Consensus Algorithms for Optimization
in Multi-Agent Networks

Peyresq'13

Pascal Bianchi

June 28, 2013

1/61

Context

Consider a network composed of N agents

—
AN ™

» Agents process local data

» Agents cooperate to estimate some global parameter

2/61

Network architectures

@)
00O
O

» Centralized : A node (reducer, sink) aggregates the agents’ outputs

» Distributed : No central node - Agents cooperate with their neighbors

» Non cooperative : Agents are players who don’t share information

3/61

Network architectures

@)
00O
O

» Centralized : A node (reducer, sink) aggregates the agents’ outputs

» Distributed : No central node - Agents cooperate with their neighbors

» Non cooperative : Agents are players who don’t share information

3/61

Some examples

[Network | Agent Objectives
Mobile terminal
Ad-hoc e Power contrgl
network e Load bala]ncmg
e Self-localization
Autonomous Underwater Vehicle
. e Trajectory planning
Flotilla e Flocking
e Localization and mapping
Virtual machine
o ® Regression on distributed data sets
Cloud N S T .
X e Distributed clustering
S

4/61

Outline

Consensus and sharing
Consensus problem
Sharing problem

The agreement algorithm

First-order methods
Basic algorithms
Convergence analysis
Convex non-smooth functions: error bounds
Distributed stochastic approximation

Alternating Direction Method of Multipliers
Parallel implementation
Distributed implementation
Randomized ADMM

Outline

Consensus and sharing
Consensus problem

The Problem

5/61

The Problem

5/61

The Problem

7

No single agent knows the target function to optimize
The network does

5/61

Formally

inf f,(x)

xeX

» G =(V,E) is the graph modelling the network
> f, is the cost function of agent v

» X is a finite dimensional Euclidean space

Numerous works on that problem
Early work: Tsitsiklis '84 (all f, equal)

6/61

An example in wireless sensor networks

Y, = random observation of sensor v
x = unknown parameter to be estimated

Assume that
p(Y1,- -+, Ynix) = pr(Y, x) -+ pu(Yvi x)

The maximum likelihood estimate writes

X =arg mXaxZIn pv(Yyix)

[Ribeiro et al.’06, Moura et al."11]

7/61

An example in machine learning

8/61

An example in machine learning

.@0).0...:..?:)...

8/61

An example in machine learning

o,
° 0%y °
° °
O] o N .(E). °,
o 0 9 ° °
... ° ..
O]

Centralized problem: For a data set {Di, D5, ...}

min 37 10— (D)

i=1,2...

where g«(D) is the nearest point of D

8/61

An example in machine learning

o
o
°2 o
e o o® 0%, ©
° L °®
.(?.0...: @..'
°° e o

Distributed problem: For N distributed data sets {D1,,, D2,y,...} (v € V)
oS (X 10~ a0.0)
vev \ i=1.2...
where gx(D) is the nearest point of D

[Patra'll, Forero'l1]

8/61

Outline

Consensus and sharing

Sharing problem

The sharing problem

Let x(v) be the resource of an agent v € V
» Agents share a resource b: Zx(v) <b
veV
» Agent v gets reward —f,(x(v)) for using resource x(v)
> Maximize the global reward
inf > £ (x(v))

x> x(v)<b VeV

9/61

Equivalence between consensus and sharing

Claim:
The dual of a sharing problem is a consensus problem

10/61

Outline

Consensus and sharing
Consensus problem
Sharing problem

The agreement algorithm

First-order methods
Basic algorithms
Convergence analysis
Convex non-smooth functions: error bounds
Distributed stochastic approximation

Alternating Direction Method of Multipliers
Parallel implementation
Distributed implementation
Randomized ADMM

Network model

A directed graph G = (V, E) is formed by
> a finite set V of vertices
» aset E C V x V of directed edges

)

A strongly connected graph with one self-loop

An iterative algorithm is said distributed on the graph if, at any iteration:

Agent v can receive information from w only if (v,w) € E

11/61

The average consensus problem

Average consensus problem

Given an initial value xo(v) € R of each agent v, compute distributively

> Very special case of optimization problem! Just set f,(x) = (x — xo(v))?

