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Context

Consider a network composed of N agents

I Agents process local data

I Agents cooperate to estimate some global parameter
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Network architectures

I Centralized : A node (reducer, sink) aggregates the agents’ outputs

I Distributed : No central node - Agents cooperate with their neighbors

I Non cooperative : Agents are players who don’t share information
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Some examples

Network Agent Objectives

Ad-hoc
network

Mobile terminal

• Power control
• Load balancing
• Self-localization

Flotilla

Autonomous Underwater Vehicle
• Trajectory planning
• Flocking
• Localization and mapping

Cloud

Virtual machine

• Regression on distributed data sets
• Distributed clustering
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Formally

inf
x∈X

∑
v∈V

fv (x)

I G = (V ,E) is the graph modelling the network

I fv is the cost function of agent v

I X is a finite dimensional Euclidean space

Numerous works on that problem
Early work: Tsitsiklis ’84 (all fv equal)
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An example in wireless sensor networks

Yv = random observation of sensor v
x = unknown parameter to be estimated

Assume that
p(Y1, · · · ,YN ; x) = p1(Y1; x) · · · pN(YN ; x)

The maximum likelihood estimate writes

x̂ = arg max
x

∑
v

ln pv (Yv ; x)

[Ribeiro et al.’06, Moura et al.’11]
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An example in machine learning

problem: For {D1,D2, . . . }

min
x

∑
i=1,2...

‖Di − qx(Di )‖2

where qx(D) is the nearest point of D

[Patra’11, Forero’11]

8/61



An example in machine learning

problem: For {D1,D2, . . . }

min
x

∑
i=1,2...

‖Di − qx(Di )‖2

where qx(D) is the nearest point of D

[Patra’11, Forero’11]

8/61



An example in machine learning

Centralized problem: For a data set {D1,D2, . . . }

min
x

∑
i=1,2...

‖Di − qx(Di )‖2

where qx(D) is the nearest point of D

[Patra’11, Forero’11]
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An example in machine learning

Distributed problem: For N distributed data sets {D1,v ,D2,v , . . . } (v ∈ V )

min
x

∑
v∈V

( ∑
i=1,2...

‖Di,v − qx(Di,v )‖2

)

where qx(D) is the nearest point of D

[Patra’11, Forero’11]
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The sharing problem

Let x(v) be the resource of an agent v ∈ V

I Agents share a resource b:
∑
v∈V

x(v) ≤ b

I Agent v gets reward −fv (x(v)) for using resource x(v)

I Maximize the global reward

inf
x :
∑

x(v)≤b

∑
v∈V

fv (x(v))
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Equivalence between consensus and sharing

Claim:
The dual of a sharing problem is a consensus problem
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Network model

A directed graph G = (V ,E) is formed by

I a finite set V of vertices

I a set E ⊂ V × V of directed edges

.

1 2 3

.

A strongly connected graph with one self-loop

An iterative algorithm is said distributed on the graph if, at any iteration:

Agent v can receive information from w only if (v ,w) ∈ E
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The average consensus problem

Average consensus problem

Given an initial value x0(v) ∈ R of each agent v , compute distributively

x0 ,
1

N

∑
v∈V

x0(v)

I Very special case of optimization problem! Just set fv (x) = (x − x0(v))2

I Useful to adress more general optimization problems
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The agreement algorithm (De Groot’74)

Algorithm:
Each agent maintains an estimate xn(v). The update is:

∀v ∈ V , xn+1(v) =
∑
w∈V

A(v ,w)xn(w)

Assumptions:

I A(v ,w) ≥ 0 are non-negative weights

I A(v ,w) > 0 if and only if (v ,w) ∈ E (we say that A is adapted to G)

I
∑

w A(v ,w) = 1 for any v ∈ V
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The agreement algorithm: Vector form

Agreement algorithm

xn = Axn−1

= Anx0

where A = [A(u, v)](u,v)∈V 2 is non-negative, row-stochastic and adapted to G

Row stochasticity means:
A1 = 1

where 1 ,

 1
...
1


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Discussion

What do we hope for?

