Analyse Non-Asymptotique d'un Compromis Computationellement Optimal pour les Méthodes Proximales Inexactes École d'été de Peyresq

Pierre Machart

LIF, Aix-Marseille Université LSIS, Université du Sud-Toulon-Var

http://www.lif.univ-mrs.fr/~pmachart/ pierre.machart@lif.univ-mrs.fr

26 juin

travaux effectués avec Sandrine Anthoine and Luca Baldassarre

Les Compromis en Apprentissage

Principes Généraux en Apprentissage Statistique Décomposition de l'Erreur Motivations

Méthodes Proximales Inexactes

Optimisation convexe non-différentiable Contribution Principale Simulations Numériques

Conclusion

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machar

Compromis en Apprentissage

Apprentissage Statistique
Décomposition de l'Erreu
Motivations

Méthodes Proximales Inexactes

non-différentiable
Contribution Principale
Simulations Numérique

Outline

Les Compromis en Apprentissage Principes Généraux en Apprentissage Statistique Décomposition de l'Erreur Motivations

Méthodes Proximales Inexactes

Conclusion

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machart

Compromis en Apprentissage Principes Généraux en Apprentissage Statistique Décomposition de l'Erreur

Méthodes Proximales Inexactes

non-différentiable
Contribution Principale
Simulations Numérique

- ▶ Données : réalisations i.i.d. de v.a. $(x, y) \in \mathcal{X} \times \mathcal{Y} \rightsquigarrow D$.
- ▶ But : apprendre un "bon" prédicteur $h: \mathcal{X} \to \mathcal{Y}$.
- Qualité d'une prédiction mesurée via une fonction de perte :

$$\ell: \mathcal{Y}^{\mathcal{X}} \times \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_{+}$$

Qualité d'un prédicteur mesurée via une fonction de risque :

$$R(h) = \mathbb{E}_D \ell(h, \mathbf{x}, y)$$

Meilleur prédicteur possible :

$$h^* := \underset{h \in \mathcal{Y}^{\mathcal{X}}}{\operatorname{argmin}} R(h)$$

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machart

Compromis en Apprentissage

Principes Généraux en Apprentissage Statistique Décomposition de l'Errour

Méthodes Proximales

Optimisation convexe non-différentiable Contribution Principale Simulations Numérique

Limitations intrinsèques

Meilleur prédicteur possible :

$$h^* := \underset{h \in \mathcal{Y}^{\mathcal{X}}}{\operatorname{argmin}} R(h).$$

Première limitation : $\mathcal{Y}^{\mathcal{X}}$ est trop difficile à explorer.

Solution : explorer une classe d'hypothèses (paramétrisée) $\mathcal{H}\subset\mathcal{Y}^\mathcal{X}$:

$$h_{\mathcal{H}}^* := \operatorname*{argmin}_{h \in \mathcal{H}} R(h).$$

Coût: induit une erreur d'approximation:

$$\mathcal{E}_{\mathsf{app}} := R(h_{\mathcal{H}}^*) - R(h^*).$$

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

rierre iviacna

Compromis en Apprentissage

Principes Généraux en Apprentissage Statistique Décomposition de l'Erreu

Méthodes Proximales Inexactes

non-différentiable
Contribution Principale
Simulations Numérique

Limitations intrinsèques

Meilleur prédicteur dans ${\cal H}$:

$$h_{\mathcal{H}}^* := \underset{h \in \mathcal{H}}{\operatorname{argmin}} R(h).$$

Seconde limitation : D n'est pas connue, de même que R(h).

Solution: calculer un estimateur:

$$\widehat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h, \mathbf{x}_i, y_i),$$

et le minimiser :

$$h_n := \underset{h \in \mathcal{H}}{\operatorname{argmin}} \widehat{R}(h) (+ \lambda \Omega(h)).$$

Coût : induit une erreur d'estimation :

$$\mathcal{E}_{\mathsf{est}} := R(h_n) - R(h_{\mathcal{H}}^*).$$

Méthodes
Proximales
Inexactes:
Analyse NonAsymptotique

Pierre Machart

Compromis en Apprentissage

Principes Généraux en Apprentissage Statistique Décomposition de l'Erreur

Méthodes Proximales

non-différentiable

Contribution Principale

Simulations Numérique

Limitations intrinsèques

Estimateur du meilleur prédicteur dans ${\cal H}$:

$$h_n := \operatorname*{argmin}_{h \in \mathcal{H}} \widehat{R}(h) \left(+ \lambda \Omega(h) \right).$$

Troisième limitation : h_n n'a (en général) pas d'expression analytique.