» Useful to adress more general optimization problems

12/61

The agreement algorithm (De Groot'74)

Algorithm:
Each agent maintains an estimate x,(v). The update is:

Y eV, xpi(v)= Z A(v, w)xa(w)

weVv

Assumptions:
» A(v,w) > 0 are non-negative weights
> A(v,w) > 0if and only if (v,w) € E (we say that A is adapted to G)
» > A(v,w)=1forany v eV

13/61

The agreement algorithm: Vector form

Agreement algorithm

Xnp = AXp—1

= A"Xo

where A = [A(u, v)](u,vycv2 is non-negative, row-stochastic and adapted to G

Row stochasticity means:
Al=1

1

where 1 £

14/61

Discussion

What do we hope for?

Vxo, limy xa = %01 (?)

> xn(w) cannot converge to X if no path from v to w ! (e.g. A= Iy)
G must be connected
> A should preserve the average i.e. X1 = Xo
A must be doubly stochastic: 1A =1~

» Even then, convergence is not ensured. Set e.g.

-(2)

15/61

A consequence of the Perron-Frobenius theorem

Definition: Matrix A is primitive if A™ > 0 for some m > 1

Property: If G is connected and has a self-loop, then A is primitive

Let A > 0. The following statements are equivalent:

» For any xp, limp—e0 A"X0 = Xo1

> A is primitive and doubly stochastic

n.b. Many variants on that problem [Kempe et al.’03, Boyd et al.’06]

16/61

Outline

First-order methods
Basic algorithms
Convergence analysis
Convex non-smooth functions: error bounds
Distributed stochastic approximation

Outline

First-order methods
Basic algorithms

The setting

Consensus problem in optimization

mffx)—Zf

veV

Scenario

Agent v

seX First-order Vful@)

black box

Centralized gradient algorithm
Xnp1 = Xn — YV (Xn)
Under some assumptions, achieves linear convergence rate in O(8"), (8 < 1)

Problem: Vf is nowhere available

17/61

Distributed gradient algorithms: The Two Main Options

> Incremental
[Widrow-Hoff’'60], [Nedic-Bertsekas'01]

> Agreement
[Tsitsiklis'84], [Kushner'87], [Sayed et al.’05], [Ram et al.’10], ...

18/61

Incremental

19/61

Incremental

19/61

Incremental

19/61

Incremental

19/61

Incremental

19/61

Incremental

19/61

Incremental

19/61

Incremental

19/61

Incremental

19/61

Agreement

Idea: couple gradient algorithm + agreement algorithm

20/61

Agreement

21/61

Agreement

/
®

N

X

21/61

Agreement

/
[

N

X

21/61

Agreement

/
°

N

X

21/61

Agreement, Formal

> [Local step] Each agent v generates a temporary update

%nt1(v) = Xn(v) — V£ (xa(V))

22/61

Agreement, Formal

> [Local step] Each agent v generates a temporary update

Sn1(v) = Xn(v) = 1 VE (xa(v))
> [Agreement step] Connected agents merge their temporary estimates
N
xne1(V) = 3 A(v, w) Soia(w)

w=1

22/61

Benefits & Drawbacks

Incremental » Conceptually simple
Needs Hamiltonian cycle (or at least a relaxed version)
Concentrated information: less robust

vy

Agreement > No need for a Hamiltonian cycle
Simple to implement

v

23/61

Benefits & Drawbacks

Incremental » Conceptually simple
Needs Hamiltonian cycle (or at least a relaxed version)
Concentrated information: less robust

vy

Agreement > No need for a Hamiltonian cycle
Simple to implement

v

23/61

Outline

First-order methods

Convergence analysis

Distributed algorithm: Vector notation

Let X = R for simplicity. Recall notation

F() 2 3 Ax(v)

vev

> [Local step]
)N<n+1 = Xn — 'YnVF(Xn)

> [Agreement step]
Xnt1 = AXni1

Xp+1 = A (Xn - ’YnVF(X")) J

24/61

Assumption

Except in special cases, convergence to the sought minimizers fails unless:

> A is doubly stochastic

> A is primitive

25/61

Agreement

Assume that C := limsup, ||VF(x,)|| is finite. Define

o

="

Ji=I—-J

Compute the disagreement vector:

Jixnin = JLA(Xe — 1V F(xn))

26/61

Agreement

Assume that C := limsup, ||VF(x,)|| is finite. Define

o

="

Ji=I—-J

Compute the disagreement vector:

JJ_X,,+1 = JJ_AJL (X,, — ’}/,,VF(Xn))

26/61

Agreement

Assume that C := limsup, ||VF(x,)|| is finite. Define

o

="

Ji=I—-J

Compute the disagreement vector:

JJ_X,,+1 = JJ_AJJ_ (JLX,, —’y,,VF(X,,))

26/61

Agreement

Assume that C := limsup, || VF(x,)|| is finite. Define

o

= I —
J N Ji=I—-J
Compute the disagreement vector:
Jixppy1 = JLAJL (Jixe — 1V F(xa))

Denote by o the spectral norm of J; AJ,. We have o < 1.

