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Complexity

What is complexity of a signal or image?

st : t ∈ S: a signal evolving over time S=[0,T ] or space S = [0,T ]× [0,T ]
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Complexity of a signal

Two signals st - which is more complex?
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Algorithmic Complexity of a String

abababababababababababababababababababababababababababababababab

4c1j5b2p0cv4w18rx2y39umgw5q85s7urqbjfdppa0q7nieieqe9noc4cvafzf

The algorithmic complexity (or algorithmic complexity) of a string s is the
length of its shortest description p on a universal Turing machine U

K (s) = min{l(p) : U(p) = s}

AC satisfies chain rule K (X ,Y ) = K (X ) + K (Y |X ) + O(log(K (X ,Y ))

However, while K (s) can always be bounded (|gzip s|), K (s) is not a
computable function

Algorithmic complexity captures the complexity of a single instance of
a string.
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Information: complexity of an ensemble

An alternative is to try to capture complexity of an ensemble of strings or
signals.

⇒ Information theoretic measures of complexity

Introduced by Weaver, Shannon, Kolmogorov

A. Hero (Digiteo and Univ. Michigan) Peyresque08 (Module 1) July, 2008 7 / 80



Probabilistic framework

Probability Model

(X ,A,P) : outcomes, events, probability function.

Sometimes it makes sense to assume a parameteric probability model:

P = Pθ belongs to a family P = {Pθ : θ ∈ Θ}.

Distingush between discrete and continuous random variables

P(X ∈ B) =

[ ∑
x∈B p(x), X discrete∫

x∈B f (x)dx ,X cts.

Expectation Operator: For any function Z = Z (x):

Eθ[Z ]
def
=

∫
suppdPθ(•)

Z (x)dPθ(x) =

∫
Z (x)fθ(x)dx
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High Entropy Feature Density
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Low Entropy Feature Density
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Mixture Feature Density
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Information: Shannon Entropy

Shannon entropy for a discrete r.v. X with pmf p(x)

H(X ) = H(p) = −
∑
x∈X

p(x) log p(x) = E

[
log

1

p(X )

]
Shannon entropy for a continuous r.v. X with pdf f (x)

H(X ) = H(f ) = −
∫

f (x) log f (x)dx = E

[
log

1

f (X )

]
Relative entropy

D(f ‖g) =

∫
f (x) log

f (x)

g(x)
dx

The relative entropy, also called the information (Kullback-Liebler)
divergence of pdf’s f and g , is non-negative

⇒Gibbs inequality

∫
f (x) log g(x)dx ≤

∫
f (x) log f (x)dx
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Conditional entropy and mutual information

Important cases of relative entropy

Conditional entropy between r.v.s X and Y

H(Y |X ) = −
∫

f (x , y) log
f (x , y)

f (x)
dxdy = −E [log f (Y |X )]

Mutual information between r.v.s X and Y

I (X ; Y ) =

∫
f (x , y) log

f (x , y)

f (x)f (y)
dxdy

Relation

I (X ,Y ) = H(Y )− H(Y |X ) = H(X )− H(X |Y )
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Some simple properties of discrete Shannon Entropy

Non-negativity

H(X ) ≥ 0, ; “ =′′ iff ∃µ : f (x) = δ(x − µ)

µ fixed

Concavity

H(εf +(1−ε)g) ≤ εH(f )+(1−ε)H(g), ” = ” iff f = g or ε ∈ {0, 1}

Chain rule

H([X ,Y ]) = H(X ) + H(Y |X ) = H(Y ) + H(X |Y )

Sub-additivity

H([X ,Y ]) ≤ H(X ) + H(Y ), ” = ” iff f (X ,Y ) = f (X )f (Y )

Continuous Shannon entropy satisfies all but the first property.
A. Hero (Digiteo and Univ. Michigan) Peyresque08 (Module 1) July, 2008 14 / 80



Extremal properties of Shannon entropy

If X is discrete with finite alphabet X={x1, . . . , xQ}

H(X ) ≤ log |X | = log Q, ” = ” iff p(xi ) =
1

Q
∀i

If X is continuous on X=IR with given finite variance
var(X ) = E [X 2]− E 2[X ]

H(X ) ≤ 1

2
log(2πσ2), ” = ” iff f (x) =

1√
2πσ2

e−
1

2σ2 (x−µ)2

For X in IRd with given finite covariance matrix Σ Shannon entropy is
maximized by multivariate Gaussian density with given covariance.
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Shannon entropy and source coding

Digital communication system (Gupta 2001)
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Shannon entropy and source coding
Discrete sources

Let X be a discrete random variable with finite alphabet X={a1, . . . , aQ}
where Q = 2n.

