
Consensus Algorithms for Optimization
in Multi-Agent Networks

Peyresq’13

Pascal Bianchi

June 28, 2013

1/61

Context

Consider a network composed of N agents

I Agents process local data

I Agents cooperate to estimate some global parameter

2/61

Network architectures

I Centralized : A node (reducer, sink) aggregates the agents’ outputs

I Distributed : No central node - Agents cooperate with their neighbors

I Non cooperative : Agents are players who don’t share information

3/61

Network architectures

I Centralized : A node (reducer, sink) aggregates the agents’ outputs

I Distributed : No central node - Agents cooperate with their neighbors

I Non cooperative : Agents are players who don’t share information

3/61

Some examples

Network Agent Objectives

Ad-hoc
network

Mobile terminal

• Power control
• Load balancing
• Self-localization

Flotilla

Autonomous Underwater Vehicle
• Trajectory planning
• Flocking
• Localization and mapping

Cloud

Virtual machine

• Regression on distributed data sets
• Distributed clustering

4/61

Outline

Consensus and sharing
Consensus problem
Sharing problem

The agreement algorithm

First-order methods
Basic algorithms
Convergence analysis
Convex non-smooth functions: error bounds
Distributed stochastic approximation

Alternating Direction Method of Multipliers
Parallel implementation
Distributed implementation
Randomized ADMM

Outline

Consensus and sharing
Consensus problem
Sharing problem

The agreement algorithm

First-order methods
Basic algorithms
Convergence analysis
Convex non-smooth functions: error bounds
Distributed stochastic approximation

Alternating Direction Method of Multipliers
Parallel implementation
Distributed implementation
Randomized ADMM

The Problem

1 2

3

4

x

x

x

x

5/61

The Problem

x x x x
+ + +

=

x

No single agent knows the target function to optimize
The network does

5/61

The Problem

x x x x
+ + +

=

x

No single agent knows the target function to optimize
The network does

5/61

Formally

inf
x∈X

∑
v∈V

fv (x)

I G = (V ,E) is the graph modelling the network

I fv is the cost function of agent v

I X is a finite dimensional Euclidean space

Numerous works on that problem
Early work: Tsitsiklis ’84 (all fv equal)

6/61

An example in wireless sensor networks

Yv = random observation of sensor v
x = unknown parameter to be estimated

Assume that
p(Y1, · · · ,YN ; x) = p1(Y1; x) · · · pN(YN ; x)

The maximum likelihood estimate writes

x̂ = arg max
x

∑
v

ln pv (Yv ; x)

[Ribeiro et al.’06, Moura et al.’11]

7/61

An example in machine learning

problem: For {D1,D2, . . . }

min
x

∑
i=1,2...

‖Di − qx(Di)‖2

where qx(D) is the nearest point of D

[Patra’11, Forero’11]

8/61

An example in machine learning

problem: For {D1,D2, . . . }

min
x

∑
i=1,2...

‖Di − qx(Di)‖2

where qx(D) is the nearest point of D

[Patra’11, Forero’11]

8/61

An example in machine learning

Centralized problem: For a data set {D1,D2, . . . }

min
x

∑
i=1,2...

‖Di − qx(Di)‖2

where qx(D) is the nearest point of D

[Patra’11, Forero’11]

8/61

An example in machine learning

Distributed problem: For N distributed data sets {D1,v ,D2,v , . . . } (v ∈ V)

min
x

∑
v∈V

(∑
i=1,2...

‖Di,v − qx(Di,v)‖2

)

where qx(D) is the nearest point of D

[Patra’11, Forero’11]

8/61

Outline

Consensus and sharing
Consensus problem
Sharing problem

The agreement algorithm

First-order methods
Basic algorithms
Convergence analysis
Convex non-smooth functions: error bounds
Distributed stochastic approximation

Alternating Direction Method of Multipliers
Parallel implementation
Distributed implementation
Randomized ADMM

The sharing problem

Let x(v) be the resource of an agent v ∈ V

I Agents share a resource b:
∑
v∈V

x(v) ≤ b

I Agent v gets reward −fv (x(v)) for using resource x(v)

I Maximize the global reward

inf
x :
∑

x(v)≤b

∑
v∈V

fv (x(v))

9/61

Equivalence between consensus and sharing

Claim:
The dual of a sharing problem is a consensus problem

10/61

Outline

Consensus and sharing
Consensus problem
Sharing problem

The agreement algorithm

First-order methods
Basic algorithms
Convergence analysis
Convex non-smooth functions: error bounds
Distributed stochastic approximation

Alternating Direction Method of Multipliers
Parallel implementation
Distributed implementation
Randomized ADMM

Network model

A directed graph G = (V ,E) is formed by

I a finite set V of vertices

I a set E ⊂ V × V of directed edges

.

1 2 3

.

A strongly connected graph with one self-loop

An iterative algorithm is said distributed on the graph if, at any iteration:

Agent v can receive information from w only if (v ,w) ∈ E

11/61

The average consensus problem

Average consensus problem

Given an initial value x0(v) ∈ R of each agent v , compute distributively

x0 ,
1

N

∑
v∈V

x0(v)

I Very special case of optimization problem! Just set fv (x) = (x − x0(v))2

I Useful to adress more general optimization problems

12/61

The agreement algorithm (De Groot’74)

Algorithm:
Each agent maintains an estimate xn(v). The update is:

∀v ∈ V , xn+1(v) =
∑
w∈V

A(v ,w)xn(w)

Assumptions:

I A(v ,w) ≥ 0 are non-negative weights

I A(v ,w) > 0 if and only if (v ,w) ∈ E (we say that A is adapted to G)

I
∑

w A(v ,w) = 1 for any v ∈ V

13/61

The agreement algorithm: Vector form

Agreement algorithm

xn = Axn−1

= Anx0

where A = [A(u, v)](u,v)∈V 2 is non-negative, row-stochastic and adapted to G

Row stochasticity means:
A1 = 1

where 1 ,

 1
...
1



14/61

Discussion

What do we hope for?