[Jixaiall < o (]l + 7l VF (xa)])

Disagreement vector

Assume ¥p/Yn+1 — 1.
| J1xn]| - oC

lim sup <
- Yn l1—0o

26/61

Remarks

In order that ||J. x,|| — O, vanishing step size is needed
Yo — 0

except if e.g. all f,'s have a common minimizer (C = 0)

. The disagreement tends to zero at rate 7,

1]l = O(n)

. Factor =% quantifies the network effect

1-0o

[Duchi et al.’11]

27/61

Convergence of the network average

It remains to study the network-average

As 1"A=1",

Xny1 = ?n—%l*VF(x,,)

28/61

Convergence of the network average

It remains to study the network-average

% 1%x,
"N
As 1"A =17,
Xos1 = Xn— L1°VF(xn)
N

~ Xp— llgl*VF(?nl)

28/61

Convergence of the network average

It remains to study the network-average

% 1%x,
"N
As 1"A =17,
Ros1 = Xn— L1°VF(xn)
N

X — %Vf(?n)

The network average nearly behaves as a gradient descent on f.

28/61

Convergence result

Assumptions

Z'}’nz"roo, Z’Y,?<OO
n n

Moreover, assume that
» V', is lispchitz continuous for all v
» f 23 f is coercive and {Vf = 0} is locally finite

Convergence

There exists x* € {Vf = 0} such that

lim X, = x*
n— oo

29/61

Asymptotic rate of convergence

Assumptions
> V2f(x*) =0
> Ypx1/n® for0<a<1
1

Then, optimal convergence rate is achieved for v, o - and

Convergence rate (smooth case)

X, =x14+0 (_Iogn)

n

Quite far from the linear convergence rate O(3") of the centralized case

30/61

Outline

First-order methods

Convex non-smooth functions: error bounds

Algorithm

Assumptions
» All f, convex non-negative
» f, are L-lipschitz

» f =73, f achieves its minimum at x*
Distributed subgradient algorithm
Xn+1 = A(Xn - ’Yngn)

where for any v € V
gn(v) € 9f,(xa(v))

31/61

Convergence result (1/2)

Define the time-averaged estimate for all v € V

_ Zkgn Yiexic(v)

Xn(v
() Zkgn Tk

Error bound (Nedic, Ozdaglar'10)

3[R0 —x*|I* + (1 + NET)L2 35, v
Ekgn Tk

F(n(v)) — F(x7) <

where NET grasps the excess-bound due to the distributed setting

NET = 1ig<\/ﬁ+%>

32/61

Convergence result (2/2)

> The bound is exact (i.e. non-asymptotic)

> Set’y,,oc\%

The bound is O (I(\);n)

> log n factor can be saved following [Nesterov'05]
[Duchi et al.’11] couples Nesterov algorithm + agreement algorithm

Optimal rate of the centralized case

33/61

Outline

First-order methods

Distributed stochastic approximation

More problems

1. Asynchronism
Some agents are active at time n, others aren’t

2. Noise
Gradients may be observed up to a random noise (online algorithms)

3. Constraints
Minimize Z f,(x) subject to x € G
veVv

where G is a a closed convex set

34/61

An asynchronous agreement protocol (Aysal et al.’09)

Agent 1

Agent 2 Agent 3

Agent 4

35/61

An asynchronous agreement protocol (Aysal et al.’09)

Agent 1

0 [Local step]
;(n+1 = Xnp — 'VnVF(Xn)
Agent 2 e ‘ Agent 3

Agent 4

35/61

An asynchronous agreement protocol (Aysal et al.’09)

Agent 1

0 [Local step]
;(n+1 = Xnp — 'YnVF(Xn)