Solution : faire une résolution numérique donnant \tilde{h}_n .

Coût : induit une erreur d'optimisation :

$$\mathcal{E}_{\mathrm{opt}} := R(\tilde{h}_n) - R(h_n).$$

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machari

Compromis en Apprentissage

Principes Généraux en Apprentissage Statistique Décomposition de l'Erreu

Méthodes Proximales

non-différentiable

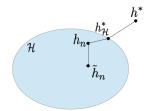
Contribution Principale

Simulations Numérique

Décomposition de l'erreur

Les algos d'apprentissage fournissent un prédicteur \tilde{h}_n avec une erreur :

$$\mathcal{E} := \mathcal{E}_{\mathsf{app}} + \mathcal{E}_{\mathsf{est}} + \mathcal{E}_{\mathsf{opt}}.$$



Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machart

Compromis en Apprentissage Principes Généraux en Apprentissage Statistiqu

Décomposition de l'Erreur Motivations

Méthodes Proximales Inexactes

Optimisation convexe non-différentiable
Contribution Principale

Conclusion

 ${\sf r\'ef: The\ Trade-Offs\ of\ Large-Scale\ Learning\ (Bottou\ et\ al.,\ 2007)}$

Décomposition de l'erreur

Les algos d'apprentissage fournissent un prédicteur \tilde{h}_n avec une erreur :

$$\mathcal{E} := \mathcal{E}_{\mathsf{app}} + \mathcal{E}_{\mathsf{est}} + \mathcal{E}_{\mathsf{opt}}.$$

Problème à petite échelle :

Statistiques

Vladimir Vapnik

Optimisation

Yurii Nesterov

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machart

Compromis en Apprentissage Principes Généraux en Apprentissage Statistique Décomposition de l'Erreur

Méthodes Proximales

Optimisation convexe non-différentiable Contribution Principale Simulations Numériques

onclusion

réf : The Trade-Offs of Large-Scale Learning (Bottou et al., 2007)

Décomposition de l'erreur

Les algos d'apprentissage fournissent un prédicteur \tilde{h}_n avec une erreur :

$$\mathcal{E} := \mathcal{E}_{\mathsf{app}} + \mathcal{E}_{\mathsf{est}} + \mathcal{E}_{\mathsf{opt}}.$$

Problèmes à grande échelle :

Léon Bottou

réf : The Trade-Offs of Large-Scale Learning (Bottou et al., 2007)

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machart

Compromis en

Apprentissage Principes Généraux en Apprentissage Statistique

Décomposition de l'Erreur Motivations

Méthodes Proximales Inexactes

Optimisation convexement différentiable

Contribution Principale
Simulations Numériques

Motivations

$$\mathcal{E} := \mathcal{E}_{\mathsf{app}} + \mathcal{E}_{\mathsf{est}} + \mathcal{E}_{\mathsf{opt}}.$$

- L'efficacité computationelle est essentielle.
 - ⇒ Comment la mesurer?
- Optimiser avec une précision finie.
 - ⇒ Les vitesses de convergence font-elles toujours sens?
- Le temps de calcul est la ressource limitante.
 - ⇒ Comment la prendre en compte?

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machart

Compromis en Apprentissage

Apprentissage Statistique Décomposition de l'Erre

Motivations

Méthodes Proximales Inexactes

non-différentiable

Contribution Principale

Simulations Numérique

Outline

Les Compromis en Apprentissag

Méthodes Proximales Inexactes

Optimisation convexe non-différentiable Contribution Principale Simulations Numériques

Conclusion

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machart

Compromis en Apprentissage

Apprentissage Statistique
Décomposition de l'Erreur
Motivations

Méthodes Proximales Inexactes

non-différentiable

Contribution Principale

Simulations Numériques

Optimisation convexe non-différentiable

Problème général :

Minimisation d'une fonction composite

$$\min_{x} f(x) := g(x) + h(x),$$

avec $g:\mathbb{R}^n \to \mathbb{R}$ convexe, différentiable, avec gradient continue L-Lipschitz et $h:\mathbb{R}^n \to \mathbb{R}$ semi-continue inférieurement propre convexe.

