)− χ!(n)]
2.

Therefore, since each term in the summation of the right-hand side is non-negative, the eigenvectors associ-
ated with smaller eigenvalues are smoother; i.e., the component differences between neighboring vertices are
small (see, e.g., [6, Figure 3]). As the eigenvalue or “frequency” increases, larger differences in neighboring
components of the graph Laplacian eigenvectors may be present. This well-known property has been ex-
tensively utilized in a wide range of problems, including spectral clustering [7], machine learning [8, Section
III], and ill-posed inverse problems in image processing [9].

3.2. Localization of Graph Laplacian Eigenvectors and Coherence

There has recently been a number of interesting research results concerning the localization properties
of graph Laplacian eigenvectors. For different classes of random graphs, [10, 11, 12] show that with high
probability for graphs of sufficiently large size, the eigenvectors of the graph Laplacian (or in some cases,
the graph adjacency operator), are delocalized; i.e., the restriction of the eigenvector to a large set must
have substantial energy, or in even stronger statements, the element of the matrix χ := [χ0,χ1, . . . ,χN−1]
with the largest absolute value is small. We refer to this latter value as the coherence between the basis of
Dirac deltas on the graph and the basis of graph Laplacian eigenvectors:

µ := max
!∈{0,1,...,N−1}
i∈{1,2,...,N}

|〈χ!, δi〉| ∈
[

1√
N

, 1

]
. (7)

While the previously mentioned non-localization results rely on estimates from random matrix theory, Brooks
and Lindenstrauss [13] also show that for sufficiently large, unweighted, non-random, regular graphs that do
not have too many short cycles through the same vertex, in order for

∑
i∈S |χ!(i)|2 > ε for any %, the subset

S ⊂ V must satisfy |S| ≥ N δ, where the constant δ depends on both ε and structural restrictions placed on
the graph.

These non-localization results are consistent with the intuition one might gain from considering the
eigenvectors of the Laplacian for the unweighted path and ring graphs shown in Figure 3. The eigenvalues
of the graph Laplacian of the unweighted path graph with N vertices are given by

λ! = 2− 2 cos

(
π%

N

)
, ∀% ∈ {0, 1, . . . , N − 1},

4

Laplacian eigenvectors (Fourier modes!) can be well localized 
- phenomenon not yet fully understood, under intense study 
- can be observed in lots of experimental data graphs 
- not universal: known classes of random and regular graphs have    
  delocalized eigenvectors 
!
- the limit towards low coherence seems well-behaved 
  (all regular properties emerge) 
- HOWEVER in average:  

LTS2 - EPFL 6 GRAPH INEQUALITIES

Theorem 18. For f, g ∈ RN two graph signals and r ∈ R, we have

‖f ∗ g‖r ! N
1
r−

1
2 ‖f‖2‖g‖2 (48)

for r ∈ [1, 2], and

‖f ∗ g‖r ! µ1− 2
r ‖f‖2‖g‖2 (49)

for r ∈ [2,∞].

Proof. For a graph signal f ∈ RN , we define an operator Tg : RN → RN by (Tgf)(n) = (f ∗ g)(n).
Using (44) and Lemma 6, we observe that this operator is bounded from L2 to L1 by ‖g‖2

√
N and

from L2 to L2 by ‖g‖2. Thus, we can apply the Riez-Thorin theorem to this operator and we get
(48).

Then, for a graph signal g ∈ RN , we define another operator Tf : RN → RN by (Tfg)(n) =
(f ∗ g)(n). With Lemma 6 and (45), we observe that this new operator is bounded from L2 to L2

by ‖g‖2 and from L2 to L∞ by µ‖f‖2. Again the Riez-Thorin theorem leads to the desired result
(49).

Remark: If µ < N− 1
4 (ring graph for instance), the following inequality is sharper than Theorem

18.
‖f ∗ g‖r ! N

1
2r µ

1
r′ ‖f‖2‖g‖2.

It is the result of the application of the Parseval equality to Theorem 17. In order to get a bound
on the p-norm, we can apply the following Lemma. Using Lemma 2 and Theorem 18, we have the
following results:

1 ! p ! 2 p > 2

1 ! r ! 2 ‖f ∗ g‖r ! N
1
r−

1
2 ‖f‖p‖g‖2 ‖f ∗ g‖r ! N

1
r−

1
p ‖f‖p‖g‖2

r > 2 ‖f ∗ g‖r ! µ1− 2
r ‖f‖p‖g‖2 ‖f ∗ g‖r ! N

1
2−

1
pµ1− 2

r ‖f‖p‖g‖2

6.5 Consequences of the inequalities
Those inequalities can be used to bound the translation operator for instance. Applying Lemma

7 leads to:

‖Ti‖2 = sup
g∈RN

‖Tig‖2
‖g‖2

= sup
g∈RN

√
N‖g ∗ δi‖2
‖g‖2

!
√
Nµ

Furthermore translating the neutral element g0(n) =
∑N−1

!=0 χ!(n) gives a lower bound:

‖Ti‖2 = sup
g∈RN

‖Tig‖2
‖g‖2

= sup
g∈RN

√
N‖g ∗ δi‖2
‖g‖2

"
√
N‖g0 ∗ δi‖2
‖g0‖2

=

√
N‖δi‖2√

N
= 1.

Thus we have:
1 ! ‖Ti‖2 !

√
Nµ (50)

Similarly, for the modulation, we have:

‖Mk‖2 = sup
g∈RN

‖Mkg‖2
‖g‖2

= sup
g∈RN

√
N‖g · χk‖2
‖g‖2

!
√
Nµ.

For a special gs(n) = 1, the bound becomes

‖Mk‖2 = sup
g∈RN

‖Mkg‖2
‖g‖2

= sup
g∈RN

√
N‖g · χk‖2
‖g‖2

"
√
N‖gs · χk‖2
‖gs‖2

=

√
N‖χk‖2√

N
= 1

and
1 ! ‖Mk‖2 !

√
Nµ. (51)

We observe that (50) and (51) become tight, when µ = 1√
N

which is the case of the DFT.

Spring 2011 31/40

1

N

N∑

i=1

‖Ti‖22 = 1
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f̂ (!)

!!

(a)

 

 

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

(b)

 

 

1

1.5

2

2.5

3

3.5

4

(c)

 

 

0.6

0.8

1

1.2

1.4

1.6

1.8

(d)

 

 

0.8

0.9

1

1.1

1.2

1.3

1.4

(e)

 

 

0.9

1

1.1

1.2

1.3

1.4

1.5

(f)

Figure 6: Norms of translated normalized heat kernels with τ = 2. (a) A normalized heat kernel f̂(") = Ce−2λ! on the sensor
network graph shown in (b). (b)-(f) The value at each vertex i represents ‖Tif‖2. The edges of the graphs in (b) and (c) are
weighted by a thresholded Gaussian kernel weighting function based on the physical distance between nodes (10), whereas the
edges of the graphs in (e)-(f) all have weights equal to one. In all cases, the norms of the translated windows are not too close

to zero, and the larger norms tend to be located at the “boundary” vertices in the graph. The lower bound |f̂(0)| and upper
bound

√
Nµ‖f‖2 of Lemma 1 are (b) [0.27,21.38]; (c) [0.20,29.22]; (d) [0.07,42.88]; (e) [0.62,4.26]; (f) [0.36,3.25].

and with the definitions (25) and (30) of the generalized translation and the polynomial kernel, we have

(TipK) (n) =
√
N

N−1∑

!=0

p̂K(!)χ∗
! (i)χ!(n)

=
√
N

N−1∑

!=0

K∑

k=0

akλ
k
!χ

∗
! (i)χ!(n)

=
√
N

K∑

k=0

ak(Lk)i,n = 0.

More generally, as seen in Figure 5, if we translate a smooth kernel to a given center vertex i, the
magnitude of the translated kernel at another vertex n decays as the distance between i and n increases. In
the following theorem, we provide one estimate of this localization by combining the strict localization of
polynomial kernels with a classical result on the minimax polynomial approximation error.

Theorem 1: Let ĝ : [0,λmax] → R be a kernel, define din := dG(i, n), and define the minimax polynomial
approximation error

Bĝ(K) := inf
p̂K

{
sup

λ∈[0,λmax]
|ĝ(λ)− p̂K(λ)|

}
,

10



Kernel Localization
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The operator T should be understood as kernel localization:

From a kernel ĝ(s)

Tjg(i) =
∑

!

ĝ(λ!)u!(i)u!(j)

generate localized instances:

By functional calculus, the linear operator
f !→ g(L)f

is the kernelized convolution.

Kernel Localization

ĝ : R+ !→ R



φn(m) =
(
Tng

)
(m) φn(m) =

√
N

N−1∑

!=0

ĝ(λ!)χ∗! (m)χ∗! (n)

Polynomial Localization
43

Given a spectral kernel g, construct the family of features:

Are these features localized ?
Polynomial Kernels are K-Localized

p̂K(λ!) =
K∑

k=0

akλ
k
! if d(i, n) > K, then (TipK)(n) = 0



φn(m) =
(
Tng

)
(m) φn(m) =

√
N

N−1∑

!=0

ĝ(λ!)χ∗! (m)χ∗! (n)

Polynomial Localization
44

φ′
n(m) = 〈δm, PK(L)δn〉

φn(m) = 〈δm, g(L)δn〉 Should be well localized within 
K-ball around n !

Given a spectral kernel g, construct the family of features:

Are these features localized ?
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Suppose the GFT of the kernel is smooth enough (K+1 different.)