Agent 2 e ° Agent 3 [Agreement step]

Agent 4

35/61

An asynchronous agreement protocol (Aysal et al.’09)

Agent 1

0 [Local step]

Xnt1 = Xn — YnVF (xn)

Agent 2 0 ° Agent 3 [Agreement step]
H Xp1 = Any1Xny1

Agent 4

05 05

A= | g5 0.5

» row-stochastic but not column-stochastic 1*A, # 1*

> hopefully, column stochasticity is satisfied in average 1"E(A,) = 1*

35/61

Distributed Robbins-Monro algorithm

Our problem

Algorithm
Xn+1 = An+1 (Xn - ’YnVF(Xn) + ’Yn£n+1)

where £,41 is @ martingale increment noise

E (€n+1 |An7£n7 An—hé"—h e) =0

36/61

Distributed Robbins-Monro algorithm

Our problem
inf f,(x) subject to x € G
xeX vev
Algorithm
Xp+1 = A,—,+1 . prO_chgN [(Xn - ’ynVF(Xn) + ’Yn£n+1)]
where £,4+1 is a martingale increment noise

E (€n+1 |Anafna An1,6n-1,- -) =0

36/61

Consistency
Assume that E(A,) is doubly stochastic and primitive

Theorem (Bianchi, Jakubowicz' 12)

Under suitable assumptions, x, converges a.s. to x*1 where

—Vf(x") € No(x*)

One does not need A, to be column-stochastic: broadcast protocol works!

37/61

Convergence rates

Assume that x* lies in the interior of G and V?f(x*) = 0

Theorem (Morral et al.’12)

Under suitable assumptions
> Jixp = OP(’Yn)
» ForallveV, /7 H(%n— x*) £ N (0, Zop7 + Tner)

38/61

Conclusions

» Convergence rate /7, is identical to the centralized case
Optimal rate 1/y/n achieved when v, = 1/n

» However, an excess-variance ¥ yg7 occurs

> Y yer = 0 if A, is doubly-stochastic: same performance as centralized!

Y neT quantifies the price to pay for using uncoordinated weights)

39/61

Outline

Alternating Direction Method of Multipliers
Parallel implementation
Distributed implementation
Randomized ADMM

Outline

Alternating Direction Method of Multipliers
Parallel implementation

Consensus problem reformulated

All functions f, : X — R are assumed convex. Consider the problem:

2)
veV

Set F(x) =3, f(x(v)). The problem is equivalent to
inf F(x) + tep)(x)

xeXN

where tsp1)(x) +o0o otherwise

_ {o if x(1) = -+ = x(N)

> F is separable in x(1),...,x(N)

> 1sp(1) Couples the variables but is simple

20/61

Alternating Direction Method of Multipliers (ADMM)

Define for any proper closed convex function h
. 1
prox,(x) = argmin h(y) + 5 |ly — x|

Algorithm: Set p > 0.

An
Xn+1 - PVOXLF(Zn - i)
Z p
Zny1 = Proxi (Xn+1 + ﬁ)
b bsp(1) p
Al = An+F p(Xn+1 — Zn+1)

> A, converges to a solution to the dual problem miny F* (=) + ¢5,1)(A)

> Xx, converges to a solution to the primal problem

41/61

Alternating Direction Method of Multipliers (ADMM)

Define for any proper closed convex function h
. 1
prox,(x) = argmin h(y) + 5 |ly — x|

Algorithm: Set p > 0.

An
Xnt1 = proxig(zy——) — separable
’ P
Zppr = proxy, (Xes1+ ﬁ) — projection
o tsp(1) p
Al = A+ p(Xn+1 - Zn+1)

> A, converges to a solution to the dual problem miny F* (=) + ¢5,1)(A)

> Xx, converges to a solution to the primal problem

41/61

ADMM illustrated

Set ﬂn -)\n/p
Algorithm (see e.g. [Boyd'11])

Forall v, fBn(v) = PBn-1(v)+ xa(v) — X

xnp1(v) = P"OX%fv (Xn = Ba(v))

1. Transmit current estimates

(V)

42/61

ADMM illustrated

Set ﬂn - An/p
Algorithm (see e.g. [Boyd'11])

Forall v, fBn(v) = PBn-1(v)+ xa(v) — X

xnp1(v) = P"OX%fv (Xn = Ba(v))