Cadre général :

Méthodes par Gradient-Proximal :

Algorithm 1 Algorithme Proximal Exact

Require: initialisation x_0

for
$$i=1$$
 à k do $x_{i-\frac{1}{2}}=x_{i-1}-\frac{1}{L}\nabla g(x_{i-1})$ étape de descente de gradient $x_i=\operatorname{prox}_{h/L}(x_{i-\frac{1}{2}})$

end for

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machart

Compromis en Apprentissage

Apprentissage Statistique
Décomposition de l'Erreu
Motivations

Méthodes Proximales Inexactes

non-différentiable
Contribution Principale

Méthodes proximales inexactes

Choix pour h:

- ightharpoonup régularisation L_1 , indicatrice sur un convexe...
 - ⇒ opérateur proximal calculable en forme fermée.
- régularisation TV, normes induisant de la parcimonie structurée...
 - \Rightarrow pas de solution analytique.

Algorithm 2 Algorithme Proximal Inexact

```
Require: initialisation x_0 for i=1 à k do x_{i-\frac{1}{2}}=x_{i-1}-\frac{1}{L}\nabla g(x_{i-1}) \text{ étape de descente de gradient} while précision trop faible do Augmenter la précision de \operatorname{prox}_{h/L}(x_{i-\frac{1}{2}}) end while x_i=\operatorname{prox}_{h/L}(x_{i-\frac{1}{2}}) end for
```

⇒ Comment choisir la précision?

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machar

Compromis en Apprentissage

Apprentissage Statistique Décomposition de l'Erreu

Méthodes Proximales Inexactes

non-différentiable

Contribution Principale

Aperçu de la contribution

Coût global de la procédure d'optimisation :

$$C_{\text{glob}}(k, \{I_i\}_{i=1}^k) = C_{\text{in}} \sum_{i=1}^k I_i + kC_{\text{out}}.$$

La stratégie la plus rapide peut être obtenue en résolvant le problème d'optimisation suivant :

$$\min_{k,\{l_i\}_{i=1}^k} C_{\text{in}} \sum_{i=1}^k l_i + kC_{\text{out}} \qquad \text{s.t. } f(x_k) - f(x^*) \leq \rho.$$

Proposition (Stratégie optimale, (Machart et al., 2012b)) La stratégie la plus rapide est donnée par :

$$\forall i, l_i^* = cste, \ avec \ k^* = \underset{k \in \mathbb{N}^*}{\operatorname{argmin}} \ fct(k).$$

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machart

Compromis en Apprentissage

Principes Généraux en Apprentissage Statistique Décomposition de l'Erreur Motivations

Méthodes Proximales Inexactes

Contribution Principale

Vitesses de convergence des méthodes proximales inexactes

Résolution numérique pour le calcul de chaque point proximal :

$$\frac{L}{2}||x_k - z||^2 + h(x_k) \le \epsilon_k + \min_{x} \left\{ \frac{L}{2}||x - z||^2 + h(x) \right\}.$$

Algorithm 3 Boucle intérieure

while précision $< \epsilon_k$ do

Augmenter la précision de $\operatorname{prox}_{h/L}(x_{i-\frac{1}{2}})$ end while

Vitesses de convergence données par [Schmidt et al., 2011] :

$$f(x_k) - f(x^*) \le \frac{L}{2k} \left(\|x_0 - x^*\| + 2\sum_{i=1}^k \sqrt{\frac{2\epsilon_i}{L}} + \sqrt{\sum_{i=1}^k \frac{2\epsilon_i}{L}} \right)^2.$$

 \Rightarrow Vitesses optimales si $\{\epsilon_k\}$ converge au moins en $O\left(\frac{1}{k^{(2+\delta)}}\right)$.

Mais cela impose un contrôle coûteux sur les approximations.