∀x0, limn xn = x01 (?)

I xn(w) cannot converge to x0 if no path from v to w ! (e.g. A = IN)

G must be connected

I A should preserve the average i.e. x1 = x0

A must be doubly stochastic: 1∗A = 1∗

I Even then, convergence is not ensured. Set e.g.

A =

(
0 1
1 0

)

15/61

A consequence of the Perron-Frobenius theorem

Definition: Matrix A is primitive if Am > 0 for some m ≥ 1

Property: If G is connected and has a self-loop, then A is primitive

Theorem

Let A ≥ 0. The following statements are equivalent:

I For any x0, limn→∞ Anx0 = x01

I A is primitive and doubly stochastic

n.b. Many variants on that problem [Kempe et al.’03, Boyd et al.’06]

16/61

Outline

Consensus and sharing
Consensus problem
Sharing problem

The agreement algorithm

First-order methods
Basic algorithms
Convergence analysis
Convex non-smooth functions: error bounds
Distributed stochastic approximation

Alternating Direction Method of Multipliers
Parallel implementation
Distributed implementation
Randomized ADMM

Outline

Consensus and sharing
Consensus problem
Sharing problem

The agreement algorithm

First-order methods
Basic algorithms
Convergence analysis
Convex non-smooth functions: error bounds
Distributed stochastic approximation

Alternating Direction Method of Multipliers
Parallel implementation
Distributed implementation
Randomized ADMM

The setting

Consensus problem in optimization

inf
x∈X

f (x) ,
∑
v∈V

fv (x)

Scenario
.

First-order

black box

x ∈ X

Agent v

∇fv(x)

.

Centralized gradient algorithm

xn+1 = xn − γ∇f (xn)

Under some assumptions, achieves linear convergence rate in O(βn), (β < 1)

Problem: ∇f is nowhere available

17/61

Distributed gradient algorithms: The Two Main Options

I Incremental
[Widrow-Hoff’60], [Nedic-Bertsekas’01]

I Agreement
[Tsitsiklis’84], [Kushner’87], [Sayed et al.’05], [Ram et al.’10], . . .

18/61

Incremental

1 2

3

4

x

x

x

x

19/61

Incremental

1 2

3

4

x

x

x

x

19/61

Incremental

1 2

3

4

x

x

x

x

19/61

Incremental

1 2

3

4

x

x

x

x

19/61

Incremental

1 2

3

4

x

x

x

x

19/61

Incremental

1 2

3

4

x

x

x

x

19/61

Incremental

1 2

3

4

x

x

x

x

19/61

Incremental

1 2

3

4

x

x

x

x

19/61

Incremental

1 2

3

4

x

x

x

x

19/61

Agreement

Idea: couple gradient algorithm + agreement algorithm

20/61

Agreement

1 2

3

4

x

x

x

x

21/61

Agreement

1 2

3

4

x

x

x

x

21/61

Agreement

1 2

3

4

x

x

x

x

21/61

Agreement

1 2

3

4

x

x

x

x

21/61

Agreement, Formal

I [Local step] Each agent v generates a temporary update

x̃n+1(v) = xn(v)− γn∇fv (xn(v))

I [Agreement step] Connected agents merge their temporary estimates

xn+1(v) =
N∑

w=1

A(v ,w) x̃n+1(w)

22/61

Agreement, Formal

I [Local step] Each agent v generates a temporary update

x̃n+1(v) = xn(v)− γn∇fv (xn(v))

I [Agreement step] Connected agents merge their temporary estimates

xn+1(v) =
N∑

w=1

A(v ,w) x̃n+1(w)

22/61

Benefits & Drawbacks

Incremental I Conceptually simple
I Needs Hamiltonian cycle (or at least a relaxed version)
I Concentrated information: less robust

Agreement I No need for a Hamiltonian cycle
I Simple to implement

23/61

Benefits & Drawbacks

Incremental I Conceptually simple
I Needs Hamiltonian cycle (or at least a relaxed version)
I Concentrated information: less robust

Agreement I No need for a Hamiltonian cycle
I Simple to implement

23/61

Outline

Consensus and sharing
Consensus problem
Sharing problem

The agreement algorithm

First-order methods
Basic algorithms
Convergence analysis
Convex non-smooth functions: error bounds
Distributed stochastic approximation

Alternating Direction Method of Multipliers
Parallel implementation
Distributed implementation
Randomized ADMM

Distributed algorithm: Vector notation

Let X = R for simplicity. Recall notation

F (x) ,
∑
v∈V

fv (x(v))

I [Local step]

x̃n+1 = xn − γn∇F (xn)

I [Agreement step]

xn+1 = A x̃n+1

xn+1 = A (xn − γn∇F (xn))

24/61

Assumption

Except in special cases, convergence to the sought minimizers fails unless:

Assumption

I A is doubly stochastic

I A is primitive

25/61

Agreement

Assume that C := lim supn ‖∇F (xn)‖ is finite. Define

J =
11∗

N
J⊥ = IN − J

Compute the disagreement vector:

J⊥xn+1 = J⊥A (xn − γn∇F (xn))

Denote by σ the spectral norm of J⊥AJ⊥. We have σ < 1.