For each ai define binary codeword ci of length li , e.g., ci = 010, li = 3.

Average length of code is defined as

L = E [li ] =
Q∑

i=1

pi li
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Shannon entropy and source coding

Enumerative encoding strategy (Coolen 2004)

Codewords have identical lengths and L = n = log Q

log Q might be taken as a natural measure of complexity

H(X ) = log Q when pi = 1/Q, i.e., symbols are equally likely to occur
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Shannon entropy and source coding

Enumerative codewords are at leaves of the depth log Q tree
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Shannon entropy and lossless coding

If symbols are not equally likely a better (lower average length) code can be
obtained

Example (Coolen 2004)

For this example: L = 1
2 + 1

4 2 + 1
8 3 + 1

8 3 = 1.75
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Shannon entropy and lossless coding

This code is represented by a subtree of the enumerative code tree of depth
4

Example (Coolen 2004)
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Shannon entropy and lossless coding

Prefix code
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Shannon entropy and lossless coding

This Shannon entropy coding strategy is due to Huffman [3]

Codewords assigned to symbols {a1, . . . , aQ} in such a way that

2−li = lub (pi )

Huffman coding minimizes the average code length over all prefix codes.

Fundamental result:

H(X ) ≤ LHuffman ≤ H(X ) + 1

Conclude: Shannon entropy is average coding complexity for lossless
encoding of discrete source X
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Rényi Entropy

Rényi entropy for a discrete r.v. X with pmf p(x) (here α > 0)

Hα(X ) = Hα(p) =
1

1− α
log
∑
x∈X

pα(x) =
1

1− α
E
[
pα−1(X )

]
Rényi entropy for a continuous r.v. X with pdf f (x)

Hα(X ) = Hα(f ) =
1

1− α
log

∫
f α(x)dx =

1

1− α
E
[
f α−1(X )

]
Conditional Rényi entropy

Hα(X |Y ) =

∫
fY (y)

(
1

1− α
log

∫
f αX |Y (x |y)dx

)
︸ ︷︷ ︸

Hα(X |Y =y)

dy
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Some simple properties of Rényi Entropy

Non-negativity (discrete X)

Hα(X ) ≥ 0, ; ” = ” iff ∃µ : f (x) = δ(x − µ)

µ fixed

Concavity

Hα(εf +(1−ε)g) ≤ εH(f )+(1−ε)H(g), ” = ” iff f = g or ε ∈ {0, 1}

Sub-additivity

Hα([X ,Y ]) ≤ Hα(X ) + Hα(Y ), ” = ” iff f (X ,Y ) = f (X )f (Y )

Monotonic decreasing in α

Hα+∆(X ) ≤ Hα(X ), ∆ > 0

Unlike Shannon entropy Rényi entropy does not satisfy the chain rule
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Extremal properties of Rényi entropy

If X is discrete with finite alphabet X={x1, . . . , xQ}

Hα(X ) ≤ log |X | = log Q, ” = ” iff p(xi ) =
1

Q
∀i

If X is continous on X=IR with finite variance
var(X ) = E [X 2]− E 2[X ] then H(X ) is maximized by a student-t
density w 1 degree of freedom and identical variance.

For X in IRd with given finite covariance matrix Σ Rényi entropy is
maximized by multivariate Student-t density with given covariance
parameter (Vignat etal [7]).
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Limiting forms of Rényi entropy

Shannon entropy limit

lim
α→1

Hα(X ) = H(X )

Equally likely entropy limit

lim
α→0

Hα(X ) = log Q

Rarest outcome limit

lim
α→∞

Hα(X ) = log
1

min p(x)
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Rényi source encoding: “Source coding under siege”

Let X be a discrete random variable with finite alphabet X={a1, . . . , aQ}
where Q = 2n.