φ′
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Tng
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√
N
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!=0

ĝ(λ!)χ∗! (m)χ∗! (n)

Polynomial Localization
44

Suppose the GFT of the kernel is smooth enough (K+1 different.)

Construct an order K polynomial approximation: 

φ′
n(m) = 〈δm, PK(L)δn〉

φn(m) = 〈δm, g(L)δn〉 Should be well localized within 
K-ball around n !

Given a spectral kernel g, construct the family of features:

Are these features localized ?



φn(m) =
(
Tng

)
(m) φn(m) =

√
N

N−1∑

!=0

ĝ(λ!)χ∗! (m)χ∗! (n)

Polynomial Localization
44

Suppose the GFT of the kernel is smooth enough (K+1 different.)

Construct an order K polynomial approximation: 

φ′
n(m) = 〈δm, PK(L)δn〉

φn(m) = 〈δm, g(L)δn〉

Exactly localized in a K-ball around n 

Should be well localized within 
K-ball around n !

Given a spectral kernel g, construct the family of features:

Are these features localized ?
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inf
qK

{
‖f − qK‖∞

}
≤

[
b−a
2

]K+1

(K + 1)! 2K
‖f (K+1)‖∞

f is (K+1)-times differentiable:

|(Tig)(n)| ≤
√
N inf

p̂Kin

{
sup

λ∈[0,λmax]
|ĝ(λ)− p̂Kin(λ)|

}
=

√
N inf

p̂Kin

{‖ĝ − p̂Kin‖∞}

Kin := d(i, n)− 1

|(Tig)(n)| ≤
[
2
√
N

din!

(
λmax

4

)din

sup
λ∈[0,λmax]

|ĝ(din)(λ)|
]

Let

Regular Kernels are Localized
If the kernel is d(i, n)-times differentiable:



Example: for the heat kernel ĝ(λ) = e−τλ

|(Tig)(n)|
‖Tig‖2

≤ 2
√
N

din!

(
τλmax

4

)din

≤
√

2N

dinπ
e−

1
12din+1

(
τλmaxe

4din

)din

Polynomial Localization - Extended
46

∆2
i (f) =

1

‖f‖22

N∑

n=1

d2in[f(n)]
2

We can estimate an explicit measure of spread in terms of the degrees:

∆2
i (Tig) ≤

τNλmaxeDi

(2π)
3
2

e
τλmaxe2(Dmax−1)

4

τ = 5
τ = 25

τ = 50

τ → 0 ⇒ Tig → δi, ∆
2
i (Tig) → 0

τ → +∞ ⇒ Tig → 1√
N

, ∆2
i (Tig) →

1

N

N∑

n=1

d(i, n)2
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representation of kernels

σ2
t σ2

ω = C

∫

R
dt|tf(t)|2

∫

R
dt|f ′(t)|2Remark:
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Example: Spectral Graph Wavelets



Localization / Uncertainty
47

Competition between smoothness and localization in the spectral 
representation of kernels

σ2
t σ2

ω = C

∫

R
dt|tf(t)|2

∫

R
dt|f ′(t)|2Remark:

Smooth kernels can be used to construct controlled localized features

Example: Spectral Graph Wavelets

Localization/Smoothness generate sparsity (but more on that later)
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Spectral approaches to multiresolution



Spectral Graph Wavelets
49

Remember good old Euclidean case:

We will adopt this operator view

ĝ : R+ !→ R

(
W sf

)
(x) =

1

2π

∫

R
eiωxψ̂∗(sω)f̂(ω)dω

Wg = g(L)

Ŵgf(!) = ĝ(λ!)f̂(!)
(
Wgf

)
(i) =

N−1∑

!=0

ĝ(λ!)f̂(")u!(i)



Spectral Graph Wavelets
49

Remember good old Euclidean case:

We will adopt this operator view

Operator-valued function via continuous Borel functional calculus

Operator-valued function

Action of operator is induced by its Fourier symbol

ĝ : R+ !→ R

(
W sf

)
(x) =

1

2π

∫

R
eiωxψ̂∗(sω)f̂(ω)dω

Wg = g(L)

Ŵgf(!) = ĝ(λ!)f̂(!)
(
Wgf

)
(i) =

N−1∑

!=0

ĝ(λ!)f̂(")u!(i)



Spectral Graph Wavelets
! Generalized translation 

‣ Classical setting: 

‣Graph setting: 

!
! Generalized dilation:
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(Tsg)(t) = g(t− s) =
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R
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Spectral Graph Wavelets
! Generalized translation 

‣ Classical setting: 

‣Graph setting: 

!
! Generalized dilation: 

! Spectral graph wavelet at scale s, centered at vertex n:
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Spectral Graph Theory Generalized Operators Transforms Scalable Algorithms and Distributed Processing

Example: Image Denoising by Low-Pass Graph Filtering
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Example 2 (Tikhonov regularization): We observe a noisy graph signal y = f0 + η, where η is uncorrelated additive
Gaussian noise, and wish to recover f0. To enforce a priori information that the clean signal f0 is smooth with respect to
the underlying graph, we include a regularization term of the form fTLf , and, for a fixed γ > 0, solve the optimization
problem

argmin
f

{
‖f − y‖22 + γfTLf

}
. (16)

The first-order optimality conditions of the convex objective function in (??) show that (see, e.g., [?], [?, Section III-A],
[?, Proposition 1]) the optimal reconstruction is given by

f∗(i) =
N−1∑

!=0

[
1

1 + γλ!

]
ŷ(λ!)u!(i), (17)

or, equivalently, f = ĥ(L)y, where ĥ(λ) := 1
1+γλ can be viewed as a low-pass filter.

As an example, in the figure below, we take the 512 x 512 cameraman image as f0 and corrupt it with additive
Gaussian noise with mean zero and standard deviation 0.1 to get a noisy signal y. We then apply two different filtering
methods to denoise the signal. In the first method, we apply a symmetric two-dimensional Gaussian low-pass filter of
size 72 x 72 with two different standard deviations: 1.5 and 3.5. In the second method, we form a semi-local graph on
the pixels by connecting each pixel to its horizontal, vertical, and diagonal neighbors, and setting the Gaussian weights
(??) between two neighboring pixels according to the similarity of the noisy image values at those two pixels; i.e., the
edges of the semi-local graph are independent of the noisy image, but the distances in (??) are simply the differences
between the neighboring pixel values in the noisy image. For the Gaussian weights in (??), we take θ = 0.1 and κ = 0.
We then perform the low-pass graph filtering (??) to reconstruct the image. This method is a variant of the graph-based
anisotropic diffusion image smoothing method of [?].

In all image displays, we threshold the values to the [0,1] interval. The bottom row of images is comprised of
zoomed-in versions of the top row of images. Comparing the results of the two filtering methods, we see that in order to
smooth sufficiently in smoother areas of the image, the classical Gaussian filter also smooths across the image edges.
The graph spectral filtering method does not smooth as much across the image edges, as the geometric structure of the
image is encoded in the graph Laplacian via the noisy image.

Gaussian-Filtered Gaussian-Filtered
Original Image Noisy Image (Std. Dev. = 1.5) (Std. Dev. = 3.5) Graph-Filtered

comprising any path connecting i and j) is greater than k [?,
Lemma 5.2]. Therefore, we can write (??) exactly as in (??),
with the constants defined as

bi,j :=
K∑

k=dG(i,j)

ak
(
Lk

)
i,j

.

So when the frequency filter is an order K polynomial,
the frequency filtered signal at vertex i, fout(i), is a linear
combination of the components of the input signal at vertices
within a K-hop local neighborhood of vertex i. This property
can be quite useful when relating the smoothness of a filtering

kernel to the localization of filtered signals in the vertex
domain.

B. Convolution

We cannot directly generalize the definition (??) of a
convolution product to the graph setting, because of the term
h(t−τ). However, one way to define a generalized convolution
product for signals on graphs is to replace the complex
exponentials in (??) with the graph Laplacian eigenvectors
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T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs, Springer, 2007.

D. Spielman, “Spectral graph theory” in Combinatorial Scientific Computing, Chapman and Hall, 2012.

Dictionaries for Signals on Graphs

R. R. Coifman and M. Maggioni, “Diffusion wavelets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp.

53–94, Jul. 2006.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, Mar. 2011.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for graph structured

data,” IEEE Trans. Signal Process., vol. 60, pp. 2786–2799, Jun. 2012.

D. I Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph Fourier transform,”in Proc. IEEE Stat.

Signal Process. Wrkshp., Ann Arbor, MI, Aug. 2012.

David Shuman Signal Processing on Graphs February 11, 2013 34 / 35

Hammond et al., Wavelets on graphs via spectral graph theory, ACHA, 2011

51

(Tsg)(t) = g(t− s) =

∫

R
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as solutions, relations between these discrete graph spectral 
filters and filters arising out of continuous partial differential 
equations, and applications such as graph-based image pro-
cessing, mesh smoothing, and statistical learning. In 
“Example 2 (Tikhonov Regularization),” we show one particu-
lar image denoising application of (15) with .p 2=

FILTERING IN THE VERTEX DOMAIN
To filter a signal in the vertex domain, we simply write the 
output ( )f iout  at vertex i as a linear combination of the compo-
nents of the input signal at vertices within a K -hop local 
neighborhood of vertex i

 ( ) ( ) ( ),f i b f i b f j,
( , )

,
N

i i
j i K

i jout in in= +
!

/  (16)

for some constants { } .b , , Vi j i j!  Equation (16) just says that 
filtering in the vertex domain is a localized linear transform.