‖J⊥xn+1‖ ≤ σ (‖J⊥xn‖+ γn‖∇F (xn)‖)

Disagreement vector

Assume γn/γn+1 → 1.

lim sup
n

‖J⊥xn‖
γn

≤ σC

1− σ

26/61

Agreement

Assume that C := lim supn ‖∇F (xn)‖ is finite. Define

J =
11∗

N
J⊥ = IN − J

Compute the disagreement vector:

J⊥xn+1 = J⊥AJ⊥ (xn − γn∇F (xn))

Denote by σ the spectral norm of J⊥AJ⊥. We have σ < 1.

‖J⊥xn+1‖ ≤ σ (‖J⊥xn‖+ γn‖∇F (xn)‖)

Disagreement vector

Assume γn/γn+1 → 1.

lim sup
n

‖J⊥xn‖
γn

≤ σC

1− σ

26/61

Agreement

Assume that C := lim supn ‖∇F (xn)‖ is finite. Define

J =
11∗

N
J⊥ = IN − J

Compute the disagreement vector:

J⊥xn+1 = J⊥AJ⊥ (J⊥xn − γn∇F (xn))

Denote by σ the spectral norm of J⊥AJ⊥. We have σ < 1.

‖J⊥xn+1‖ ≤ σ (‖J⊥xn‖+ γn‖∇F (xn)‖)

Disagreement vector

Assume γn/γn+1 → 1.

lim sup
n

‖J⊥xn‖
γn

≤ σC

1− σ

26/61

Agreement

Assume that C := lim supn ‖∇F (xn)‖ is finite. Define

J =
11∗

N
J⊥ = IN − J

Compute the disagreement vector:

J⊥xn+1 = J⊥AJ⊥ (J⊥xn − γn∇F (xn))

Denote by σ the spectral norm of J⊥AJ⊥. We have σ < 1.

‖J⊥xn+1‖ ≤ σ (‖J⊥xn‖+ γn‖∇F (xn)‖)

Disagreement vector

Assume γn/γn+1 → 1.

lim sup
n

‖J⊥xn‖
γn

≤ σC

1− σ

26/61

Remarks

1. In order that ‖J⊥xn‖ → 0, vanishing step size is needed

γn → 0

except if e.g. all fv ’s have a common minimizer (C = 0)

2. The disagreement tends to zero at rate γn

‖J⊥xn‖ = O(γn)

3. Factor σ
1−σ quantifies the network effect [Duchi et al.’11]

27/61

Convergence of the network average

It remains to study the network-average

xn =
1∗xn
N

As 1∗A = 1∗,

xn+1 = xn −
γn
N

1∗∇F (xn)

' xn −
γn
N

The network average nearly behaves as a gradient descent on f .

28/61

Convergence of the network average

It remains to study the network-average

xn =
1∗xn
N

As 1∗A = 1∗,

xn+1 = xn −
γn
N

1∗∇F (xn)

' xn −
γn
N

1∗∇F (xn1)

The network average nearly behaves as a gradient descent on f .

28/61

Convergence of the network average

It remains to study the network-average

xn =
1∗xn
N

As 1∗A = 1∗,

xn+1 = xn −
γn
N

1∗∇F (xn)

' xn −
γn
N
∇f (xn)

The network average nearly behaves as a gradient descent on f .

28/61

Convergence result

Assumptions ∑
n

γn = +∞,
∑
n

γ3
n <∞

Moreover, assume that

I ∇fv is lispchitz continuous for all v

I f ,
∑

v fv is coercive and {∇f = 0} is locally finite

Convergence

There exists x? ∈ {∇f = 0} such that

lim
n→∞

xn = x?

29/61

Asymptotic rate of convergence

Assumptions

I ∇2f (x?) � 0

I γn ∝ 1/nα for 0 < α ≤ 1

Then, optimal convergence rate is achieved for γn ∝ 1
n

and

Convergence rate (smooth case)

xn = x?1 +O
(

log n

n

)

Quite far from the linear convergence rate O(βn) of the centralized case

30/61

Outline

Consensus and sharing
Consensus problem
Sharing problem

The agreement algorithm

First-order methods
Basic algorithms
Convergence analysis
Convex non-smooth functions: error bounds
Distributed stochastic approximation

Alternating Direction Method of Multipliers
Parallel implementation
Distributed implementation
Randomized ADMM

Algorithm

Assumptions

I All fv convex non-negative

I fv are L-lipschitz

I f =
∑

v fv achieves its minimum at x?

Distributed subgradient algorithm

xn+1 = A(xn − γngn)

where for any v ∈ V
gn(v) ∈ ∂fv (xn(v))

31/61

Convergence result (1/2)

Define the time-averaged estimate for all v ∈ V

x̂n(v) =

∑
k≤n γkxk(v)∑

k≤n γk

Error bound (Nedic, Ozdaglar’10)

f (x̂n(v))− f (x?) ≤
1
2
‖x0 − x?‖2 + (1 + NET)L2∑

k≤n γ
2
k∑

k≤n γk

where NET grasps the excess-bound due to the distributed setting

NET =
σ

1− σ

(√
N +

1√
N

)

32/61

Convergence result (2/2)

I The bound is exact (i.e. non-asymptotic)

I Set γn ∝ 1√
n

The bound is O
(

log n√
n

)

I log n factor can be saved following [Nesterov’05]
[Duchi et al.’11] couples Nesterov algorithm + agreement algorithm

Optimal rate of the centralized case

33/61

Outline

Consensus and sharing
Consensus problem
Sharing problem

The agreement algorithm

First-order methods
Basic algorithms
Convergence analysis
Convex non-smooth functions: error bounds
Distributed stochastic approximation

Alternating Direction Method of Multipliers
Parallel implementation
Distributed implementation
Randomized ADMM

More problems

1. Asynchronism
Some agents are active at time n, others aren’t

2. Noise
Gradients may be observed up to a random noise (online algorithms)

3. Constraints
Minimize

∑
v∈V

fv (x) subject to x ∈ G

where G is a a closed convex set

34/61

An asynchronous agreement protocol (Aysal et al.’09)
.