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machart

Apprentissage
Principes Généraux en
Apprentissage Statistique

Compromis en

Méthodes Proximales

non-differentiable
Contribution Principale

Précision et nombre d'itérations

Le point proximal est approximé par un algorithme itératif avec vitesse de convergence sous-linéaire :

$$\epsilon_i = \frac{A}{I_i^{\alpha}}.$$

Donne lieu à une borne paramétrée sur $f(x_k) - f(x^*)$:

$$f(x_k) - f(x^*) \le B(k, \{l_i\}_{i=1}^k),$$

avec

$$B(k,\{l_i\}_{i=1}^k) = \frac{L}{2k} \left(\|x_0 - x^*\| + 3 \sum_{i=1}^k \sqrt{\frac{2A}{Ll_i^{\alpha}}} \right)^2.$$

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machart

Compromis en Apprentissage

Apprentissage Statistique
Décomposition de l'Erreur
Motivations

Méthodes Proximales Inexactes

non-différentiable

Contribution Principale
Simulations Numérique

Stratégie optimale

Soit
$$C(k) = \frac{\sqrt{L}}{3\sqrt{2A}} \left(\sqrt{\frac{2k\rho}{L}} - \|x_0 - x^*\| \right).$$

Proposition (Machart et al., 2012b)

Si $\rho < 6\sqrt{2LA}\|x_0 - x^*\|$, la solution de notre problème d'optimisation :

$$\min_{k,\{l_i\}_{i=1}^k} C_{in} \sum_{i=1}^k I_i + kC_{out} \qquad t.q. \ B(k,\{l_i\}_{i=1}^k) \leq \rho,$$

est :

$$\forall i, I_i^* = \left(\frac{C(k^*)}{k^*}\right)^{-\frac{2}{\alpha}}, \text{ avec } k^* = \operatorname*{argmin}_{k \in \mathbb{N}^*} k C_{in} \left(\frac{C(k)}{k}\right)^{-\frac{2}{\alpha}} + k C_{out}.$$

Remarques:

- Nombre constant d'itérations intérieures (donc des ϵ_i).
- ▶ I_i^* tels que B vaut exactement ρ après k^* itérations extérieures.

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machar

Compromis en Apprentissage

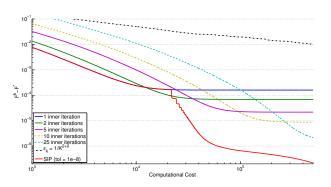
Apprentissage Statistique
Décomposition de l'Erreur
Motivations

Méthodes Proximales Inexactes

non-différentiable
Contribution Principale
Simulations Numériques

Simulations Numériques

Quelques simulations sur un problème de défloutage d'image.



Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machart

Compromis en Apprentissage

Principes Généraux en Apprentissage Statistique Décomposition de l'Erreu

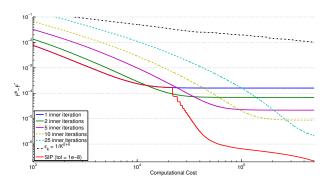
Méthodes Proximales Inexactes

Contribution Principale

Simulations Numériques

Simulations Numériques

Quelques simulations sur un problème de défloutage d'image.



SIP (Speedy Inexact Proximal method):

- stratégie adaptative
- ▶ d'excellentes performances en pratique

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machart

Compromis en Apprentissage

Apprentissage Statistique
Décomposition de l'Erreu
Motivations

Méthodes Proximales Inexactes Optimisation convexe non-différentiable

Simulations Numériques

Outline

Les Compromis en Apprentissage

Méthodes Proximales Inexactes

Conclusion

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machart

Compromis en Apprentissage

Principes Généraux en Apprentissage Statistique Décomposition de l'Erreur Motivations

Méthodes Proximales Inexactes

Optimisation convexe non-différentiable Contribution Principale Simulations Numériques

Conclusions et perspectives

Conclusions:

- ▶ Une nouvelle analyse en temps fini (≠ analyses asymptotiques).
- ▶ Des stratégies optimales pour atteindre une solution à précision ρ .
- ▶ Une nouvelle stratégie SIP qui fonctionne très bien en pratique.

Perspectives:

- Mieux comprendre SIP.
- Nombres d'itérations constants ⇒ régularisation ?
- ▶ Besoin de résultats optimistes en optimisation convexe.
- Peut-on appliquer la même méthodologie pour optimiser l'efficacité computationelle dans d'autres cadres?

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machart

Compromis en Apprentissage

Apprentissage Statistiqu
Décomposition de l'Erre
Motivations

Méthodes Proximales Inexactes

Optimisation convexe non-différentiable

Contribution Principale

Qui a un chargeur de téléphone Nokia?

Méthodes Proximales Inexactes : Analyse Non-Asymptotique

Pierre Machart

Compromis en Apprentissage

Principes Généraux en Apprentissage Statistique Décomposition de l'Erreur Motivations

Méthodes Proximales Inexactes

non-différentiable

Contribution Principale

Simulations Numériques