T 2. Compute average T,

42/61

ADMM illustrated

Set ﬂn -)\n/p
Algorithm (see e.g. [Boyd'11])

Forall v, fBn(v) = PBn-1(v)+ xa(v) — X

xnp1(v) = P"OX%fv (Xn = Ba(v))

3. Transmit z,, to all agents

42/61

ADMM illustrated

Set ﬁn - An/p
Algorithm (see e.g. [Boyd'11])

Forall v, fBn(v) = PBn-1(v)+ xa(v) — X

$aia(v) = proxag (%a — Ba(v))

4. Compute ,,(v), xp41(v) for all v

42/61

Remarks

> The algorithm is parallel but not distributed on the graph

» The algorithm is synchronous

43/61

Outline

Alternating Direction Method of Multipliers

Distributed implementation

Context

Consider a non-directed connected graph G = (V, €)

o
03030
o

inf F(x) + tepa)(x)

xeXN

£ C 2" is a set of nondirected edges

How to rewrite the penalty tg(1)(x) to include the graph structure?

44/61

Subgraph consensus (Ribeiro et al.’06)
Let Ai, Az, -+, AL be subsets of V

A1 ={1,3}, A> = {2,3}, As = {3,4,5}

45/61

Subgraph consensus (Ribeiro et al.’06)
Let Ai, Az, -+, AL be subsets of V

oy

» .

(1) eww

A= (3], A= (2.3}, A= (3.4.5)

45/61

Subgraph consensus (Ribeiro et al.’06)
Let A;, Ao, -+, AL be subsets of V

()) eww
° (35) eww

A; ={1,3}, A, = {2,3}, As = {3,4,5}

45/61

Subgraph consensus (Ribeiro et al.’06)
Let A, Az, - -+ , AL be subsets of V

(35) =0
(35) eww

x(3)
(x(4)) € sp G)

x(5)

A= (13}, A= (2.3}, As = (3.4.5)

45/61

Subgraph consensus (Ribeiro et al.’06)
Let A, Az, - -+ , AL be subsets of V

(35) =0
(35) eww

x(3)
(x(4)) € sp G)

x(5)

AL ={1,3}, A, ={2,3}, As = {3,4,5}
Penalty function

x(3)

ﬁm(ﬁ3)+%m(ﬁ3)+%®<§g)

45/61

Subgraph consensus (Ribeiro et al.’06)
Let A, Az, - -+ , AL be subsets of V

A= (L3}, A = (2.3}, A = (3.4.5)

Penalty function
L < x(1)) +¢ (x(2))+L igi; = Lgp(1)(X)
0 Lo) o Co) rup 2]~

consensus within subgraphs < global consensus

45/61

Example (Cont.)

The consensus problem is

x(1)
x(3)

where Mx = | x(3)

and where G is the indicator function of the subspace of vectors of the form

inf F(x)+ G(Mx)

xeXxN

that is:

D @ e e

M =

O O o

o = O O

= O = O

o O O o

o O oo

46/61

General case

Denote by Ai, Az, --- AL a collection of subsets of V. Define
My
M = :
M,

where M, is a selection matrix of size |A¢| x N
Let G denote the indicator function of the vectors z of the form

0111|A1|

arlja|
Consensus problem:

inf F(x)+ G(Mx)
xeXN

47/61

ADMM

ADMM iterations

. 14 nyp2
n = F - M — n— —
Xn+1 arg min, (x) + 51 Mx — (2))l
An
Zny1 = proxig(Mxps1 + —)
’ P
A'H—l = /\n + P(MXn+1 - zn+1)

48/61

ADMM

ADMM iterations

An
Xn41 = arg min F(x) + BHMX —(zo— 22))* — separable
xexN 2 P
An —
Znp1 = proxig(Mxpsr + ?) — projection
P
A'H—l = /\n + P(MXn+1 - zn+1)

48/61

ADMM

ADMM iterations

A

Xn+1 arg min F(x)+B||MX_(zn_ J)||2

xeXxN 2
An

Zny1 = proxg(Mxp + ?)
P

)\n+1 =)\,—, + p(MX,—,+1 — Z,,+1)