Baer (Thesis 2002) considers the average exponential length of code

C = E [2li ] =
Q∑

i=1

pi 2
li

As compared to the standard avg codelength E [li ], C emphasizes the longer
codewords. Ziad (Thesis 1998) proposes generalized average codeword
length (t > 0)

L(t) =
1

t
log

Q∑
i=1

pi 2
tli

Properties of Ziad’s measure:

lim
t→0

L(t) = E [li ], lim
t→∞

L(t) = max li , dL(t)/dt ≥ 0
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Rényi source coding theorem

If assign codewords to symbols {a1, . . . , aQ} in such a way that

2−li = lub

(
pαi∑Q

i=1 pαi

)

then

H1/(1+t)(X ) ≤ L(t) < H1/(1+t)(X ) + 1

NB: Baer (2007) has specified a modified Huffman prefix code construction
that satisfies the assignment condition.
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Multivariate extensions
Stationary sources

Defn: a discrete (continuous)source {Xi}∞i=−∞ is a random sequence with
discrete (continuous) alphabet.

Joint distribution of a source is described by its joint distributions, e.g. for a
discrete source

p(x−M , . . . , xM), M = 1, 2, . . .

A source is stationary if for any integers l and M

p(xl+1, . . . , xl+M) = p(x1, . . . , xM)

Two cases of stationary sources of interest

i.i.d. source p(x1, . . . , xM) =
∏M

i=1 p(xi )

First order Markov source p(x1, . . . , xM) = p(x1)
∏M

i=2 p(xi |xi−1)
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Multivariate extensions
Shannon joint entropy

The joint entropy of an M segment of a stationary discrete source
X1, . . . ,XM} is

H(X1, . . . ,XM) = −
∑

p(x1, . . . , xM) log p(x1, . . . , xM)

Example: i.i.d. source

H(X1, . . . ,XM) = MH(X1)

Example: stationary Markov source

H(X1, . . . ,XM) = (M − 1)H(X2|X1) + H(X1)

These relations also hold for stationary continuous sources

⇒ Joint entropy diverges as M →∞

A. Hero (Digiteo and Univ. Michigan) Peyresque08 (Module 1) July, 2008 31 / 80



Multivariate extensions
Shannon entropy rate

The Shannon entropy rate of a stationary source X = {Xi} is defined as

H(X ) = lim
M→∞

H(X1, . . . ,XM)

M

Example: i.i.d. source with P(X1 = i) = pi

H(X ) = H(X1) = −
∑

i

pi log pi

Example: stationary Markov source with P(X1 = i ,X2 = j) = pj |i pi

H(X ) = H(X2|X1) = −
∑
i ,j

pi pj |i log pj |i
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Multivariate extensions
Shannon entropy rate

Alternative definition of entropy rate

H
′
(X ) = lim

M→∞
H(XM |XM−1, . . . ,X1)

Thm: H(X ) = H
′
(X )
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Multivariate extensions
Rényi entropy rate

The Rényi entropy rate of a stationary source X = {Xi} is defined as

Hα(X ) = lim
M→∞

Hα(X1, . . . ,XM)

M

Example: i.i.d. source with P(X1 = i) = pi

Hα(X ) = Hα(X1) =
1

1− α
log
∑

i

pαi
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Multivariate extensions
Rényi entropy rate

For Markov sources the Rényi entropy rate is more complicated than in the
case of Shannon’s entropy rate

Thm (Ziad, 98): if X is a discrete Markov source with finite alphabet and
pi |j > 0 for all i , j , Then

Hα(X ) =
log λ(α,P)

1− α

where λ(α,P) is the largest eigenvalue of the matrix

R =


pα1|1 pα1|2 . . . pα1|A
pα2|1 pα2|2 . . . pα2|A

...
. . .

. . .
...

pαA|1 . . . pαA|A−1 pαA|A
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Multivariate extensions
Rényi entropy rate

Note, with previous definition of conditional Rényi entropy, it is not true that

Hα(X ) = H
′
α(X ) = lim

M→∞
H(XM |XM−1, . . . ,X1)

However, for discrete finite alphabet stationary sources we could adopt the
above as a definition of conditional Rényi entropy.
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Recap

Complexity of an ensemble X = average number of bits required to
optimally encode X .

Shannon entropy H(X ) is optimal code length that minimizes
redundancy

Rényi entropy Hα(X ) is optimal exponentiated code length that
minimizes redundancy

Rényi entropy Hα(X ) increasingly sensitive to tail behavior of f (x) as
α decreases to zero.
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Lossy source coding
Scalar quantization

Let X be a 1D source with continuous alphabet in IR. A N-level scalar
quantizer is defined by a mapping Q : IR→ {x1, . . . , xN} ⊂ IR

Scalar quantizer of a 1D continuous source X with density q(x)

C is a “codebook consisting” of intervals cells Si and quantization levels
x1, . . . , xN
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Lossy source coding
Vector quantization

Let X = [X1,X2] be a 2D source with continuous alphabet in IR. A N-level
vector quantizer Q is defined similarly to before

Q(x) = xi , xi ∈ Si

Product vector quantizer of a 2D continuous source X with density

q(x) = [q0(x) + q1(x)]/2)
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Lossy source coding
Optimal quantization

Obvious observation: any finite-bit encoding of a continous source will
necessarily entail some loss in information.