Agent 1

Agent 2 Agent 3

Agent 4
.

[Local step]

x̃n+1 = xn − γn∇F (xn)

[Agreement step]

xn+1 = An+1x̃n+1

An+1 =


1

0.5 0.5
0.5 0.5

1


I row-stochastic but not column-stochastic 1∗An 6= 1∗

I hopefully, column stochasticity is satisfied in average 1∗E(An) = 1∗

35/61

An asynchronous agreement protocol (Aysal et al.’09)
.

11

25 7

-2

Agent 1

Agent 2 Agent 3

Agent 4
.

[Local step]

x̃n+1 = xn − γn∇F (xn)

[Agreement step]

xn+1 = An+1x̃n+1

An+1 =


1

0.5 0.5
0.5 0.5

1


I row-stochastic but not column-stochastic 1∗An 6= 1∗

I hopefully, column stochasticity is satisfied in average 1∗E(An) = 1∗

35/61

An asynchronous agreement protocol (Aysal et al.’09)
.

11

25 7

-2

Agent 1

Agent 2 Agent 3

Agent 4
.

[Local step]

x̃n+1 = xn − γn∇F (xn)

[Agreement step]

xn+1 = An+1x̃n+1

An+1 =


1

0.5 0.5
0.5 0.5

1


I row-stochastic but not column-stochastic 1∗An 6= 1∗

I hopefully, column stochasticity is satisfied in average 1∗E(An) = 1∗

35/61

An asynchronous agreement protocol (Aysal et al.’09)
.

11

-2

Agent 1

Agent 2 Agent 3

Agent 4

18 9

.

[Local step]

x̃n+1 = xn − γn∇F (xn)

[Agreement step]

xn+1 = An+1x̃n+1

An+1 =


1

0.5 0.5
0.5 0.5

1


I row-stochastic but not column-stochastic 1∗An 6= 1∗

I hopefully, column stochasticity is satisfied in average 1∗E(An) = 1∗

35/61

Distributed Robbins-Monro algorithm

Our problem

inf
x∈X

∑
v∈V

fv (x)

Algorithm
xn+1 = An+1 (xn − γn∇F (xn) + γnξn+1)

where ξn+1 is a martingale increment noise

E (ξn+1 |An, ξn,An−1, ξn−1, · · ·) = 0

36/61

Distributed Robbins-Monro algorithm

Our problem

inf
x∈X

∑
v∈V

fv (x) subject to x ∈ G

Algorithm

xn+1 = An+1 · projG⊗N [(xn − γn∇F (xn) + γnξn+1)]

where ξn+1 is a martingale increment noise

E (ξn+1 |An, ξn,An−1, ξn−1, · · ·) = 0

36/61

Consistency
Assume that E(An) is doubly stochastic and primitive

Theorem (Bianchi, Jakubowicz’ 12)

Under suitable assumptions, xn converges a.s. to x?1 where

−∇f (x?) ∈ NG (x?)

.

G

x⋆

−∇f (x⋆)

.

One does not need An to be column-stochastic: broadcast protocol works!

37/61

Convergence rates

Assume that x? lies in the interior of G and ∇2f (x?) � 0

Theorem (Morral et al.’12)

Under suitable assumptions

I J⊥xn = OP(γn)

I For all v ∈ V ,
√
γn
−1(xn − x?)

L−→ N (0,ΣOPT + ΣNET)

38/61

Conclusions

I Convergence rate
√
γn is identical to the centralized case

Optimal rate 1/
√
n achieved when γn = 1/n

I However, an excess-variance ΣNET occurs

I ΣNET = 0 if An is doubly-stochastic: same performance as centralized!

ΣNET quantifies the price to pay for using uncoordinated weights

39/61

Outline

Consensus and sharing
Consensus problem
Sharing problem

The agreement algorithm

First-order methods
Basic algorithms
Convergence analysis
Convex non-smooth functions: error bounds
Distributed stochastic approximation

Alternating Direction Method of Multipliers
Parallel implementation
Distributed implementation
Randomized ADMM

Outline

Consensus and sharing
Consensus problem
Sharing problem

The agreement algorithm

First-order methods
Basic algorithms
Convergence analysis
Convex non-smooth functions: error bounds
Distributed stochastic approximation

Alternating Direction Method of Multipliers
Parallel implementation
Distributed implementation
Randomized ADMM

Consensus problem reformulated

All functions fv : X → R are assumed convex. Consider the problem:

inf
x∈X

∑
v∈V

fv (x)

Set F (x) =
∑

v fv (x(v)). The problem is equivalent to

inf
x∈XN

F (x) + ιsp(1)(x)

where ιsp(1)(x) =

{
0 if x(1) = · · · = x(N)
+∞ otherwise

I F is separable in x(1), . . . , x(N)

I ιsp(1) couples the variables but is simple

40/61

Alternating Direction Method of Multipliers (ADMM)

Define for any proper closed convex function h

proxh(x) = arg min
y

h(y) +
1

2
‖y − x‖2

Algorithm: Set ρ > 0.

xn+1 = prox 1
ρ
F (zn −

λn

ρ
)

→ separable

zn+1 = prox 1
ρ
ιsp(1)

(xn+1 +
λn

ρ
)

→ projection

λn+1 = λn + ρ(xn+1 − zn+1)