∀x0, limn xn = x01 (?)

I xn(w) cannot converge to x0 if no path from v to w ! (e.g. A = IN)

G must be connected

I A should preserve the average i.e. x1 = x0

A must be doubly stochastic: 1∗A = 1∗

I Even then, convergence is not ensured. Set e.g.

A =

(
0 1
1 0

)
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A consequence of the Perron-Frobenius theorem

Definition: Matrix A is primitive if Am > 0 for some m ≥ 1

Property: If G is connected and has a self-loop, then A is primitive

Theorem

Let A ≥ 0. The following statements are equivalent:

I For any x0, limn→∞ Anx0 = x01

I A is primitive and doubly stochastic

n.b. Many variants on that problem [Kempe et al.’03, Boyd et al.’06]
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The setting

Consensus problem in optimization

inf
x∈X

f (x) ,
∑
v∈V

fv (x)

Scenario
.

First-order

black box

x ∈ X

Agent v

∇fv(x)

.

Centralized gradient algorithm

xn+1 = xn − γ∇f (xn)

Under some assumptions, achieves linear convergence rate in O(βn), (β < 1)

Problem: ∇f is nowhere available
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Distributed gradient algorithms: The Two Main Options

I Incremental
[Widrow-Hoff’60], [Nedic-Bertsekas’01]

I Agreement
[Tsitsiklis’84], [Kushner’87], [Sayed et al.’05], [Ram et al.’10], . . .
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Agreement

Idea: couple gradient algorithm + agreement algorithm
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Agreement, Formal

I [Local step] Each agent v generates a temporary update

x̃n+1(v) = xn(v)− γn∇fv (xn(v))

I [Agreement step] Connected agents merge their temporary estimates

xn+1(v) =
N∑

w=1

A(v ,w) x̃n+1(w)
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Benefits & Drawbacks

Incremental I Conceptually simple
I Needs Hamiltonian cycle (or at least a relaxed version)
I Concentrated information: less robust

Agreement I No need for a Hamiltonian cycle
I Simple to implement
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Distributed algorithm: Vector notation

Let X = R for simplicity. Recall notation

F (x) ,
∑
v∈V

fv (x(v))

I [Local step]

x̃n+1 = xn − γn∇F (xn)

I [Agreement step]

xn+1 = A x̃n+1

xn+1 = A (xn − γn∇F (xn))
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Assumption

Except in special cases, convergence to the sought minimizers fails unless:

Assumption

I A is doubly stochastic

I A is primitive

25/61



Agreement

Assume that C := lim supn ‖∇F (xn)‖ is finite. Define

J =
11∗

N
J⊥ = IN − J

Compute the disagreement vector:

J⊥xn+1 = J⊥A (xn − γn∇F (xn))

Denote by σ the spectral norm of J⊥AJ⊥. We have σ < 1.

‖J⊥xn+1‖ ≤ σ (‖J⊥xn‖+ γn‖∇F (xn)‖)

Disagreement vector

Assume γn/γn+1 → 1.

lim sup
n

‖J⊥xn‖
γn

≤ σC

1− σ
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Remarks

1. In order that ‖J⊥xn‖ → 0, vanishing step size is needed

γn → 0

except if e.g. all fv ’s have a common minimizer (C = 0)

2. The disagreement tends to zero at rate γn

‖J⊥xn‖ = O(γn)

3. Factor σ
1−σ quantifies the network effect [Duchi et al.’11]
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Convergence of the network average

It remains to study the network-average

xn =
1∗xn
N

As 1∗A = 1∗,

xn+1 = xn −
γn
N

1∗∇F (xn)

' xn −
γn
N

The network average nearly behaves as a gradient descent on f .
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Convergence result