Quantization distortion measures for a given quantizer Q

Mean squared quantization error (MSQE)

MSQE = E [(X − Q(X ))T (X − Q(X ))] = E [‖X − Q(X )‖2]

Increase in minimum probability of decision error (decide q1 vs q0)

PQ
e = [P0(l(Q(X )) > η) + P1(l(Q(X )) < η)]/2

l(u) = q1(u)/q0(u) likelihood ratio

Linear combinations of the above
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Lossy source coding
Optimal quantization

Optimal MSQE quantizers produce equally likely codewords x1, . . . , xN for
given number of levels N (rate logN).

Optimal MSQE vector quantizer for uniform density q(x) = [0, 1]d
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Lossy source coding
Optimal quantization

Optimal MSQE quantizers produce equally likely codewords x1, . . . , xN for
given number of levels N (rate logN).

Optimal MSQE vector quantizer for density q(x) = [q0(x) + q1(x)]/2
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Lossy source coding
Rate distortion function

Shannon’s rate distortion function: R(D) = minE [ρ(X ,X̂ )]≤D I (X ,Y )

R is monotonic non-increasing function of distortion D

R is a theoretical limit (like channel capacity) and cannot generally be
achieved exactly

Practical high rate approximations to VQ can come close to limit
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Lossy source coding
High rate VQ

Let X = [X1, . . . ,Xd ] be a d-dimensional continuous source with jpdf.
q(x), x ∈ IRd .

Define {QN}N=1,2,... a sequence of N-level VQ’s

Let the i-th cell of QN have the cell volume

Vi = vol(Si ) =

∫
Si

dx ,

the piecewise constant point density function

ζ(x) =
1

NVi
, for x ∈ Si

and the specific inertial profile

m(x) =

∫
Si
‖y − xi‖2dy

V
1+2/d
i

, for x ∈ Si
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Lossy source coding
High rate VQ

....

Sequence of high rate VQs of 2D Gaussian source (N=250,500)
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Lossy source coding
High rate VQ

Assuming that QN converges we have the Bennett integral represention (Na
and Neuhoff 1995)

lim
N→∞

N2/d E [‖X − QN(X )‖2] =

∫
q(x)m(x)

ζ2/d (x)
dx

Proof:

I. Facts about spheres Si = S
(

x−xi
r

)
centered at xi of volume Vi in IRd .

Vi = c1r d , i.e., r = c2V
1/d
i∫

Si
(x − xi )dx = 0∫

Si
‖x − xi‖2dx = c3V

d+2
d

i
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Lossy source coding
Proof of Bennett’s integral representationpf MSQE

II. Summation representation of MSQE for smooth q(x)

MSQE =
∑

i

∫
Si

‖x − xi‖2q(x)dx

≈
∑

i

q(xi )

∫
Si

‖x − xi‖2dx

=
∑

i

q(xi )m(xi )V
d+2

2
i ,

m(xi )
def
=

∫
Si
‖x − xi‖2dx

V
d+2

2
i


=

∑
i

q(xi )m(xi )
1

(Nζ(xi ))2/d
Vi ,

(
ζ(xi )

def
=

1

NVi

)
=

1

N2/d

∫
q(x)m(x)

ζ(x)2/d
dx
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Lossy source coding
Zador-Gersho formula

Recall Bennett’s integral representation

lim
N→∞

N2/d E [‖X − QN(X )‖2] =

∫
q(x)m(x)

ζ2/d (x)
dx

By Hölder’s inequality or calculus of variations can easily show∫
q(x)m(x)

ζ2/d (x)
dx ≤

(∫
[q(x)m(x)]

d
d+2 dx

) d+2
d

with equality when “optimal point density” is used

ζ(x) =
[q(x)m(x)]

d
d+2∫

[q(y)m(y)]
d

d+2 dy

Under Gersho’s congruent cell hypothesis, m(x) = md independent of x and
we obtain Zador-Gersho formula

MSQE =
md

N2/d

(∫
q

d
d+2 (x)dx

) d+2
d
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Lossy source coding
Zador-Gersho and Rényi entropy

Alternative form of Zador-Gersho formula: for fixed encoder complexity
log N

d

2
log(MSQE/md ) = − log N+

1

1− α
log

(∫
qα(x)dx

)
= − log N+Hα(X )

with α = d
d+2 or, for fixed MSQE, the required encoder complexity is

log N = Hα(X )− c

Thus: Rényi entropy of source X controls the rate of decrease of the
optimal lossy encoder distortion.