We now briefly relate filtering in the graph spectral domain 
(frequency filtering) to filtering in the vertex domain. When the fre-
quency filter in (12) is an order K polynomial ( )h ak

K
k

k
0m m=, ,=/t  

for some constants { } ,a , ,k k K0 1f=  we can also interpret the filtering 
equation (12) in the vertex domain. From (13), we have
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EXAMPLE 2 (TIKHONOV REGULARIZATION)
We observe a noisy graph signal ,y f0 h= +  where h is uncorre-
lated additive Gaussian noise, and we wish to recover .f0  To 
enforce a priori information that the clean signal f0 is smooth 
with respect to the underlying graph, we include a regularization 
term of the form ,f fLT  and, for a fixed ,02c  solve the optimiza-
tion problem

 .f y f fLargmin
f

2
2 T< < c- +" ,  (S1)

The first-order optimality conditions of the convex objective func-
tion in (S1) show that (see, e.g., [4], [29, Sec. III-A], and [40, Prop. 1]) 
the optimal reconstruction is given by

 ( ) ( ) ( ),f i y u i1
1

*

N

0

1

cm
m=

+
,

,
, ,

=

-

/ t; E  (S2)

or, equivalently, ( ) ,f Lh y= t  where ( ) : /h 1 1m cm= +t ^ h can be 
viewed as a low-pass filter.

As an example, in Figure S2, we take the 512 512#  cameraman 
image as f0 and corrupt it with additive Gaussian noise with mean 
zero and standard deviation 0.1 to get a noisy signal y. We then 
apply two different filtering methods to denoise the signal. In the 
first method, we apply a symmetric two-dimensional Gaussian 

low-pass filter of size 2 27 7#  with two different standard devia-
tions: 1.5 and 3.5. In the second method, we form a semilocal 
graph on the pixels by connecting each pixel to its horizontal, ver-
tical, and diagonal neighbors, and setting the Gaussian weights (1) 
between two neighboring pixels according to the similarity of the 
noisy image values at those two pixels; i.e., the edges of the 
semilocal graph are independent of the noisy image, but the dis-
tances in (1) are the differences between the neighboring pixel 
values in the noisy image. For the Gaussian weights in (1), we take 

.0 1i =  and .0l =  We then perform the low-pass graph filtering 
(S2) with 10c =  to reconstruct the image. This method is a variant 
of the graph-based anisotropic diffusion image smoothing 
method of [11].

In all image displays in Figure S2, we threshold the values to 
the [0,1] interval. The images in (b) comprise zoomed-in versions 
of the images in (a). Comparing the results of the two filtering 
methods, we see that to smooth sufficiently in smoother areas 
of the image, the classical Gaussian filter also smooths across the 
image edges. The graph spectral filtering method does not 
smooth as much across the image edges, as the geometric struc-
ture of the image is encoded in the graph Laplacian via the 
noisy image.

Original Image Noisy Image
Gaussian Filtered
(Std. Dev. = 1.5)

Gaussian Filtered
(Std. Dev. = 3.5) Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.
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equations, and applications such as graph-based image pro-
cessing, mesh smoothing, and statistical learning. In 
“Example 2 (Tikhonov Regularization),” we show one particu-
lar image denoising application of (15) with .p 2=

FILTERING IN THE VERTEX DOMAIN
To filter a signal in the vertex domain, we simply write the 
output ( )f iout  at vertex i as a linear combination of the compo-
nents of the input signal at vertices within a K -hop local 
neighborhood of vertex i

 ( ) ( ) ( ),f i b f i b f j,
( , )

,
N

i i
j i K

i jout in in= +
!

/  (16)

for some constants { } .b , , Vi j i j!  Equation (16) just says that 
filtering in the vertex domain is a localized linear transform.

We now briefly relate filtering in the graph spectral domain 
(frequency filtering) to filtering in the vertex domain. When the fre-
quency filter in (12) is an order K polynomial ( )h ak

K
k

k
0m m=, ,=/t  

for some constants { } ,a , ,k k K0 1f=  we can also interpret the filtering 
equation (12) in the vertex domain. From (13), we have
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EXAMPLE 2 (TIKHONOV REGULARIZATION)
We observe a noisy graph signal ,y f0 h= +  where h is uncorre-
lated additive Gaussian noise, and we wish to recover .f0  To 
enforce a priori information that the clean signal f0 is smooth 
with respect to the underlying graph, we include a regularization 
term of the form ,f fLT  and, for a fixed ,02c  solve the optimiza-
tion problem

 .f y f fLargmin
f

2
2 T< < c- +" ,  (S1)

The first-order optimality conditions of the convex objective func-
tion in (S1) show that (see, e.g., [4], [29, Sec. III-A], and [40, Prop. 1]) 
the optimal reconstruction is given by

 ( ) ( ) ( ),f i y u i1
1

*

N

0

1

cm
m=

+
,

,
, ,

=

-

/ t; E  (S2)

or, equivalently, ( ) ,f Lh y= t  where ( ) : /h 1 1m cm= +t ^ h can be 
viewed as a low-pass filter.

As an example, in Figure S2, we take the 512 512#  cameraman 
image as f0 and corrupt it with additive Gaussian noise with mean 
zero and standard deviation 0.1 to get a noisy signal y. We then 
apply two different filtering methods to denoise the signal. In the 
first method, we apply a symmetric two-dimensional Gaussian 

low-pass filter of size 2 27 7#  with two different standard devia-
tions: 1.5 and 3.5. In the second method, we form a semilocal 
graph on the pixels by connecting each pixel to its horizontal, ver-
tical, and diagonal neighbors, and setting the Gaussian weights (1) 
between two neighboring pixels according to the similarity of the 
noisy image values at those two pixels; i.e., the edges of the 
semilocal graph are independent of the noisy image, but the dis-
tances in (1) are the differences between the neighboring pixel 
values in the noisy image. For the Gaussian weights in (1), we take 

.0 1i =  and .0l =  We then perform the low-pass graph filtering 
(S2) with 10c =  to reconstruct the image. This method is a variant 
of the graph-based anisotropic diffusion image smoothing 
method of [11].

In all image displays in Figure S2, we threshold the values to 
the [0,1] interval. The images in (b) comprise zoomed-in versions 
of the images in (a). Comparing the results of the two filtering 
methods, we see that to smooth sufficiently in smoother areas 
of the image, the classical Gaussian filter also smooths across the 
image edges. The graph spectral filtering method does not 
smooth as much across the image edges, as the geometric struc-
ture of the image is encoded in the graph Laplacian via the 
noisy image.

Original Image Noisy Image
Gaussian Filtered
(Std. Dev. = 1.5)

Gaussian Filtered
(Std. Dev. = 3.5) Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.



Inverse Transform

A Continuous Wavelet Transform
52

If kernel satisfies

(
Wgf

)
(t, j) =

(
g(tL)f

)
(j) =

∑

!

ĝ(tλ!)f̂(")u!(j)

Continuous Spectral Graph Wavelet Transform

Cg =

∫ +∞

0

ĝ2(x)

x
< +∞

f̃ = f − 〈u0, f〉u0
1

Cg

∑

j∈V

∫ +∞

0
Wgf(t, j)ψt,j(i)

dt

t
= f̃(i)
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scaling function wavelets

0 10
0

1

2

λ

A

B

A simple way to get a tight frame:

for any admissible kernel 

φn = Whδn = h(L)δn

∃A,B > 0, ∃ĥ : R+ "→ R i.e scaling function

0 < A ≤ ĥ(u)2 +
∑

s

ĝ(tsu)
2 ≤ B < +∞

γ̂(λ!) =

∫ 1

1/2

dt

t
ĝ(tλ!)

2 ⇒ ˜̂g(λ!) =
√

γ̂(λ!)− γ̂(2λ!)
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Effect of operator dilation ?
Need higher polynomial approximation for 
large scale kernel (on spectral domain)!
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Effect of operator dilation ?
Need higher polynomial approximation for 
large scale kernel (on spectral domain)!



ψt,i(j) should be small if i and j are separated, and t is small

ψt,i(j) = 〈ψt,i, δj〉 = 〈T t
gδi, δj〉

Scaling & Localization
56

Study matrix element: 

Reason ? At small scale, wavelet operator behaves like power of Laplacian

ψt,j(i)
‖ψt,j‖

≤ Dt

dG(i, j) > K

function of dG(i, j)

Theorem:

for any t smaller than a critical scale 

and g has K vanishing derivatives at 0
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Characterizations of this localization
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T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs, Springer, 2007.

D. Spielman, “Spectral graph theory” in Combinatorial Scientific Computing, Chapman and Hall, 2012.

Dictionaries for Signals on Graphs

R. R. Coifman and M. Maggioni, “Diffusion wavelets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp.

53–94, Jul. 2006.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, Mar. 2011.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for graph structured

data,” IEEE Trans. Signal Process., vol. 60, pp. 2786–2799, Jun. 2012.

D. I Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph Fourier transform,”in Proc. IEEE Stat.

Signal Process. Wrkshp., Ann Arbor, MI, Aug. 2012.