I λn converges to a solution to the dual problem minλ F
?(−λ) + ι?sp(1)(λ)

I xn converges to a solution to the primal problem

41/61

Alternating Direction Method of Multipliers (ADMM)

Define for any proper closed convex function h

proxh(x) = arg min
y

h(y) +
1

2
‖y − x‖2

Algorithm: Set ρ > 0.

xn+1 = prox 1
ρ
F (zn −

λn

ρ
) → separable

zn+1 = prox 1
ρ
ιsp(1)

(xn+1 +
λn

ρ
) → projection

λn+1 = λn + ρ(xn+1 − zn+1)

I λn converges to a solution to the dual problem minλ F
?(−λ) + ι?sp(1)(λ)

I xn converges to a solution to the primal problem

41/61

ADMM illustrated

Set βn = λn/ρ

Algorithm (see e.g. [Boyd’11])

For all v , βn(v) = βn−1(v) + xn(v)− xn

xn+1(v) = prox 1
ρ
fv

(xn − βn(v))

.

xn(v)
1. Transmit current estimates

.

42/61

ADMM illustrated

Set βn = λn/ρ

Algorithm (see e.g. [Boyd’11])

For all v , βn(v) = βn−1(v) + xn(v)− xn

xn+1(v) = prox 1
ρ
fv

(xn − βn(v))

.

2. Compute average xnxn

.

42/61

ADMM illustrated

Set βn = λn/ρ

Algorithm (see e.g. [Boyd’11])

For all v , βn(v) = βn−1(v) + xn(v)− xn

xn+1(v) = prox 1
ρ
fv

(xn − βn(v))

.

xn

3. Transmit xn to all agents

.

42/61

ADMM illustrated

Set βn = λn/ρ

Algorithm (see e.g. [Boyd’11])

For all v , βn(v) = βn−1(v) + xn(v)− xn

xn+1(v) = prox 1
ρ
fv

(xn − βn(v))

.

4. Compute βn(v), xn+1(v) for all v

.

42/61

Remarks

I The algorithm is parallel but not distributed on the graph

I The algorithm is synchronous

43/61

Outline

Consensus and sharing
Consensus problem
Sharing problem

The agreement algorithm

First-order methods
Basic algorithms
Convergence analysis
Convex non-smooth functions: error bounds
Distributed stochastic approximation

Alternating Direction Method of Multipliers
Parallel implementation
Distributed implementation
Randomized ADMM

Context

Consider a non-directed connected graph G = (V , E)

E ⊂ 2V is a set of nondirected edges

.

2

4

531

.

inf
x∈XN

F (x) + ιsp(1)(x)

How to rewrite the penalty ιsp(1)(x) to include the graph structure?

44/61

Subgraph consensus (Ribeiro et al.’06)

Let A1,A2, · · · ,AL be subsets of V
.

2

4

531

.

A1 = {1, 3}, A2 = {2, 3}, A3 = {3, 4, 5}

(
x(1)
x(3)

)
∈ sp (1

1)(
x(2)
x(3)

)
∈ sp (1

1) x(3)
x(4)
x(5)

 ∈ sp
(

1
1
1

)

Penalty function

ι
sp(1

1)

(
x(1)
x(3)

)
+ ι

sp(1
1)

(
x(2)
x(3)

)
+ ι

sp

(
1
1
1

)
 x(3)

x(4)
x(5)



= ιsp(1)(x)

consensus within subgraphs ⇔ global consensus

45/61

Subgraph consensus (Ribeiro et al.’06)

Let A1,A2, · · · ,AL be subsets of V
.

2

4

531

.

A1 = {1, 3}, A2 = {2, 3}, A3 = {3, 4, 5}

(
x(1)
x(3)

)
∈ sp (1

1)

(
x(2)
x(3)

)
∈ sp (1

1) x(3)
x(4)
x(5)

 ∈ sp
(

1
1
1

)

Penalty function

ι
sp(1

1)

(
x(1)
x(3)

)
+ ι

sp(1
1)

(
x(2)
x(3)

)
+ ι

sp

(
1
1
1

)
 x(3)

x(4)
x(5)



= ιsp(1)(x)

consensus within subgraphs ⇔ global consensus

45/61

Subgraph consensus (Ribeiro et al.’06)

Let A1,A2, · · · ,AL be subsets of V
.

2

4

531

.

A1 = {1, 3}, A2 = {2, 3}, A3 = {3, 4, 5}

(
x(1)
x(3)

)
∈ sp (1

1)(
x(2)
x(3)

)
∈ sp (1

1)

 x(3)
x(4)
x(5)

 ∈ sp
(

1
1
1

)

Penalty function

ι
sp(1

1)

(
x(1)
x(3)

)
+ ι

sp(1
1)

(
x(2)
x(3)

)
+ ι

sp

(
1
1
1

)
 x(3)

x(4)
x(5)



= ιsp(1)(x)

consensus within subgraphs ⇔ global consensus

45/61

Subgraph consensus (Ribeiro et al.’06)

Let A1,A2, · · · ,AL be subsets of V
.

2

4

531

.

A1 = {1, 3}, A2 = {2, 3}, A3 = {3, 4, 5}

(
x(1)
x(3)

)
∈ sp (1

1)(
x(2)
x(3)

)
∈ sp (1

1) x(3)
x(4)
x(5)

 ∈ sp
(

1
1
1

)

Penalty function

ι
sp(1

1)

(
x(1)
x(3)

)
+ ι

sp(1
1)

(
x(2)
x(3)

)
+ ι

sp

(
1
1
1

)
 x(3)

x(4)
x(5)



= ιsp(1)(x)

consensus within subgraphs ⇔ global consensus

45/61

Subgraph consensus (Ribeiro et al.’06)

Let A1,A2, · · · ,AL be subsets of V
.