Notations

» Forall ¢, x\¥) = \Tlel > vea, Xn(v) is the (th subgraph-average

» Forall v, o, C{1,---

, L} is the set of indices £ such that v € A,
> Xa(v) =

ﬁ Ze@v x) is the average of subgraphs-averages in o,

Distributed ADMM (Ribeiro et al.’06)

Forall v, fBn(v) = Bn-1(v)+ xa(v) — xn(v)
xn41(v) = prox_s_ (Xn(V) Ba(v))

48/61

Distributed ADMM illustrated

Distributed ADMM (Ribeiro et al.’06)

Forall v, Bn(v) = Ba1(v) + xa(v) — xn(v)
Xn1(v) = Prox_s (Xn(V) Bn(v))

Compute 7V

OO

1. For each subgraph, compute average x)

49/61

Distributed ADMM illustrated

Distributed ADMM (Ribeiro et al.’06)

Forall v, fBn(v) = Bn-1(v)+ xa(v) — xn(v)
xnp1(v) = prox_i_ (xn(v) = Bn(v))

Compute gl

1. For each subgraph, compute average X()

49/61

Distributed ADMM illustrated

Distributed ADMM (Ribeiro et al.’06)

Forall v, Bn(v) = Ba—1(v)+ xa(v) — xn(v)
xi1(v) = prox_g_ (xn(v) = Ba(v))

Compute 7

1. For each subgraph, compute average x()

49/61

Distributed ADMM illustrated

Distributed ADMM (Ribeiro et al.’

Forall v, fBn(v) = Bn-1(v)+ xa(v) — xn(v)
Xop1(v) = Prox_i_ (xn(V) Ba(v))

2. For each vertex v, compute x,(v) = Average(x v EeA)

49/61

Distributed ADMM illustrated

Distributed ADMM (Ribeiro et al.’

Forall v, fBn(v) = Bn-1(v)+ xa(v) — xn(v)
Xop1(v) = Prox_i_ (x,,(v) Ba(v))

3. For each vertex v, compute SB,(v) and xnt1(v)

49/61

The burden of synchronism

> All agents must complete their prox before combining

» The network waits for the slowest agents

Our objective for now on: allow for asynchronism

50/61

Outline

Alternating Direction Method of Multipliers

Randomized ADMM

Monotone operators

A monotone operator is a set-valued application A : X — 2% such that

V(X,y)7 V(U7V)GA(X)XA(}/)7 <U_V7X_Y>Zo

» |t is maximal if it is not contained in an other monotone operator
> A point x is a zero of A if 0 € A(x)
> We identify A with its graph {(x,u) : x € X,u € A(x)}

51/61

Monotone operators

A monotone operator is a set-valued application A : X — 2% such that

V(X,y)7 V(U,V)EA(X)XA()/), <U_V7X_}/>Zo

» |t is maximal if it is not contained in an other monotone operator
> A point x is a zero of A if 0 € A(x)
> We identify A with its graph {(x,u) : x € X,u € A(x)}

The resolvent of A is
Ja=(U+A)""

» dom(Ja) = X whenever A is maximal
> Ja is single-valued (it is a function)

> a fixed point of Js is a zero of A

51/61

Firm non expansiveness

Vx,y € dom(Ja), {(Ja(x) = Ja(y), x =) = [[a(x) = Ja(y)II®

52/61

proximal point algorithm

Xn+1 = JA(Xn)

Assume that there exists x* € Zer(A)

Ln+1

53/61

proximal point algorithm

Xn+1 = JA(Xn)

Assume that there exists x* € Zer(A)

T2 Tnt1

53/61

proximal point algorithm

Xn4+1 = JA(Xn)

Assume that there exists x* € Zer(A)

Tn+2

|xn — x*|| decreases with n

Convergence of the proximal point algorithm

If A is maximal monotone and Zer(A) # (), x, converges to a point in Zer(A)

53/61

Douglas-Rachford (DR) operator

Problem: Find a zero of the sum of two monotone operators A+ B
Douglas Rachford operator:
S={(v+pb,u—v): (ub)eB,(v,a) € A u+pa=v—pb}

Property: If (¥ € Zer(S), then J,5(¢*) € Zer(A+ B)

Douglas-Rachford algorithm

Let A, B maximal monotone such that Zer(A + B) # . Set

Cn+1 = JS(Cn)
Then A\, = J,8(¢n) converges to a point in Zer(A + B)