David Shuman Signal Processing on Graphs February 11, 2013 34 / 35

Shuman et al., Vertex-frequency analysis on graphs, 2013

exact wavelet (naive forward transform)

 

 

−0.15 0 0.15

exact wavelet (naive forward transform)

 

 

−0.4 0 0.4

exact wavelet (naive forward transform)

 

 

−0.6 0 0.6

exact wavelet (naive forward transform)

 

 

−0.1 0 0.1

ψs4,n

Scale



−1 0 1−1
0

1
−1

0

1

ψt,i(j)

Scaling & Localization
58



−1 0 1−1
0

1
−1

0

1

ψt,i(j)

Scaling & Localization
58

−1 0 1−1
0

1
−1

0

1  

 

−0.05 0 0.05

−1 0 1−1
0

1
−1

0

1  

 

−0.2 0 0.2

−1 0 1−1
0

1
−1

0

1  

 

−0.15 0 0.15

decreasing scale



0 40

−0.2

0.2

λ0 40

0

1

λ

Remark on Implementation
59

Not necessary to compute spectral decomposition

Polynomial approximation :
ex: Chebyshev, minimax

Then wavelet operator expressed with powers of Laplacian:

And use sparsity of Laplacian in an iterative way

ĝ(tx) !
K−1∑

k=0

ak(t)pk(x)

g(tL) !
K−1∑

k=0

ak(t)Lk



W̃f (t, j) =
(
p(L)f#

)
j

|Wf (t, j)− W̃f (t, j)| ≤ B‖f‖

W̃f (tn, j) =

(
1
2
cn,0f

# +
Mn∑

k=1

cn,kT k(L)f#

)

j

T k(L)f =
2
a1

(L− a2I)
(
T k−1(L)f

)
− T k−2(L)f

Remark on Implementation
60

sup norm control (minimax or Chebyshev)

O(
J∑

n=1

Mn|E|)

Computational cost dominated by matrix-vector multiply with 
(sparse) Laplacian matrix  

Note: “same” algorithm for adjoint !Complexity:

Shifted Chebyshev polynomial
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argminf
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Each point has a desired class label            (suppose binary)

x1, x2, ..., xn ∈ Rd

|S| = l < n

Transductive Learning
62

Let X be an array of data points

yk ∈ Y

At training you have the labels of a subset S of X

GOAL: predict remaining labels
Rationale: minimize empirical risk on your training data such that
- your model is predictive 
- your model is simple, does not overfit 
- your model is “stable” (depends continuously on your training set) 
- ... 

Getting data is easy but labeled data is a scarce resource 



‖Xtβ − y‖2
2

yk = β · xk + b

β = (XXt)−1Xy

β = (XXt + αI)−1Xy‖Xtβ − y‖2
2 + α‖β‖2

2

Transductive Learning
63

Ex: Linear regression
Empirical Risk:

if not enough observations, regularize (Tikhonov):

Ridge Regression



‖Xtβ − y‖2
2

yk = β · xk + b

β = (XXt)−1Xy

β = (XXt + αI)−1Xy‖Xtβ − y‖2
2 + α‖β‖2

2

Transductive Learning
63

Ex: Linear regression
Empirical Risk:

if not enough observations, regularize (Tikhonov):

Ridge Regression

‖ΦXβ − y‖2
2,S + αS(β)

How can unlabelled data be used ?
Questions: 

More general linear model with a dictionary of features ?

dictionary depends on data points simplifies/stabilizes selected model



Learning on/with Graphs
64

How can unlabelled data be used ?

Assumption:  
target function is not globally smooth but it is locally smooth over regions 
of data space that have some geometrical structure

Use graph to model this structure



∆f =
∑

i,j∈X

Wij(f(xi)− f(xj))2

= f tLf

‖Xt
Sβ − y‖2

2 + α‖β‖2
2 + γβtXLXtβ

Learning on/with Graphs
65

Example (Belkin, Niyogi)

Affinity between data points represented by edge weights 
(affinity matrix W)

measure of smoothness:

Revisit ridge regression:

L = W - D

Solution is smooth in graph “geometry”



ΦX

arg min
β
‖y −MΦXβ‖2

2 + αS(β)

Transduction & Representation
66

More general linear model with a dictionary of features ?

dictionary of features on the complete data set (data dependent)
M   restricts to labeled data points (mask)

Empirical Risk Model Selection penalty, sparsity ? 
Smoothness on graph ?

Important Note: our dictionary will be data dependent but its construction 
is not part of the above optimization 
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Sparsity and Smoothness on Graphs
67

scaling functions coeffs



arg min
β
‖y −MΦXβ‖2

2 + α‖β‖1

Sparsity and Transduction
68

Since sparsity = smoothness on graph, why not simple LASSO ?

arg min
β
‖y −MΦXβ‖2

2 + αS(β)



arg min
β
‖y −MΦXβ‖2

2 + α‖β‖1

Sparsity and Transduction
68

Since sparsity = smoothness on graph, why not simple LASSO ?

arg min
β
‖y −MΦXβ‖2

2 + αS(β)

Bad Idea:
We know there are strongly correlated coefficients  
(LASSO will kill some of them)

There is no information to determine masked wavelets
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Scaling functions not sparse are optimized separately

Group potentially correlated variables (scales)
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scaling level

Group Sparsity - take I
69

Scaling functions not sparse are optimized separately

Group potentially correlated variables (scales)

scale 1

scale 2
group k

group l

Few groups should be active = local smoothness

Inside group, all coefficients can be active

Simple model, no overlap, optimized like LASSO

Formulate with mixed-norms ‖β‖p,q
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Ground truth

Wavelets on trees, graphs and high dimensional data

For a regression problem, our estimator for f is

f̂(x) =
∑

!,k,j

â!,k,j ψ!,k,j(x) (12)

whereas for binary classification we output sign(f̂).

Note that conditional on all subfolders of X!
k having

at least one labeled point, â!,k,j is unbiased, E[â!,k,j ] =
a!,k,j . For small folders there is a non-negligible prob-
ability of having empty subfolders, so overall â!,k,j is
biased. However, by Theorem 1, for smooth functions
these coefficients are exponentially small in ". The
following theorem quantifies the expected L2 error of
both the estimate â!,k,j , and the function estimate f̂ .
Its proof is in the supplementary material.

Theorem 4 Let f be (C,α) Hölder, and define C1 =
C2α+1. Assume that the labeled samples si ∈ S ⊂ X
were randomly chosen from the uniform distribution
on X with replacement. Let f̂ be the estimator (12)
with coefficients estimated via Eq. (11). Up to o(1/|S|)
terms, the mean squared error of coefficient estimates
is bounded by

E[â!,k,j − a!,k,j ]
2 ! 1

|S|
C2

1B
2α

ν(X"
k)

2α

1−e−|S|Bν(X"
k
)

(13)

+ 1
B e−|S|Bν(X"

k) · a2!,k,j

The resulting overall MSE is bounded by

E ‖f − f̂‖2 = 1
N

∑

i

(f(xi)− f̂(xi))
2

≤ C2
1B

2α

|S|

∑

!,k,j

B
2α(!−1)

1− e−|S|B" (14)

+ 22α+1C2
1

B

∑

!,k,j

e−|S|B"

(B
2α+1

)!−1

The first term in (13) is the estimation error whereas
the second term is the approximation error, e.g. the
bias-variance decomposition. For sufficiently large
folders, with |S|Bν(X!

k) & 1, the estimation error de-
cays with the number of labeled points as |S|−1, and is
smaller for smoother functions (larger α). The approx-
imation error, due to folders empty of labeled points,
decays exponentially with |S| and with folder size.

The values B and B can be easily extracted from a
given tree. Theorem 4 thus provides a non-parametric
risk analysis that depends on a single parameter, the
assumed smoothness class α of the target function.

5. Numerical Results

We present preliminary numerical results of our SSL
scheme on several datasets. More results and Matlab
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Figure 2. Results on the USPS benchmark.

code appear in supplementary material. We focus on
two well-known handwritten digit data sets, MNIST
and USPS. These are natural choices due to the inher-
ent multiscale structures present in handwritten digits.

Given a dataset X of N digits, of which only a small
subset S is labeled, we first use all samples inX to con-
struct an affinity matrix Wi,j described below. A tree
is constructed as follows: At the finest level, " = L,
we have N singleton folders: XL

i = {xi}. Each coarse
level is constructed from a finer level as follows: Ran-
dom (centroid) points are selected s.t. no two are con-
nected by an edge of weight larger than a ”radius”
parameter. This yields a partition of the current level
according to the nearest centroid. The partition el-
ements constitute the points of the coarser level. A
coarse affinity matrix is constructed, where the edge
weight between two partition elements C and D is
∑

i∈C,j∈D W 2
ij where W is the affinity matrix of the

finer level graph. The motivation for squaring the
affinities at each new coarse level is to capture struc-
tures at different scales. As the choice of centroids
is (pseudo) random, so is the resulting partition tree.
With the partition tree at hand, we construct a Haar-
like basis induced by the tree and estimate the co-
efficients of the target label function as described in
Section 4.

We compare our method to Laplacian Eigenmaps
(Belkin & Niyogi, 2003), with |S|/5 eigenfunctions, as
suggested by the authors, and to the Laplacian Reg-
ularization approach of (Zhu et al., 2003). For the
latter, we also consider an adaptive threshold for clas-
sification (sign(y > qth)), with qth chosen such that
the proportion of test labeled points of each class is
equal to its value in the training set2.

2Note that this method is different from the class mass
normalization approach of (Zhu et al., 2003).

Simulation results from Gavish et al, ICML 2010

2-class USPS 



Preliminary Results
70

Ground truth

Wavelets on trees, graphs and high dimensional data

For a regression problem, our estimator for f is

f̂(x) =
∑

!,k,j
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smaller for smoother functions (larger α). The approx-
imation error, due to folders empty of labeled points,
decays exponentially with |S| and with folder size.

The values B and B can be easily extracted from a
given tree. Theorem 4 thus provides a non-parametric
risk analysis that depends on a single parameter, the
assumed smoothness class α of the target function.