2

4

531

.

A1 = {1, 3}, A2 = {2, 3}, A3 = {3, 4, 5}

(
x(1)
x(3)

)
∈ sp (1

1)(
x(2)
x(3)

)
∈ sp (1

1) x(3)
x(4)
x(5)

 ∈ sp
(

1
1
1

)

Penalty function

ι
sp(1

1)

(
x(1)
x(3)

)
+ ι

sp(1
1)

(
x(2)
x(3)

)
+ ι

sp

(
1
1
1

)
 x(3)

x(4)
x(5)



= ιsp(1)(x)

consensus within subgraphs ⇔ global consensus

45/61

Subgraph consensus (Ribeiro et al.’06)

Let A1,A2, · · · ,AL be subsets of V
.

2

4

531

.

A1 = {1, 3}, A2 = {2, 3}, A3 = {3, 4, 5}

(
x(1)
x(3)

)
∈ sp (1

1)(
x(2)
x(3)

)
∈ sp (1

1) x(3)
x(4)
x(5)

 ∈ sp
(

1
1
1

)

Penalty function

ι
sp(1

1)

(
x(1)
x(3)

)
+ ι

sp(1
1)

(
x(2)
x(3)

)
+ ι

sp

(
1
1
1

)
 x(3)

x(4)
x(5)

 = ιsp(1)(x)

consensus within subgraphs ⇔ global consensus

45/61

Example (Cont.)

The consensus problem is

inf
x∈XN

F (x) + G(Mx)

where Mx =



x(1)
x(3)
x(2)
x(3)
x(3)
x(4)
x(5)


that is: M =



1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


and where G is the indicator function of the subspace of vectors of the form

α
α
β
β
δ
δ
δ


46/61

General case

Denote by A1, A2, · · · AL a collection of subsets of V . Define

M =

 M1

...
ML


where M` is a selection matrix of size |A`| × N

Let G denote the indicator function of the vectors z of the form α11|A1|
...

αL1|AL|


Consensus problem:

inf
x∈XN

F (x) + G(Mx)

47/61

ADMM

ADMM iterations

xn+1 = arg min
x∈XN

F (x) +
ρ

2
‖Mx − (zn −

λn

ρ
)‖2

→ separable

zn+1 = prox 1
ρ
G (Mxn+1 +

λn

ρ
)

→ projection

λn+1 = λn + ρ(Mxn+1 − zn+1)

Notations

I For all `, x
(`)
n = 1

|A`|
∑

v∈A`
xn(v) is the `th subgraph-average

I For all v , σv ⊂ {1, · · · , L} is the set of indices ` such that v ∈ A`

I χn(v) = 1
|σv |

∑
`∈σv x

(`)
n is the average of subgraphs-averages in σv

Distributed ADMM (Ribeiro et al.’06)

For all v , βn(v) = βn−1(v) + xn(v)− χn(v)

xn+1(v) = prox fv
ρ|σv |

(χn(v)− βn(v))

48/61

ADMM

ADMM iterations

xn+1 = arg min
x∈XN

F (x) +
ρ

2
‖Mx − (zn −

λn

ρ
)‖2 → separable

zn+1 = prox 1
ρ
G (Mxn+1 +

λn

ρ
) → projection

λn+1 = λn + ρ(Mxn+1 − zn+1)

Notations

I For all `, x
(`)
n = 1

|A`|
∑

v∈A`
xn(v) is the `th subgraph-average

I For all v , σv ⊂ {1, · · · , L} is the set of indices ` such that v ∈ A`

I χn(v) = 1
|σv |

∑
`∈σv x

(`)
n is the average of subgraphs-averages in σv

Distributed ADMM (Ribeiro et al.’06)

For all v , βn(v) = βn−1(v) + xn(v)− χn(v)

xn+1(v) = prox fv
ρ|σv |

(χn(v)− βn(v))

48/61

ADMM

ADMM iterations

xn+1 = arg min
x∈XN

F (x) +
ρ

2
‖Mx − (zn −

λn

ρ
)‖2

→ separable

zn+1 = prox 1
ρ
G (Mxn+1 +

λn

ρ
)

→ projection

λn+1 = λn + ρ(Mxn+1 − zn+1)

Notations

I For all `, x
(`)
n = 1

|A`|
∑

v∈A`
xn(v) is the `th subgraph-average

I For all v , σv ⊂ {1, · · · , L} is the set of indices ` such that v ∈ A`

I χn(v) = 1
|σv |

∑
`∈σv x

(`)
n is the average of subgraphs-averages in σv

Distributed ADMM (Ribeiro et al.’06)

For all v , βn(v) = βn−1(v) + xn(v)− χn(v)

xn+1(v) = prox fv
ρ|σv |

(χn(v)− βn(v))

48/61

Distributed ADMM illustrated

Distributed ADMM (Ribeiro et al.’06)

For all v , βn(v) = βn−1(v) + xn(v)− χn(v)

xn+1(v) = prox fv
ρ|σv |

(χn(v)− βn(v))

.

Compute x
(1)
n

.

1. For each subgraph, compute average x
(`)
n

49/61

Distributed ADMM illustrated

Distributed ADMM (Ribeiro et al.’06)

For all v , βn(v) = βn−1(v) + xn(v)− χn(v)

xn+1(v) = prox fv
ρ|σv |

(χn(v)− βn(v))

.

Compute x
(2)
n

.