Assumptions ∑
n

γn = +∞,
∑
n

γ3
n <∞

Moreover, assume that

I ∇fv is lispchitz continuous for all v

I f ,
∑

v fv is coercive and {∇f = 0} is locally finite

Convergence

There exists x? ∈ {∇f = 0} such that

lim
n→∞

xn = x?
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Asymptotic rate of convergence

Assumptions

I ∇2f (x?) � 0

I γn ∝ 1/nα for 0 < α ≤ 1

Then, optimal convergence rate is achieved for γn ∝ 1
n

and

Convergence rate (smooth case)

xn = x?1 +O
(

log n

n

)

Quite far from the linear convergence rate O(βn) of the centralized case
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Algorithm

Assumptions

I All fv convex non-negative

I fv are L-lipschitz

I f =
∑

v fv achieves its minimum at x?

Distributed subgradient algorithm

xn+1 = A(xn − γngn)

where for any v ∈ V
gn(v) ∈ ∂fv (xn(v))
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Convergence result (1/2)

Define the time-averaged estimate for all v ∈ V

x̂n(v) =

∑
k≤n γkxk(v)∑

k≤n γk

Error bound (Nedic, Ozdaglar’10)

f (x̂n(v))− f (x?) ≤
1
2
‖x0 − x?‖2 + (1 + NET )L2∑

k≤n γ
2
k∑

k≤n γk

where NET grasps the excess-bound due to the distributed setting

NET =
σ

1− σ

(√
N +

1√
N

)
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Convergence result (2/2)

I The bound is exact (i.e. non-asymptotic)

I Set γn ∝ 1√
n

The bound is O
(

log n√
n

)

I log n factor can be saved following [Nesterov’05]
[Duchi et al.’11] couples Nesterov algorithm + agreement algorithm

Optimal rate of the centralized case
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More problems

1. Asynchronism
Some agents are active at time n, others aren’t

2. Noise
Gradients may be observed up to a random noise (online algorithms)

3. Constraints
Minimize

∑
v∈V

fv (x) subject to x ∈ G

where G is a a closed convex set
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An asynchronous agreement protocol (Aysal et al.’09)
.

Agent 1

Agent 2 Agent 3

Agent 4
.

[Local step]

x̃n+1 = xn − γn∇F (xn)

[Agreement step]

xn+1 = An+1x̃n+1

An+1 =


1

0.5 0.5
0.5 0.5

1


I row-stochastic but not column-stochastic 1∗An 6= 1∗

I hopefully, column stochasticity is satisfied in average 1∗E(An) = 1∗
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Distributed Robbins-Monro algorithm

Our problem

inf
x∈X

∑
v∈V

fv (x)

Algorithm
xn+1 = An+1 (xn − γn∇F (xn) + γnξn+1)

where ξn+1 is a martingale increment noise

E (ξn+1 |An, ξn,An−1, ξn−1, · · · ) = 0
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Distributed Robbins-Monro algorithm

Our problem

inf
x∈X

∑
v∈V

fv (x) subject to x ∈ G

Algorithm

xn+1 = An+1 · projG⊗N [(xn − γn∇F (xn) + γnξn+1) ]

where ξn+1 is a martingale increment noise

E (ξn+1 |An, ξn,An−1, ξn−1, · · · ) = 0
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Consistency
Assume that E(An) is doubly stochastic and primitive

Theorem (Bianchi, Jakubowicz’ 12)

Under suitable assumptions, xn converges a.s. to x?1 where

−∇f (x?) ∈ NG (x?)

.

G

x⋆

−∇f (x⋆)

.

One does not need An to be column-stochastic: broadcast protocol works!
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Convergence rates

Assume that x? lies in the interior of G and ∇2f (x?) � 0

Theorem (Morral et al.’12)

Under suitable assumptions

I J⊥xn = OP(γn)

I For all v ∈ V ,
√
γn
−1(xn − x?)