5. Numerical Results

We present preliminary numerical results of our SSL
scheme on several datasets. More results and Matlab
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code appear in supplementary material. We focus on
two well-known handwritten digit data sets, MNIST
and USPS. These are natural choices due to the inher-
ent multiscale structures present in handwritten digits.

Given a dataset X of N digits, of which only a small
subset S is labeled, we first use all samples inX to con-
struct an affinity matrix Wi,j described below. A tree
is constructed as follows: At the finest level, " = L,
we have N singleton folders: XL

i = {xi}. Each coarse
level is constructed from a finer level as follows: Ran-
dom (centroid) points are selected s.t. no two are con-
nected by an edge of weight larger than a ”radius”
parameter. This yields a partition of the current level
according to the nearest centroid. The partition el-
ements constitute the points of the coarser level. A
coarse affinity matrix is constructed, where the edge
weight between two partition elements C and D is
∑

i∈C,j∈D W 2
ij where W is the affinity matrix of the

finer level graph. The motivation for squaring the
affinities at each new coarse level is to capture struc-
tures at different scales. As the choice of centroids
is (pseudo) random, so is the resulting partition tree.
With the partition tree at hand, we construct a Haar-
like basis induced by the tree and estimate the co-
efficients of the target label function as described in
Section 4.

We compare our method to Laplacian Eigenmaps
(Belkin & Niyogi, 2003), with |S|/5 eigenfunctions, as
suggested by the authors, and to the Laplacian Reg-
ularization approach of (Zhu et al., 2003). For the
latter, we also consider an adaptive threshold for clas-
sification (sign(y > qth)), with qth chosen such that
the proportion of test labeled points of each class is
equal to its value in the training set2.

2Note that this method is different from the class mass
normalization approach of (Zhu et al., 2003).

Simulation results from Gavish et al, ICML 2010

2-class USPS 
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Wavelets on trees, graphs and high dimensional data

For a regression problem, our estimator for f is

f̂(x) =
∑

!,k,j

â!,k,j ψ!,k,j(x) (12)

whereas for binary classification we output sign(f̂).

Note that conditional on all subfolders of X!
k having

at least one labeled point, â!,k,j is unbiased, E[â!,k,j ] =
a!,k,j . For small folders there is a non-negligible prob-
ability of having empty subfolders, so overall â!,k,j is
biased. However, by Theorem 1, for smooth functions
these coefficients are exponentially small in ". The
following theorem quantifies the expected L2 error of
both the estimate â!,k,j , and the function estimate f̂ .
Its proof is in the supplementary material.

Theorem 4 Let f be (C,α) Hölder, and define C1 =
C2α+1. Assume that the labeled samples si ∈ S ⊂ X
were randomly chosen from the uniform distribution
on X with replacement. Let f̂ be the estimator (12)
with coefficients estimated via Eq. (11). Up to o(1/|S|)
terms, the mean squared error of coefficient estimates
is bounded by

E[â!,k,j − a!,k,j ]
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ν(X"
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2α

1−e−|S|Bν(X"
k
)
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∑
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B
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1

B

∑
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e−|S|B"

(B
2α+1

)!−1

The first term in (13) is the estimation error whereas
the second term is the approximation error, e.g. the
bias-variance decomposition. For sufficiently large
folders, with |S|Bν(X!

k) & 1, the estimation error de-
cays with the number of labeled points as |S|−1, and is
smaller for smoother functions (larger α). The approx-
imation error, due to folders empty of labeled points,
decays exponentially with |S| and with folder size.

The values B and B can be easily extracted from a
given tree. Theorem 4 thus provides a non-parametric
risk analysis that depends on a single parameter, the
assumed smoothness class α of the target function.

5. Numerical Results

We present preliminary numerical results of our SSL
scheme on several datasets. More results and Matlab
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code appear in supplementary material. We focus on
two well-known handwritten digit data sets, MNIST
and USPS. These are natural choices due to the inher-
ent multiscale structures present in handwritten digits.

Given a dataset X of N digits, of which only a small
subset S is labeled, we first use all samples inX to con-
struct an affinity matrix Wi,j described below. A tree
is constructed as follows: At the finest level, " = L,
we have N singleton folders: XL

i = {xi}. Each coarse
level is constructed from a finer level as follows: Ran-
dom (centroid) points are selected s.t. no two are con-
nected by an edge of weight larger than a ”radius”
parameter. This yields a partition of the current level
according to the nearest centroid. The partition el-
ements constitute the points of the coarser level. A
coarse affinity matrix is constructed, where the edge
weight between two partition elements C and D is
∑

i∈C,j∈D W 2
ij where W is the affinity matrix of the

finer level graph. The motivation for squaring the
affinities at each new coarse level is to capture struc-
tures at different scales. As the choice of centroids
is (pseudo) random, so is the resulting partition tree.
With the partition tree at hand, we construct a Haar-
like basis induced by the tree and estimate the co-
efficients of the target label function as described in
Section 4.

We compare our method to Laplacian Eigenmaps
(Belkin & Niyogi, 2003), with |S|/5 eigenfunctions, as
suggested by the authors, and to the Laplacian Reg-
ularization approach of (Zhu et al., 2003). For the
latter, we also consider an adaptive threshold for clas-
sification (sign(y > qth)), with qth chosen such that
the proportion of test labeled points of each class is
equal to its value in the training set2.

2Note that this method is different from the class mass
normalization approach of (Zhu et al., 2003).

Simulation results from Gavish et al, ICML 2010

2-class USPS 
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Is it spectacular ? No. Comparable to state-of-art :(

Wavelets on trees, graphs and high dimensional data

For a regression problem, our estimator for f is

f̂(x) =
∑

!,k,j

â!,k,j ψ!,k,j(x) (12)

whereas for binary classification we output sign(f̂).

Note that conditional on all subfolders of X!
k having

at least one labeled point, â!,k,j is unbiased, E[â!,k,j ] =
a!,k,j . For small folders there is a non-negligible prob-
ability of having empty subfolders, so overall â!,k,j is
biased. However, by Theorem 1, for smooth functions
these coefficients are exponentially small in ". The
following theorem quantifies the expected L2 error of
both the estimate â!,k,j , and the function estimate f̂ .
Its proof is in the supplementary material.

Theorem 4 Let f be (C,α) Hölder, and define C1 =
C2α+1. Assume that the labeled samples si ∈ S ⊂ X
were randomly chosen from the uniform distribution
on X with replacement. Let f̂ be the estimator (12)
with coefficients estimated via Eq. (11). Up to o(1/|S|)
terms, the mean squared error of coefficient estimates
is bounded by
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The first term in (13) is the estimation error whereas
the second term is the approximation error, e.g. the
bias-variance decomposition. For sufficiently large
folders, with |S|Bν(X!

k) & 1, the estimation error de-
cays with the number of labeled points as |S|−1, and is
smaller for smoother functions (larger α). The approx-
imation error, due to folders empty of labeled points,
decays exponentially with |S| and with folder size.

The values B and B can be easily extracted from a
given tree. Theorem 4 thus provides a non-parametric
risk analysis that depends on a single parameter, the
assumed smoothness class α of the target function.

5. Numerical Results

We present preliminary numerical results of our SSL
scheme on several datasets. More results and Matlab
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code appear in supplementary material. We focus on
two well-known handwritten digit data sets, MNIST
and USPS. These are natural choices due to the inher-
ent multiscale structures present in handwritten digits.

Given a dataset X of N digits, of which only a small
subset S is labeled, we first use all samples inX to con-
struct an affinity matrix Wi,j described below. A tree
is constructed as follows: At the finest level, " = L,
we have N singleton folders: XL

i = {xi}. Each coarse
level is constructed from a finer level as follows: Ran-
dom (centroid) points are selected s.t. no two are con-
nected by an edge of weight larger than a ”radius”
parameter. This yields a partition of the current level
according to the nearest centroid. The partition el-
ements constitute the points of the coarser level. A
coarse affinity matrix is constructed, where the edge
weight between two partition elements C and D is
∑

i∈C,j∈D W 2
ij where W is the affinity matrix of the

finer level graph. The motivation for squaring the
affinities at each new coarse level is to capture struc-
tures at different scales. As the choice of centroids
is (pseudo) random, so is the resulting partition tree.
With the partition tree at hand, we construct a Haar-
like basis induced by the tree and estimate the co-
efficients of the target label function as described in
Section 4.

We compare our method to Laplacian Eigenmaps
(Belkin & Niyogi, 2003), with |S|/5 eigenfunctions, as
suggested by the authors, and to the Laplacian Reg-
ularization approach of (Zhu et al., 2003). For the
latter, we also consider an adaptive threshold for clas-
sification (sign(y > qth)), with qth chosen such that
the proportion of test labeled points of each class is
equal to its value in the training set2.

2Note that this method is different from the class mass
normalization approach of (Zhu et al., 2003).

Simulation results from Gavish et al, ICML 2010

2-class USPS 



Example: Shape Descriptors
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Shape represented by 3D point cloud

Construct graph
k-Nearest Neighbors
ε−Neighborhood

Ex: Localized heat kernel on point clouds



Example: Shape Descriptors
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Idea: use multiscale localized features on graph
Ex: graph wavelet transform of coordinates maps



Example: Shape Descriptors
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Application 1: sparse/dense description & robust matching

Application 2: parts matching 
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Graph wavelets
! Redundancy versus sparsity 
- can we remove some or all of it ? 