Conclude: Rényi entropy captures encoder complexity

Discrete source: the depth of the lossless Huffman encoder

Continuous source: the depth of lossy encoder with specified MSQE
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Lossy source coding
Side information and conditional Rényi encoding

Let Y be a random variable representing side information at encoder and
decoder for compression of X and define q(x |y) the conditional distribution
of X given Y .

Then the depth of the optimal encoder of X given side information Y = y is

Lossless “siege” encoder (Discrete sources with |X | = N)

log N = Hα(X |Y = y)

where α = 1
1+t and

Hα(X |Y = y) =
1

1− α
log
∑

qα(x |y)

Lossy VQ encoder (Continuous sources encoded with N cell VQ)

log N = Hα(X |Y = y)− c

where α = d
d+2 and

Hα(X |Y = y) =
1

1− α
log

∫
qα(x |y)dx
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Side information and conditional Rényi encoding

Average depth over Y for these encoders proportional to conditional Rényi
entropy, e.g.,

E [log N] = Hα(X |Y )− c =

∫
q(y)

(
1

1− α
log

∫
qα(x |y)dx

)
dy − c

Shannon limits of conditional Rényi encoding complexity:

Lossless coding: as t → 0 average complexity converges to discrete
Shannon conditional entropy H1(X |Y ) = H(X |Y )

Lossy coding: as d →∞ average complexity converges to cts Shannon
conditional entropy H1(X |Y ) = H(X |Y )
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Shannon entropy and maximum likelihood estimation

Assume measurement X is a realization from a model density f (X |Y) given
parameter vector Y = Y1, . . . ,Yp.

Let X = X1, . . . ,Xn be i.i.d. sample from f (X |Y) for given Y

Maximum likelihood estimator of Y given X maximizes the likelihood
function f (X|Y)

Ŷ = argmaxy

n∏
i=1

f (Xi |y) = argmaxy

n∑
i=1

ln f (Xi |y)
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Rényi entropy and MLE with model selection
MDL and Rényi encoder complexity

When p is unknown one can try to jointly estimate Y, p.

Ŷ, p̂ = argmaxy,p

n∏
i=1

f (Xi |y) = argmaxy,p

n∑
i=1

ln f (Xi |y)

Problem: model overfitting - a sufficiently complex model (p ≥ n) can
perfectly fit a finite data sample.

(A) Soln: Penalize the likelihood function for model overcomplexity
(Rissanen, Wallace) [6],[8]
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Shannon entropy and MLE with model selection
MDL and Shannon encoder complexity

A lossy source coding derivation of Rissanen’s Minimum Description Length
penalty

Let P(Y) be a prior distribution on the parameter vector. Assume each of
the components of Y = [Y1, . . . ,Yp] is

continuous valued
independent identically distributed (iid)

Then the joint complexity of the data and the model is

H([X,Y]) = H(X|Y) + H(Y)

= −E [log f (X|Y)]− E [log f (Y)]

= −
n∑

i=1

E [log f (Xi |Y)]−
p∑

j=1

E [log f (Yj )]︸ ︷︷ ︸
−H(Yj )

Objective: select estimate Ŷ and model order p jointly to minimize
empirical estimate of H([X,Y])
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Rényi entropy and MLE with model selection
MDL and Rényi encoder complexity

Assuming large n

H([X,Y]) = −
n∑

i=1

log f (Xi |Y) +

p∑
j=1

H(Yi )

If discretize Yi with an N bit quantizer then for N large

log N = Hα(X )− c ≥ H(X )− c

α = 1/3 (d = 1)

For quantization loss to be neglible relative to estimation loss: require
MSQE on Yi be of same order as minimum MSE of an optimal estimator of
Yi given X

O(N−1/2) = MSQE = MSEE = O(n−1)

or N = n2
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Rényi entropy and MLE with model selection
MDL via Rényi encoder complexity

Obtain for large n

H([X,Y]) ≤ −
n∑

i=1

log f (Xi |Y) + 2p log n

When right hand side is minimized over Y, p obtain equivalent estimator to
Rissanen’s MDL penalized MLE.
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Entropy estimation

Let h(f ) be defined as a functional of f for given function φ

h(f ) =

∫
φ(f (x))dx

Example, φ(f ) = f α/(1− α)

h(f ) =
1

1− α

∫
f α(x)dx

Question: how to estimate h from empirical data?