L−→ N (0,ΣOPT + ΣNET )
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Conclusions

I Convergence rate
√
γn is identical to the centralized case

Optimal rate 1/
√
n achieved when γn = 1/n

I However, an excess-variance ΣNET occurs

I ΣNET = 0 if An is doubly-stochastic: same performance as centralized!

ΣNET quantifies the price to pay for using uncoordinated weights
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Consensus problem reformulated

All functions fv : X → R are assumed convex. Consider the problem:

inf
x∈X

∑
v∈V

fv (x)

Set F (x) =
∑

v fv (x(v)). The problem is equivalent to

inf
x∈XN

F (x) + ιsp(1)(x)

where ιsp(1)(x) =

{
0 if x(1) = · · · = x(N)
+∞ otherwise

I F is separable in x(1), . . . , x(N)

I ιsp(1) couples the variables but is simple
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Alternating Direction Method of Multipliers (ADMM)

Define for any proper closed convex function h

proxh(x) = arg min
y

h(y) +
1

2
‖y − x‖2

Algorithm: Set ρ > 0.

xn+1 = prox 1
ρ
F (zn −

λn

ρ
)

→ separable

zn+1 = prox 1
ρ
ιsp(1)

(xn+1 +
λn

ρ
)

→ projection

λn+1 = λn + ρ(xn+1 − zn+1)

I λn converges to a solution to the dual problem minλ F
?(−λ) + ι?sp(1)(λ)

I xn converges to a solution to the primal problem
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ADMM illustrated

Set βn = λn/ρ

Algorithm (see e.g. [Boyd’11])

For all v , βn(v) = βn−1(v) + xn(v)− xn

xn+1(v) = prox 1
ρ
fv

(xn − βn(v))

.

xn(v)
1. Transmit current estimates

.
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ADMM illustrated

Set βn = λn/ρ

Algorithm (see e.g. [Boyd’11])

For all v , βn(v) = βn−1(v) + xn(v)− xn

xn+1(v) = prox 1
ρ
fv

(xn − βn(v))

.

4. Compute βn(v), xn+1(v) for all v

.
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Remarks

I The algorithm is parallel but not distributed on the graph

I The algorithm is synchronous
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Context

Consider a non-directed connected graph G = (V , E)

E ⊂ 2V is a set of nondirected edges

.

2

4

531

.

inf
x∈XN

F (x) + ιsp(1)(x)

How to rewrite the penalty ιsp(1)(x) to include the graph structure?

44/61



Subgraph consensus (Ribeiro et al.’06)

Let A1,A2, · · · ,AL be subsets of V
.

2

4

531

.

A1 = {1, 3}, A2 = {2, 3}, A3 = {3, 4, 5}

(
x(1)
x(3)

)
∈ sp (1

1)(
x(2)
x(3)

)
∈ sp (1

1) x(3)
x(4)
x(5)

 ∈ sp
(

1
1
1

)

Penalty function

ι
sp(1

1)

(
x(1)
x(3)

)
+ ι

sp(1
1)

(
x(2)
x(3)

)
+ ι

sp

(
1
1
1

)
 x(3)

x(4)
x(5)



= ιsp(1)(x)

consensus within subgraphs ⇔ global consensus
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Example (Cont.)

The consensus problem is

inf
x∈XN

F (x) + G(Mx)

where Mx =



x(1)
x(3)
x(2)
x(3)
x(3)
x(4)
x(5)


that is: M =



1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


and where G is the indicator function of the subspace of vectors of the form

α
α
β
β
δ
δ
δ


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General case

Denote by A1, A2, · · · AL a collection of subsets of V . Define

M =

 M1

...
ML


where M` is a selection matrix of size |A`| × N

Let G denote the indicator function of the vectors z of the form α11|A1|
...