! Faster algorithms 
- traditional wavelets have fast filter banks implementation 
- whatever scale, you use the same filters 
- here: large scales -> more computations 

! Goal: solve both problems at one

76
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Filtering (typically low-pass and high-pass) 
Down and Up sampling



Basic Ingredients
77

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass) 
Down and Up sampling



Basic Ingredients
77

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass) 
Down and Up sampling

Filtering is fine but how do we downsample on graphs ???
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Basic Ingredients
78

Subsampling is equivallent to splitting in two cosets (even, odd)

Questions: How do we partition a graph into meaningful cosets ?

Are there efficient algorithms for these partitions ?

Are there theoretical guarantees ?

How do we define a new graph from the cosets ?



fsub(i) =
1
2
f(i)

(
1 + cos(πi)

)

Cosets - A spectral view
79

Subsampling is equivallent to splitting in two cosets (even, odd)

Classically, selecting a coset can be interpreted easily in Fourier:

eigenvector of 
largest eigenvalue
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                        same sign w.r.t a reference function 

We would like to find a very large number of nodal domains, ideally |V| !

Nodal domains of Laplacian eigenvectors are special (and well studied)



Cosets and Nodal Domains
80

Nodal domain: maximally connected subgraph s.t. all vertices have 
                        same sign w.r.t a reference function 

We would like to find a very large number of nodal domains, ideally |V| !

Nodal domains of Laplacian eigenvectors are special (and well studied)

ν(G) = |V |− χ(G) + 2

ν(φmax) = ν(G) = |V |

Theorem: the number of nodal domains associated to the largest laplacian 
eigenvector of a connected graph is maximal, 
   
IFF G is bipartite

In general: (extreme cases: bipartite and complete graphs)



M+(i) =
1
2
(
1 + sgn(φN−1(i))

)
V+ = {i ∈ V s.t. φN−1(i) ≥ 0}

M−(i) =
1
2
(
1− sgn(φN−1(i))

)
V− = {i ∈ V s.t. φN−1(i) < 0}

Cosets and Nodal Domains
81

We would like to find a very large number of nodal domains, ideally |V| !

Nodal domains of Laplacian eigenvectors are special (and well studied)

Nodal domain: maximally connected subgraph s.t. all vertices have 
                        same sign w.r.t a reference function 

For any connected graph we will thus naturally define cosets and 
their associated selection functions



λk = 2− 2 cos(πk/n)φk(u) = sin(πku/n + π/2n) 1 ≤ k ≤ n

Examples of cosets
82

Simple line graph
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φ1
k(u) = sin(2πku/n) φ2

k(u) = cos(2πku/n) 1 ≤ k ≤ n/2

λk = 2− 2 cos(2πk/n)

Examples of cosets
83

Simple line graph

Simple ring graph



φ1
k(u) = sin(2πku/n) φ2

k(u) = cos(2πku/n) 1 ≤ k ≤ n/2

λk = 2− 2 cos(2πk/n)

Examples of cosets
83

Simple line graph

Simple ring graph
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Simple line graph

Simple ring graph

Lattice



Examples of cosets
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Simple line graph

Simple ring graph

Lattice

quincunx



The Agonizing Limits of Intuition
! Multiplicity of  
- how do we choose the control vector in that subspace ? 
- even a prescription can be numerically ill-defined 
- graphs with “flat” spectrum in close to their spectral 

radius 
! Laplacian eigenvectors do not always behave like 

global oscillations 
- seems to be true for random perturbations of simple 

graphs 
- true even for a class of trees [Saito2011]

85
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A Laplacian Pyramid on Graphs
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Graph sparsification

Single level pyramid
Filtering

Downsampling
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Downsampling
88

4

(a) (b)

(c) (d)

(e)

Fig. 1. Examples of partitioning structured graphs into two sets (red and blue)
according to the polarity of the largest eigenvector of the graph Laplacian. For
the path graph in (a) and the ring graph in (b), the method selects every other
vertex like classical downsampling of discrete-time signals. For the finite grid
graphs with the ends unconnected (c) and connected (d), the method results
in the quincunx sampling pattern. For a tree graph in (e), the method groups
the vertices at every other depth of the tree.

Aspvall and Gilbert [21] suggest to construct an approx-
imate 2-coloring of an unweighted graph according to the
polarity of the eigenvector associated with the most negative
eigenvalue of the adjacency matrix. For regular graphs, the
eigenvector associated with the most negative eigenvalue of
the adjacency matrix is the same as the largest graph Laplacian
eigenvector, and so the the method of [21] is equivalent to the
largest Laplacian eigenvector method for that special case.

D. Connections with Nodal Domain Theory
A nodal domain of f on G is a maximally connected

subgraph of G such that the sign of a signal f is the same
on all vertices in the subgraph. It is typical to distinguish
between two types of nodal domains on graphs [17, Chapter
3]. A positive (negative) strong nodal domain of f on G is a
maximally connected subgraph such that f(i) > 0 (f(i) < 0)
for all vertices i in the subgraph. A positive (negative) weak
nodal domain of f on G is a maximally connected subgraph
such that f(i) ≥ 0 (f(i) ≤ 0) for all vertices i in the subgraph,
with f(i) #= 0 for at least one vertex i in the subgraph. The
number of weak nodal domains of a function f on a graph
G is always less than or equal to the number of strong nodal
domains of f on G. An example where the number of weak
nodal domains is strictly less is shown in Figure 2.

A graph downsampling can be viewed as an assignment
of positive and negative signs to vertices, with positive signs
assigned to the vertices that we keep, and negative signs to
the vertices that we eliminate. The goal of having few edges

!" ## !

#

!

Fig. 2. Nodal domain example from [17, Figure 3.4]. The figure shows
the sign pattern of an eigenvector associated with the eigenvalue λ5 of the
Laplacian of the graph shown. This eigenvector has 5 weak nodal domains
and 6 strong nodal domains.

within either the removed set or the kept set is closely related
to the problem of maximizing the number of nodal domains
of the downsampling. This is because maximizing the number
of nodal domains leads to nodal domains with fewer vertices,
which results in fewer edges connecting vertices within the
removed and kept sets.

Next, we briefly mention some general bounds on the
number of nodal domains of functions on a given graph G.

(ND1) For any function f on G, the number of strong and weak
nodal domains of f on G is less than or equal to N−χ+2
[23, Theorem 3.3]

(ND2) If and only if G is bipartite does there exist an f such
that the number of strong and weak nodal domains of f
on G is equal to N

Since we suggest to use the largest eigenvector for down-
sampling, we also mention some bounds on the number of
nodal domains of eigenvectors of graph Laplacians. Let u!

be the eigenvector associated with the "th eigenvalue of a
generalized Laplacian of a connected graph G. Then

(ND3) u! has at most " weak nodal domains and "+s−1 strong
nodal domains, where s is the multiplicity of λ! [24], [17,
Theorem 3.1]

(ND4) The largest eigenvector umax has N strong and weak
nodal domains if and only if G is bipartite. Moreover, if
H is a bipartite subgraph of G with the maximum number
of vertices, then the number of vertices in H is an upper
bound on the number of strong nodal domains of any
eigenvector of a generalized Laplacian of G [17, Theorem
3.27]

(ND5) If u!(i) #= 0, ∀i ∈ V , then u! has at most " nodal
domains3 [17, Corollary 3.21]

(ND6) If λ! is simple and u!(i) #= 0, ∀i ∈ V , the number of
nodal domains of u! is greater than or equal to " − r,
where r is the number of edges that need to be removed
from the graph in order to turn it into a tree4[25]

Note that while both the lower and upper bounds on
the number of nodal domains of the eigenvectors of graph
Laplacians are monotonic in the index of the eigenvalue, the
actual number of nodal domains is not always monotonic in the
index of the eigenvalue (see, e.g., [23, Figure 1] for an example
where they are not monotonic). Therefore, for arbitrary graphs,
it is not guaranteed that the largest eigenvector of the graph

3When u!(i) != 0, ∀i ∈ V , as in (ND5) and (ND6), the number of weak
and strong nodal domains are equal, so we do not specify a particular type
of nodal domain.

4Berkolaiko proves this theorem for Schrödinger operators, which encom-
pass generalized Laplacians of unweighted graphs.

3

with edges of high weight; i.e., if i, j ∈ V1, then Wij is
low, and if i, j ∈ Vc

1 , then Wij is low
(D3) There is a computationally efficient way to implement

it

A. Vertex Selection Using the Largest Eigenvector of the
Graph Laplacian

The method we suggest to use for graph downsampling is
to select the vertices to keep based on the polarity of the
components of the largest eigenvector; namely, let

V1 = V+ := {i ∈ V : umax(i) ≥ 0} . (5)

We refer to this method as the largest eigenvector vertex
selection method. A few remarks regarding this choice of
downsampling operator are in order. First, the polarity of
the largest eigenvector splits the graph into two components.
In this paper, we choose to keep the vertices in V+, and
eliminate the vertices in V− := {i ∈ V : umax(i) < 0}, but
we could just as easily do the reverse, or keep the vertices
in Vbig := argmaxV1∈{V+,V−}|V1|, for example. Second, for
some graphs such as the complete graph, λmax is a repeated
eigenvalue, so the polarity of umax is not uniquely defined.
Third, we could just as easily base the vertex selection on the
polarity of the normalized graph Laplacian eigenvector, ũmax

associated with the largest eigenvalue, λ̃max. In some cases,
such as the bipartite graphs discussed next, doing so yields
exactly the same selection of vertices as downsampling based
on the largest non-normalized graph Laplacian eigenvector;
however, this is not true in general.