1. For each subgraph, compute average x
(`)
n

49/61

Distributed ADMM illustrated

Distributed ADMM (Ribeiro et al.’06)

For all v , βn(v) = βn−1(v) + xn(v)− χn(v)

xn+1(v) = prox fv
ρ|σv |

(χn(v)− βn(v))

.

Compute x
(3)
n

.

1. For each subgraph, compute average x
(`)
n

49/61

Distributed ADMM illustrated

Distributed ADMM (Ribeiro et al.’06)

For all v , βn(v) = βn−1(v) + xn(v)− χn(v)

xn+1(v) = prox fv
ρ|σv |

(χn(v)− βn(v))

.

.

2. For each vertex v , compute χn(v) = Average(x
(`)
n : v ∈ A`)

49/61

Distributed ADMM illustrated

Distributed ADMM (Ribeiro et al.’06)

For all v , βn(v) = βn−1(v) + xn(v)− χn(v)

xn+1(v) = prox fv
ρ|σv |

(χn(v)− βn(v))

.

.

3. For each vertex v , compute βn(v) and xn+1(v)

49/61

The burden of synchronism

I All agents must complete their prox before combining

I The network waits for the slowest agents

Our objective for now on: allow for asynchronism

50/61

Outline

Consensus and sharing
Consensus problem
Sharing problem

The agreement algorithm

First-order methods
Basic algorithms
Convergence analysis
Convex non-smooth functions: error bounds
Distributed stochastic approximation

Alternating Direction Method of Multipliers
Parallel implementation
Distributed implementation
Randomized ADMM

Monotone operators

A monotone operator is a set-valued application A : X → 2X such that

∀(x , y), ∀(u, v) ∈ A(x)× A(y), 〈u − v , x − y〉 ≥ 0

I It is maximal if it is not contained in an other monotone operator

I A point x is a zero of A if 0 ∈ A(x)

I We identify A with its graph {(x , u) : x ∈ X , u ∈ A(x)}

The resolvent of A is
JA = (I + A)−1

I dom(JA) = X whenever A is maximal

I JA is single-valued (it is a function)

I a fixed point of JA is a zero of A

51/61

Monotone operators

A monotone operator is a set-valued application A : X → 2X such that

∀(x , y), ∀(u, v) ∈ A(x)× A(y), 〈u − v , x − y〉 ≥ 0

I It is maximal if it is not contained in an other monotone operator

I A point x is a zero of A if 0 ∈ A(x)

I We identify A with its graph {(x , u) : x ∈ X , u ∈ A(x)}

The resolvent of A is
JA = (I + A)−1

I dom(JA) = X whenever A is maximal

I JA is single-valued (it is a function)

I a fixed point of JA is a zero of A

51/61

Firm non expansiveness

∀x , y ∈ dom(JA), 〈JA(x)− JA(y), x − y〉 ≥ ‖JA(x)− JA(y)‖2

.

yx

JA(y)

JA(x)

.

52/61

proximal point algorithm

xn+1 = JA(xn)

Assume that there exists x? ∈ Zer(A)
.

x⋆
xn

xn+1

.

‖xn − x?‖ decreases with n

Convergence of the proximal point algorithm

If A is maximal monotone and Zer(A) 6= ∅, xn converges to a point in Zer(A)

53/61

proximal point algorithm

xn+1 = JA(xn)

Assume that there exists x? ∈ Zer(A)
.

x⋆

xn+2 xn+1

.

‖xn − x?‖ decreases with n

Convergence of the proximal point algorithm

If A is maximal monotone and Zer(A) 6= ∅, xn converges to a point in Zer(A)

53/61

proximal point algorithm

xn+1 = JA(xn)

Assume that there exists x? ∈ Zer(A)
.

x⋆

xn+2

.

‖xn − x?‖ decreases with n

Convergence of the proximal point algorithm

If A is maximal monotone and Zer(A) 6= ∅, xn converges to a point in Zer(A)

53/61

Douglas-Rachford (DR) operator

Problem: Find a zero of the sum of two monotone operators A + B

Douglas Rachford operator:

S = {(v + ρb, u − v) : (u, b) ∈ B, (v , a) ∈ A, u + ρa = v − ρb}

Property: If ζ? ∈ Zer(S), then JρB(ζ?) ∈ Zer(A + B)

Douglas-Rachford algorithm

Let A, B maximal monotone such that Zer(A + B) 6= ∅. Set

ζn+1 = JS(ζn)

Then λn = JρB(ζn) converges to a point in Zer(A + B)

54/61

ADMM as a Douglas-Rachford algorithm

Consider the problem
inf

x∈XN
F (x) + G(Mx)

Under mild qualification conditions, the infimum coincides with

min
λ

F ?(−M?λ) + G?(λ)

Solving the above optimization problem = finding a zero of

∂ [F ? ◦ (−M?) + G?]

The Douglas-Rachford algorithm boils down to ADMM when

A = −M∂F ? ◦ (−M?)

B = ∂G?

55/61

ADMM as a Douglas-Rachford algorithm

Consider the problem
inf

x∈XN
F (x) + G(Mx)

Under mild qualification conditions, the infimum coincides with

min
λ

F ?(−M?λ) + G?(λ)

Solving the above optimization problem = finding a zero of

−M∂F ? ◦ (−M?) + ∂G?

The Douglas-Rachford algorithm boils down to ADMM when

A = −M∂F ? ◦ (−M?)

B = ∂G?

55/61

ADMM as a Douglas-Rachford algorithm

Consider the problem
inf

x∈XN
F (x) + G(Mx)

Under mild qualification conditions, the infimum coincides with

min
λ

F ?(−M?λ) + G?(λ)

Solving the above optimization problem = finding a zero of

−M∂F ? ◦ (−M?) + ∂G?