54/61

ADMM as a Douglas-Rachford algorithm
Consider the problem
inf F(x)+ G(Mkx)
xeXN
Under mild qualification conditions, the infimum coincides with
m/\in F*(=M*X) + G*()\)
Solving the above optimization problem = finding a zero of

O[F* o (~M*) + G*]

55/61

ADMM as a Douglas-Rachford algorithm
Consider the problem
inf F(x)+ G(Mkx)
xeXN
Under mild qualification conditions, the infimum coincides with
m/\in F*(=M*X) + G*()\)
Solving the above optimization problem = finding a zero of

— MOF* o (~M*) + 8G*

55/61

ADMM as a Douglas-Rachford algorithm

Consider the problem
inf F(x)+ G(Mkx)
xexN

Under mild qualification conditions, the infimum coincides with
m/\in F*(=M*X) + G*()\)
Solving the above optimization problem = finding a zero of

— MOF* o (~M*) + 8G*

The Douglas-Rachford algorithm boils down to ADMM when

A = —MIF* o(—M")
B = 0G*

55/61

Block-components

Notation: denote by ¢{9) the £th block-component of ¢ € XAl +Adl
<:(1)
¢= where C(Z) = (C(E)(V))veAz
<:(L)
Let S be the DR operator of two maximal monotone operators A and B

Douglas-Rachford algorithm

JP)

§n+1 = :
I

This means that ¢\, = J{(¢,) forall £=1,...,1L

56/61

Asynchronous Douglas-Rachford algorithm

Asynchronous Douglas-Rachford algorithm

At time n, select a subgraph £ € {1,..., L} at random. Set

Gh = KNG
¢ = ¢ forall k £¢

We should
» prove that this ‘degraded’ algorithm still converges to Zer(S)

» make the implementation explicit

57/61

Convergence

Denote by (, the sequence generated by the asynchronous DR algorithm

Assumptions
» The indices of the active subgraph at time n forms an iid sequence
> Zer(A+B) #0

Theorem (lutzeler et al.’13, submitted)

Sequence (, converges almost surely to a random variable supported by Zer(S)

Corollary
Sequence A, = J,5((,) converges a.s. to a r.v. supported by Zer(A + B)

58/61

Asynchronous algorithm explicited (1/3)

The consensus problem can be formulated as

inf F(x)+ G(Mkx)
xeXxN

Example:
1 0 0 0 0] «
0 01 0O «
01 0 0 O 53
M=|0 0 1 0 O G = indicator of vectors of the form 8

Let us explicit the asynchronous DR algorithm for the monotone operators

A=—-MJF*o(—M*) and B=09G"*

50/61

Asynchronous ADMM explicited (2/3)

General case: Denote by A;, Ao, --- A. a collection of subgraphs

Each node v maintains the variables

xa(v), MO(v), 2 Ve such that v € A,

60/61

Asynchronous ADMM explicited (3/3)

61/61

Asynchronous ADMM explicited (3/3)

At time n, a component Ay is activated

61/61

Asynchronous ADMM explicited (3/3)

At time n, a component Ay is activated

All agents v € Ay compute

Y 1 S0 _ A ()
:] X V) = prox_ s, — zy, ' — ——
L w2 (-2

61/61

Asynchronous ADMM explicited (3/3)

At time n, a component Ay is activated

All agents v € Ay compute

1 A (v)
— _ s(k) _ An

y . X V) = prox_+, zy) —
& va(v) = p (@(;

All agents in A, communicate to find the average

(¢ 1
Z,(7+)1 = 1A Z Xnt1(w)

wEAp

61/61

Asynchronous ADMM explicited (3/3)

At time n, a component Ay is activated

All agents v € Ay compute

1 —(k))\(nk)(v)
X V) = prox s — z, — —
a SR (2) CLRE

All agents in A, communicate to find the average

(¢ 1
2= A > xaia(w)

wEAp

All agents v € A, update
A (v) = XP0() + plxaga(v) — 280)

Other variables are maintained to former values

61/61

	Consensus and sharing
	Consensus problem
	Sharing problem

	The agreement algorithm
	First-order methods
	Basic algorithms
	Convergence analysis
	Convex non-smooth functions: error bounds
	Distributed stochastic approximation

	Alternating Direction Method of Multipliers
	Parallel implementation
	Distributed implementation
	Randomized ADMM