In the following sections, we motivate the use of the largest
eigenvector of the graph Laplacian from two different perspec-
tives - first from a more intuitive view as a generalization of
downsampling techniques for special types of graphs, and then
from a more theoretical point of view by connecting the vertex
selection problem to graph coloring, spectral clustering, and
nodal domain theory.

B. Special Case: Bipartite Graphs

There is one situation in which there exists a fairly clear
notion of removing every other component of a graph signal
– when the underlying graph is bipartite. A graph G =
{V, E ,W} is bipartite if the set of vertices V can be par-
titioned into two subsets V1 and Vc

1 so that every edge e ∈ E
links one vertex in V1 with one vertex in Vc

1 . In this case, it
is natural to downsample by keeping all of the vertices in one
of the subsets, and eliminating all of the vertices in the other
subset. In fact, as stated in the following theorem, the largest
eigenvector downsampling method does precisely this in the
case of bipartite graphs.

Theorem 1 (Roth, 1989): For a connected, bipartite graph
G = {V1∪Vc

1 , E ,W}, the largest eigenvalues, λmax and λ̃max,
of L and L̃, respectively, are simple, and λ̃max = 2. Moreover,
the polarity of the components of the eigenvectors umax and
ũmax associated with λmax and λ̃max both split V into the

bipartition V1 and Vc
1 . That is, for v = umax or v = ũmax,

v(i)v(j) > 0, if i, j ∈ V1 or i, j ∈ Vc
1 , and

v(i)v(j) < 0, if i ∈ V1, j ∈ Vc
1 or i ∈ Vc

1 , j ∈ V1. (6)

If, in addition, G is k-regular (di = k, ∀i ∈ V), then λmax =
2k, and

umax = ũmax =

{
1√
N
, if i ∈ V1

− 1√
N
, if i ∈ Vc

1
.

The majority of the statements in Theorem 1 follow from
results of Roth in [16], which are also presented in [17,
Chapter 3.6].

The path, ring (with an even number of vertices), and finite
grid graphs, which are shown in Figure 1, are all examples
of bipartite graphs and all have simple largest graph Lapla-
cian eigenvalues. Using the largest eigenvector downsampling
method leads to the elimination of every other vertex on the
path and ring graphs, and to the quincunx sampling pattern on
the finite grid graph (with or without boundary connections).

Trees (acyclic, connected graphs) are also bipartite. An
example of a tree is shown in Figure 1(e). Fix an arbitrary
vertex r to be the root of the tree, let Y0

r be the singleton
set containing the root, and then define the sets {Yt

r}t=1,2,...

by Yt
r := {i ∈ V : i is t hops from the root vertex r in T }.

Then the polarity of the components of largest eigenvector
of the graph Laplacian splits the vertices of the tree into two
sets according to the parity of the depths of the tree. That is,
if we let Yeven

r := ∪t=0,2,...Yt
r and Yodd

r := ∪t=1,3,...Yt
r, then

Yeven
r = V+ and Yodd

r = V−, or vice versa.
In related work, [18] and [19] suggest to downsample

bipartite graphs by keeping all of the vertices in one subset
of the bipartition, and [20] suggests to downsample trees by
keeping vertices at every other depth of the tree. Therefore,
the largest eigenvector downsampling method can be seen as
a generalization of those approaches.

C. Connections with Graph Coloring and Spectral Clustering

A graph G = {V, E ,W} is k-colorable if there exists a
partition of V into subsets V1,V2, . . . ,Vk such that if vertices
i, j ∈ V are connected by an edge in E , then i and j are in
different subsets in the partition. The chromatic number χ of
a graph G is the smallest k such that G is k-colorable. Thus,
the chromatic number of a graph is equal to 2 if and only if
the graph is bipartite.

As we have seen with the examples in the previous section,
when a graph is bipartite, it is easy to decide how to split it
into two sets for downsampling. When the chromatic number
of a graph is greater than two, however, we are interested in
finding an approximate coloring [21]; that is, a partition that
has as few edges as possible that connect vertices in the same
subset.2 As noted by [21], the approximate coloring problem
is in some sense dual to the problem of spectral clustering
(see, e.g. [22] and references therein).

2In other contexts, the term approximate coloring is also used in reference
to finding a proper k-coloring of a graph in polynomial time, such that k is
as close as possible to the chromatic number of the graph.

Relaxed solution to 2-coloring for regular graphs

Exact for bipartite graphs

Connections with nodal domains theory for  
laplacian eigenvectors
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upsampling by masking operator M where M is a diagonal matrix with ones
at on-diagonal entries correspond to the location of the selected vertices, and
zeros elsewhere.

Then we will pass the output of the masking block through a second filter
g in order to reconstruct the original function. Finally, the reconstruction
error is easily computed by taking difference of the original signal and the
output of the second filter.

Consider an input graph-signal x ∈ Rn. In our notation, y0 = Hmx
denotes the output of h-filtering followed by masking operator. This is the
output of the lowpass channel in the LP framework.

y0 = Hmx

= MHx

= MVH̃VTx, (5.1)

where V = [v0|v1|...|vn−1] is the matrix of the eigenvectors of graph Lapla-
cian L and H̃ is a diagonal matrix with on-diagonal entries {h(λl)}n−1

l=0 and
off-diagonal entries equal to zero. Recall that the multiplier is the real-valued
function h : R+ → R+.

The output of the highpass channel is then given by y1 = x−Gy0 which
is equal to the reconstruction error.

y1 = x−Gx

= x−VG̃VTx, (5.2)

where V is defined earlier and G̃ is a diagonal matrix with on-diagonal entries
{g(λl)}n−1

l=0 and off-diagonal entries equal to zero. Note that for the second
filter we use the multiplier g : R+ → R+.

The analysis operator Ta is then defined in

(
y0

y1

)

︸ ︷︷ ︸
y

=

(
Hm

I−GHm

)

︸ ︷︷ ︸
Ta

x, (5.3)

where y0, y1 ∈ Rn are the coarse and prediction error coefficients respectively.
Fig. 5.1 shows the analysis part of the graph Laplacian Pyramid.
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where y0, y1 ∈ Rn are the coarse and prediction error coefficients respectively.
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TsTa = I

Simple (traditional) left inverse

Figure 5.1: Analysis scheme in graph Laplacian pyramid.

The usual inverse transform of the LP for reconstruction of the original
signal is also given in

x̂ = ( G I )︸ ︷︷ ︸
Ts

(
y0

y1

)

︸ ︷︷ ︸
y

. (5.4)

First, we predict the original signal by filtering of the coarse version y0 and
add the reconstruction error y1 to recover the original signal x completely.
Fig. 5.2 shows the usual inverse transform of the graph LP.

Figure 5.2: Usual synthesis scheme in graph Laplacian pyramid.

It is easy to check that TsTa = I for any Hm,G. In fact, it shows that LP
can be perfectly reconstructed with any pairs of filters Hm,G. Analogously
to the classical Laplacian pyramid, since the graph LP is also a redundant
transform, an infinite number of left inverses are admitted as synthesis oper-
ator. The most important one among those is the pseudo inverse

Ta
† = (Ta

TTa)
−1Ta

T . (5.5)

As it is discussed previously in classical Laplacian pyramid, the impor-
tance of the pseudo inverse as a synthesis operator is its ability to eliminate
the influence of those errors which are added to the transform coefficients y
and are orthogonal to the range of the analysis operator Ta. So, if instead of
having access to y = Tsx we have ŷ = y+e, then the pseudo inverse provides
the solution x̂ = Ta

†ŷ that minimizes the residual ||Tax̂− ŷ||2.
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T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs, Springer, 2007.

D. Spielman, “Spectral graph theory” in Combinatorial Scientific Computing, Chapman and Hall, 2012.

Dictionaries for Signals on Graphs

R. R. Coifman and M. Maggioni, “Diffusion wavelets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp.

53–94, Jul. 2006.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, Mar. 2011.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for graph structured

data,” IEEE Trans. Signal Process., vol. 60, pp. 2786–2799, Jun. 2012.

D. I Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph Fourier transform,”in Proc. IEEE Stat.

Signal Process. Wrkshp., Ann Arbor, MI, Aug. 2012.

David Shuman Signal Processing on Graphs February 11, 2013 34 / 35

Do, Vetterli, Framing Pyramids, IEEE TSP, 2003



Ta
† =

(
Ta

T Ta

)−1Ta
T

The Laplacian Pyramid
92

Pseudo Inverse ?

Let’s try to use only filters



Ta
† =

(
Ta

T Ta

)−1Ta
T

The Laplacian Pyramid
92

Pseudo Inverse ?

Let’s try to use only filters

arg min
x
‖Tax− y‖2

2 x̂k+1 = x̂k + τTa
T (y −Tax̂k)

Ta
T = (Hm

T I−Hm
T GT )

Landweber iterations involve only filters:

Figure 5.3: Complementary operator Ta
T for synthesis part of the graph LP.

Figure 5.4: Complementary operator Ta
TT for synthesis part of the graph

LP.

Figure 5.5: Iterative reconstruction of the graph-signal using gradient descent
method.
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L(ω) = τ
N−1∑

j=0

(1− τω)j

The Laplacian Pyramid
93

Figure 5.3: Complementary operator Ta
T for synthesis part of the graph LP.

Figure 5.4: Complementary operator Ta
TT for synthesis part of the graph

LP.

Figure 5.5: Iterative reconstruction of the graph-signal using gradient descent
method.

34

we can easily implement with filters and masks:

With the real symmetric matrix and

Use Chebyshev approximation of:
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In order to iterate the construction, we need to construct a graph on the 
reduced vertex set. 