αL1|AL|


Consensus problem:

inf
x∈XN

F (x) + G(Mx)
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ADMM

ADMM iterations

xn+1 = arg min
x∈XN

F (x) +
ρ

2
‖Mx − (zn −

λn

ρ
)‖2

→ separable

zn+1 = prox 1
ρ
G (Mxn+1 +

λn

ρ
)

→ projection

λn+1 = λn + ρ(Mxn+1 − zn+1)

Notations

I For all `, x
(`)
n = 1

|A`|
∑

v∈A`
xn(v) is the `th subgraph-average

I For all v , σv ⊂ {1, · · · , L} is the set of indices ` such that v ∈ A`

I χn(v) = 1
|σv |

∑
`∈σv x

(`)
n is the average of subgraphs-averages in σv

Distributed ADMM (Ribeiro et al.’06)

For all v , βn(v) = βn−1(v) + xn(v)− χn(v)

xn+1(v) = prox fv
ρ|σv |

(χn(v)− βn(v))
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Distributed ADMM illustrated

Distributed ADMM (Ribeiro et al.’06)

For all v , βn(v) = βn−1(v) + xn(v)− χn(v)

xn+1(v) = prox fv
ρ|σv |

(χn(v)− βn(v))

.

Compute x
(1)
n

.

1. For each subgraph, compute average x
(`)
n
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Distributed ADMM (Ribeiro et al.’06)

For all v , βn(v) = βn−1(v) + xn(v)− χn(v)

xn+1(v) = prox fv
ρ|σv |

(χn(v)− βn(v))

.

Compute x
(3)
n

.

1. For each subgraph, compute average x
(`)
n
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Distributed ADMM illustrated

Distributed ADMM (Ribeiro et al.’06)

For all v , βn(v) = βn−1(v) + xn(v)− χn(v)

xn+1(v) = prox fv
ρ|σv |

(χn(v)− βn(v))

.

.

2. For each vertex v , compute χn(v) = Average(x
(`)
n : v ∈ A`)
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Distributed ADMM illustrated

Distributed ADMM (Ribeiro et al.’06)

For all v , βn(v) = βn−1(v) + xn(v)− χn(v)

xn+1(v) = prox fv
ρ|σv |

(χn(v)− βn(v))

.

.

3. For each vertex v , compute βn(v) and xn+1(v)
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The burden of synchronism

I All agents must complete their prox before combining

I The network waits for the slowest agents

Our objective for now on: allow for asynchronism
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Monotone operators

A monotone operator is a set-valued application A : X → 2X such that

∀(x , y), ∀(u, v) ∈ A(x)× A(y), 〈u − v , x − y〉 ≥ 0

I It is maximal if it is not contained in an other monotone operator

I A point x is a zero of A if 0 ∈ A(x)

I We identify A with its graph {(x , u) : x ∈ X , u ∈ A(x)}

The resolvent of A is
JA = (I + A)−1

I dom(JA) = X whenever A is maximal

I JA is single-valued (it is a function)

I a fixed point of JA is a zero of A
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Firm non expansiveness

∀x , y ∈ dom(JA), 〈JA(x)− JA(y), x − y〉 ≥ ‖JA(x)− JA(y)‖2

.

yx

JA(y)

JA(x)

.
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proximal point algorithm

xn+1 = JA(xn)

Assume that there exists x? ∈ Zer(A)
.

x⋆
xn

xn+1

.

‖xn − x?‖ decreases with n

Convergence of the proximal point algorithm

If A is maximal monotone and Zer(A) 6= ∅, xn converges to a point in Zer(A)

53/61



proximal point algorithm

xn+1 = JA(xn)

Assume that there exists x? ∈ Zer(A)
.

x⋆

xn+2 xn+1

.

‖xn − x?‖ decreases with n

Convergence of the proximal point algorithm

If A is maximal monotone and Zer(A) 6= ∅, xn converges to a point in Zer(A)

53/61



proximal point algorithm

xn+1 = JA(xn)

Assume that there exists x? ∈ Zer(A)
.

x⋆

xn+2

.