The Douglas-Rachford algorithm boils down to ADMM when

A = −M∂F ? ◦ (−M?)

B = ∂G?

55/61

Block-components

Notation: denote by ζ(`) the `th block-component of ζ ∈ X |A1|+···+|AL|

ζ =

 ζ(1)

...

ζ(L)

 where ζ(`) = (ζ(`)(v))v∈A`

Let S be the DR operator of two maximal monotone operators A and B

Douglas-Rachford algorithm

ζn+1 =


J

(1)
S (ζn)

...

J
(L)
S (ζn)


This means that ζ

(`)
n+1 = J

(`)
S (ζn) for all ` = 1, . . . , L

56/61

Asynchronous Douglas-Rachford algorithm

Asynchronous Douglas-Rachford algorithm

At time n, select a subgraph ` ∈ {1, . . . , L} at random. Set

ζ
(`)
n+1 = J

(`)
S (ζn)

ζ
(k)
n+1 = ζ(k)

n for all k 6= `

We should

I prove that this ‘degraded’ algorithm still converges to Zer(S)

I make the implementation explicit

57/61

Convergence

Denote by ζn the sequence generated by the asynchronous DR algorithm

Assumptions

I The indices of the active subgraph at time n forms an iid sequence

I Zer(A + B) 6= ∅

Theorem (Iutzeler et al.’13, submitted)

Sequence ζn converges almost surely to a random variable supported by Zer(S)

Corollary
Sequence λn = JρB(ζn) converges a.s. to a r.v. supported by Zer(A + B)

58/61

Asynchronous algorithm explicited (1/3)

The consensus problem can be formulated as

inf
x∈XN

F (x) + G(Mx)

Example:

M =



1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


G = indicator of vectors of the form



α
α
β
β
δ
δ
δ


Let us explicit the asynchronous DR algorithm for the monotone operators

A = −M∂F ? ◦ (−M?) and B = ∂G?

59/61

Asynchronous ADMM explicited (2/3)

General case: Denote by A1, A2, · · · AL a collection of subgraphs

Each node v maintains the variables

xn(v), λ(`)
n (v), z (`)

n ∀` such that v ∈ A`

60/61

Asynchronous ADMM explicited (3/3)

.

2

4

531

.

At time n, a component A` is activated

All agents v ∈ A` compute

xn+1(v) = prox fv
ρ|σv |

(
1

|σv |
∑
k∈σv

(
z̄ (k)
n −

λ
(k)
n (v)

ρ

))

All agents in A` communicate to find the average

z̄
(`)
n+1 =

1

|A`|
∑
w∈A`

xn+1(w)

All agents v ∈ A` update

λ
(`)
n+1(v) = λ(`)

n (v) + ρ(xn+1(v)− z̄
(`)
n+1)

Other variables are maintained to former values

61/61

Asynchronous ADMM explicited (3/3)

.

2

4

531

.

At time n, a component A` is activated

All agents v ∈ A` compute

xn+1(v) = prox fv
ρ|σv |

(
1

|σv |
∑
k∈σv

(
z̄ (k)
n −

λ
(k)
n (v)

ρ

))

All agents in A` communicate to find the average

z̄
(`)
n+1 =

1

|A`|
∑
w∈A`

xn+1(w)

All agents v ∈ A` update

λ
(`)
n+1(v) = λ(`)

n (v) + ρ(xn+1(v)− z̄
(`)
n+1)

Other variables are maintained to former values

61/61

Asynchronous ADMM explicited (3/3)

.

2

4

531

.

At time n, a component A` is activated

All agents v ∈ A` compute

xn+1(v) = prox fv
ρ|σv |

(
1

|σv |
∑
k∈σv

(
z̄ (k)
n −

λ
(k)
n (v)

ρ

))

All agents in A` communicate to find the average

z̄
(`)
n+1 =

1

|A`|
∑
w∈A`

xn+1(w)

All agents v ∈ A` update

λ
(`)
n+1(v) = λ(`)

n (v) + ρ(xn+1(v)− z̄
(`)
n+1)

Other variables are maintained to former values

61/61

Asynchronous ADMM explicited (3/3)

.

2

4

531

.

At time n, a component A` is activated

All agents v ∈ A` compute

xn+1(v) = prox fv
ρ|σv |

(
1

|σv |
∑
k∈σv

(
z̄ (k)
n −

λ
(k)
n (v)

ρ

))

All agents in A` communicate to find the average

z̄
(`)
n+1 =

1

|A`|
∑
w∈A`

xn+1(w)

All agents v ∈ A` update

λ
(`)
n+1(v) = λ(`)

n (v) + ρ(xn+1(v)− z̄
(`)
n+1)

Other variables are maintained to former values

61/61

Asynchronous ADMM explicited (3/3)

.

2

4

531

.

At time n, a component A` is activated

All agents v ∈ A` compute

xn+1(v) = prox fv
ρ|σv |

(
1

|σv |
∑
k∈σv

(
z̄ (k)
n −

λ
(k)
n (v)

ρ

))

All agents in A` communicate to find the average

z̄
(`)
n+1 =

1

|A`|
∑
w∈A`

xn+1(w)

All agents v ∈ A` update

λ
(`)
n+1(v) = λ(`)

n (v) + ρ(xn+1(v)− z̄
(`)
n+1)

Other variables are maintained to former values

61/61

	Consensus and sharing
	Consensus problem
	Sharing problem

	The agreement algorithm
	First-order methods
	Basic algorithms
	Convergence analysis
	Convex non-smooth functions: error bounds
	Distributed stochastic approximation

	Alternating Direction Method of Multipliers
	Parallel implementation
	Distributed implementation
	Randomized ADMM