2 F. Dörfler and F. Bullo

is the loopy Laplacian matrix. In various applications of circuit theory and related
disciplines it is desirable to obtain a lower dimensional electrically-equivalent network
from the viewpoint of certain boundary nodes (or terminals) α ! {1, . . . , n}, |α| ≥ 2.
If β = {1, . . . , n}\α denotes the set of interior nodes, then, after appropriately labeling
the nodes, the current-balance equations can be partitioned as

[
Iα
Iβ

]
=

[
Qαα Qαβ

Qβα Qββ

] [
Vα

Vβ

]
. (1.1)

Gaussian elimination of the interior voltages Vβ in equations (1.1) gives an electrically-
equivalent reduced network with |α| nodes obeying the reduced current-balances

Iα +QacIβ = QredVα , (1.2)

where the reduced conductance matrixQred ∈ R|α|×|α| is again a loopy Laplacian given
by the Schur complement of Q with respect to the interior nodes β, that is, Qred =
Qαα−QαβQ

−1
ββQβα. The accompanying matrix Qac = −QαβQ

−1
ββ ∈ R|α|×(n−|α|) maps

internal currents to boundary currents in the reduced network. In case that Iβ is the
vector of zeros, the (i, j)-element of Qred is the current at boundary node i due to a
unit potential at boundary node j and a zero potential at all other boundary nodes.
From here the reduced network can be further analyzed as an |α|-port with current
injections Iα +QacIβ and transfer conductance matrix Qred.

This reduction of an electrical network via a Schur complement of the associated
conductance matrix is known as Kron reduction due to the seminal work of Gabriel
Kron [37], who identified fundamental interconnections among physics, linear algebra,
and graph theory [33, 38]. The Kron reduction of a simple tree-like network with-
out current injections or shunt conductances is illustrated in Figure 1.1, an example
familiar to every engineering student as the Y −∆ transformation.

8

8

8
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Kron reduction

8

8

8
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1/31/3

Fig. 1.1. Kron reduction of a star-like electrical circuit with three boundary nodes !", one
interior node •◦ , and with unit conductances resulting in a reduced triangular reduced circuit.

Literature Review. The Kron reduction of networks is ubiquitous in circuit
theory and related applications in order to obtain lower dimensional electrically-
equivalent circuits. It appears for instance in the behavior, synthesis, and analysis of
resistive circuits [56, 60, 59], particularly in the context of large-scale integration chips
[48, 53, 1]. When applied to the impedance matrix of a circuit rather than the admit-
tance matrix, Kron reduction is also referred to as the “shortage operator” [2, 3, 35].
Kron reduction is a standard tool in the power systems community to obtain station-
ary and dynamically-equivalent reduced models for power flow studies [58, 10, 61], or
in the reduction of differential-algebraic power network and RLC circuit models to
lower dimensional purely dynamic models [45, 52, 5, 18, 20]. A recent application of
Kron reduction is monitoring in smart power grids [17] via synchronized phasor mea-
surement units. Kron reduction is also crucial for reduced order modeling, analysis,

[Dorfler et al, 2011]
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Properties:

In order to iterate the construction, we need to construct a graph on the 
reduced vertex set. 

maps a weighted undirected laplacian to a weighted 
undirected laplacian
spectral interlacing (spectrum does not degenerate)

disconnected vertices linked in reduced graph IFF there is a 
path that runs only through eliminated nodes 



L =
[

kIn −A
−AT kIn

]

Lr = k2In −AAT

Example
97

Note: For a k-regular bipartite graph

Kron-reduced Laplacian:
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Note: For a k-regular bipartite graph

Kron-reduced Laplacian:

f̂r(i) = f̂(i) + f̂(N − i) i = 1, ..., N/2
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2 critically sampled channels

Filter H

Filter G

Downsample

Downsample

Coset 1

Coset 2

|H(i)|2 + |G(i)|2 = 2

H(i)G(N − i) + H(N − i)G(i) = 0

Theorem: For a k-RBG, the filter bank is perfect-reconstruction IFF 
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With:

Simple linear model:

On the known vertices:

Solution depends on efficient, robust inversion of:

Interpolation condition:

Those weights can be computed using only filtering !
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Stable pseudo-inverse:

Shifted Green’s functions

Does this property carry over to the Kron reduced Laplacian?

Note:

Regularized Laplacian:
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Lemma: Inversion/Reduction commute for the (regularized) Laplacian

This implies invariance of the Green’s functions via reduction and therefore



Spline-like interpolation
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Lemma: Inversion/Reduction commute for the (regularized) Laplacian

This implies invariance of the Green’s functions via reduction and therefore

Algorithm: Reduce graph
Apply reduced Laplacian to vertex data

Replace old data with newly calculated coefficients

Filter with Green’s kernel
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7

to one over the number of vertices in the complete subgraph.
This class of graphs highlights two of the main weaknesses

of the Kron reduction: (i) it does not always preserve regular
structural properties of the graph; and (ii) it does not always
preserve the sparsity of the graph. We discuss an alternative
graph reduction method that does preserve the tree structure in
Section VI-D, and a sparsity enhancing modification in Section
IV-D.

5) k-Regular Bipartite Graphs: In [18], Narang and Ortega
consider connected and unweighted k-RBGs.8 They downsam-
ple by keeping one subset of the bipartition, and they construct
a new graph on the downsampled vertices V1 by linking
vertices in the reduced graph with an edge whose weight is
equal to the number of their common neighbors in the original
graph. If the vertices of the original graph are rearranged so
that all the vertices in V1 have smaller indices than all the
vertices in Vc

1 , the adjacency and Laplacian matrices of the
original graph can be represented as:

W =

[
0 W1

WT
1 0

]
and L =

[
kIN

2
−W1

−WT
1 kIN

2

]
. (11)

Then for all i, j ∈ V1 (with i #= j), the i, jth entry of the
adjacency matrix of the reduced graph is given by

W kRBG−reduced
ij (V1) = (W1W

T
1 )ij . (12)

They also show that

LkRBG−reduced(V1) = k2IN
2
−W1W

T
1. (13)

Now we examine the Kron reduction of k-RBGs. The Kron-
reduced Laplacian is given by:

LKron−reduced(V1) = LV1,V1 − LV1,V2L−1
V2,V2

LV2,V1

= kIN
2
− (−W1)(kIN

2
)−1(−WT

1)

= kIN
2
− 1

k
W1W

T
1,

which is a constant factor 1
k times the reduced Laplacian (13)

of [18]. So, up to a constant factor, the Kron reduction is a
generalization of the graph reduction method presented in [18]
for the special case of regular bipartite graphs.

D. Graph Sparsification

As a consequence of property (K5), repeated Kron reduction
often leads to denser and denser graphs. We have already seen
this loss of sparsity in Section IV-C4, and this phenomenon
is even more evident in larger, less regular graphs. In addi-
tion to computational drawbacks, the loss of sparsity can be
important, because if the reduced graphs become too dense,
it may not effectively capture local connectivity information
that is important for processing signals on the graph. There-
fore, in many situations, it is advantageous to perform graph
sparsification immediately after the Kron reduction as part of
the overall graph reduction phase.

8Although [18] considers unweighted k-RBGs, the following statements
also apply to weighted k-RBGs if we extend the definition of the reduced
adjacency matrix (12) to weighted graphs.

Algorithm 1 Spectral Sparsification [30]
Inputs: G = {V, E ,W}, Q
Output: W′

1: Initialize W′ = 0
2: for q = 1, 2, . . . , Q do
3: Choose a random edge e = (i, j) of E according to the

probability distribution

pe =
dRG (i, j)Wij∑

e=(m,n)∈E
dRG (m,n)Wmn

4: W ′
ij = W ′

ij +
Wij

Qpe

5: end for

(a) (b) (c)

(d) (e) (f)

Fig. 5. Incorporation of a spectral sparsification step into the graph reduction.
(a)-(c) Repeated largest eigenvector downsampling and Kron reduction of a
sensor network graph. (d)-(f) The same process with the spectral sparsification
of [30] used immediately after each Kron reduction.

There are numerous ways to perform graph sparsification.
In this paper, we use a straightforward spectral sparsification
algorithm of Spielman and Strivastava [30], which is described
in Algorithm 1. This sparsification method pairs nicely with
the Kron reduction, because [30] shows that for large graphs
and an appropriate choice of the number of samples Q, the
graph Laplacian spectrum and resistance distances between
vertices are approximately preserved with high probability.
In Figure 5, we show an example of repeated downsampling
followed by Kron reduction and spectral sparsification.

E. Alternative Graph Reduction Methods

First, we mention some alternative graph reduction methods:
1) In [8], Narang and Ortega define a reduced graph via

the weighted adjacency matrix by taking W(j+1) =(
[W(j)]2

)
V1,V1

. Here, [W(j)]2 represents the 2-hop ad-
jacency matrix of the original graph. The reduced Lapla-
cian can then be defined as L(j+1) = D(j+1)−W(j+1),
where D(j+1) is computed from W(j+1). However,
there are a number of undesirable properties of this
reduction method. First, and perhaps foremost, the re-
duction method does not always preserve connectivity.
Second, self-loops are introduced at every vertex in the
reduced graph. Third, vertices in the selected subset
that are connected by an edge in the original graph
may not share an edge in the reduced graph. Fourth,
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David Shuman Signal Processing on Graphs February 11, 2013 14 / 35• Application of graph signal processing techniques to real science and 
engineering problems is in its infancy  

• Theoretical connections between classes of graph signals, the underlying 
graph structure, and sparsity of transform coefficients