‖xn − x?‖ decreases with n

Convergence of the proximal point algorithm

If A is maximal monotone and Zer(A) 6= ∅, xn converges to a point in Zer(A)

53/61



Douglas-Rachford (DR) operator

Problem: Find a zero of the sum of two monotone operators A + B

Douglas Rachford operator:

S = {(v + ρb, u − v) : (u, b) ∈ B, (v , a) ∈ A, u + ρa = v − ρb}

Property: If ζ? ∈ Zer(S), then JρB(ζ?) ∈ Zer(A + B)

Douglas-Rachford algorithm

Let A, B maximal monotone such that Zer(A + B) 6= ∅. Set

ζn+1 = JS(ζn)

Then λn = JρB(ζn) converges to a point in Zer(A + B)
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ADMM as a Douglas-Rachford algorithm

Consider the problem
inf

x∈XN
F (x) + G(Mx)

Under mild qualification conditions, the infimum coincides with

min
λ

F ?(−M?λ) + G?(λ)

Solving the above optimization problem = finding a zero of

∂ [F ? ◦ (−M?) + G?]

The Douglas-Rachford algorithm boils down to ADMM when

A = −M∂F ? ◦ (−M?)

B = ∂G?
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Block-components

Notation: denote by ζ(`) the `th block-component of ζ ∈ X |A1|+···+|AL|

ζ =

 ζ(1)

...

ζ(L)

 where ζ(`) = (ζ(`)(v))v∈A`

Let S be the DR operator of two maximal monotone operators A and B

Douglas-Rachford algorithm

ζn+1 =


J

(1)
S (ζn)

...

J
(L)
S (ζn)


This means that ζ

(`)
n+1 = J

(`)
S (ζn) for all ` = 1, . . . , L
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Asynchronous Douglas-Rachford algorithm

Asynchronous Douglas-Rachford algorithm

At time n, select a subgraph ` ∈ {1, . . . , L} at random. Set

ζ
(`)
n+1 = J

(`)
S (ζn)

ζ
(k)
n+1 = ζ(k)

n for all k 6= `

We should

I prove that this ‘degraded’ algorithm still converges to Zer(S)

I make the implementation explicit
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Convergence

Denote by ζn the sequence generated by the asynchronous DR algorithm

Assumptions

I The indices of the active subgraph at time n forms an iid sequence

I Zer(A + B) 6= ∅

Theorem (Iutzeler et al.’13, submitted)

Sequence ζn converges almost surely to a random variable supported by Zer(S)

Corollary
Sequence λn = JρB(ζn) converges a.s. to a r.v. supported by Zer(A + B)
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Asynchronous algorithm explicited (1/3)

The consensus problem can be formulated as

inf
x∈XN

F (x) + G(Mx)

Example:

M =



1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


G = indicator of vectors of the form



α
α
β
β
δ
δ
δ


Let us explicit the asynchronous DR algorithm for the monotone operators

A = −M∂F ? ◦ (−M?) and B = ∂G?
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Asynchronous ADMM explicited (2/3)

General case: Denote by A1, A2, · · · AL a collection of subgraphs

Each node v maintains the variables

xn(v), λ(`)
n (v), z (`)

n ∀` such that v ∈ A`
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Asynchronous ADMM explicited (3/3)

.

2

4

531

.

At time n, a component A` is activated

All agents v ∈ A` compute

xn+1(v) = prox fv
ρ|σv |

(
1

|σv |
∑
k∈σv

(
z̄ (k)
n −

λ
(k)
n (v)

ρ

))

All agents in A` communicate to find the average

z̄
(`)
n+1 =

1

|A`|
∑
w∈A`

xn+1(w)

All agents v ∈ A` update

λ
(`)
n+1(v) = λ(`)

n (v) + ρ(xn+1(v)− z̄
(`)
n+1)

Other variables are maintained to former values
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