Two methods to be discussed here

Explicit density plug-in estimator

ĥ = h(f̂ ), f̂ = f̂ (X1, . . . ,Xn)

Estimation without explicit plug-in

ĥ = ĥ(X1, . . . ,Xn)

First: digress to some peculiarities of high dimensional models
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Entropy estimation in high dimensions
Some peculiarities of high dimensional data (Theorem)

Let X = [x1, . . . , xd ] be a random vector uniformly distrbuted in unit cube
[0, 1]d

Theorem: for any ε > 0

P(ε ≤ xi ≤ 1− ε, ∀ i) ≤ e−2εd

Thus, as d →∞, X escapes to the “edge” of cube with overwhelming
probability - even though X uniform!
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Entropy estimation in high dimensions
Some peculiarities of high dimensional data (Proof)

Using the i.i.d. property of components of X

P(ε ≤ xi ≤ 1− ε, ∀ i) =
d∏

i=1

P(ε ≤ xi ≤ 1− ε)

= (1− 2ε)d

= exp(d log(1− 2ε))

≤ exp(−2εd) (log(1 + t) ≤ t)
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Entropy estimation in high dimensions
Some peculiarities of high dimensional data (Theorem)

Assume X1, . . . ,Xn are i.i.d. source symbols uniformly distributed in unit
cube [0, 1]d .

Theorem: for any 0 < r < 1

P(min
j 6=i
‖Xi − Xj‖ > r) = (1− Vd r d )n−1

Thus, as d →∞ nearest neighbor distances are greater than 1− ε with
overwhelming probability.

⇒ the samples Xi become increasingly isolated near the boundaries of
[0, 1]d !
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Entropy estimation in high dimensions
Some peculiarities of high dimensional data (Proof)

P(min
j 6=i
‖Xi − Xj‖ > r) =

∫
P(min

j 6=i
‖Xi − Xj‖ > r |Xi )f (Xi )dXi

=

∫
Pn−1(‖Xi − Xj‖ > r |Xi )f (Xi )dXi

=

∫
(1− Vd r d )n−1f (Xi )dXi

= (1− Vd r d )n−1
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Entropy estimation in high dimensions
Lessons learned

For a sample of n i.i.d. realizations from a d-dimensional uniform density
over [0, 1]d

As dimension d increases almost all realizations cluster near boundaries
of cube

This phenomenon is due to the increased likelihood of a large deviation
in one of components of an Xi .

Similar phenomenon occurs for non-uniform density supported on
[0, 1]d .

Difficult to discriminate between densities differing near the mean but
having similar tails.
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Entropy estimation in high dimensions
Some peculiarities of high dimensional data

These pecularities are not mere artifacts for uniform density
f (x) = I[0,1]d (x).

Example: X1, . . . ,Xn i.i.d. with standard d-variate normal Gaussian density.
Then (Marron 2008)

‖Xi‖ =
√

d + O(1): samples lie on surface of sphere of fixed radius

‖Xi − Xj‖ =
√

2d + O(1): samples become increasing seperated

cos−1
(

X T
i Xj

‖Xi‖‖Xj‖

)
= 90o + O(1/

√
d): samples become pairwise

equidistant and orthogonal
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Entropy estimation in high dimensions
Some peculiarities of high dimensional data

Examples (Marron 2008)

Conclude: Density estimation will become difficult as d increases.
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Density estimation
Methods

How to estimate the density f (x) of a source X ?

Some proposed methods

Parameteric density estimators

Histogram estimators

kNN density estimators

Kernel density estimators

There exists much theory on density estimation that has been applied to
optimize and compare performance Devroye and Lugosi 2001 [1], Devroye
1987 [2], Marron and Hall and Hu [5].
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Density estimation
Problem setup

Assume i.i.d. observations: X1, . . . ,Xn over IRd

Generating density: X f̃ , f : IRd → [0,∞)

Function class: f ∈ F is restricted to be smooth

A density estimator f̂ is a function on IRd indexed by the sample

f̂ (x) = f̂ (x ; X1, . . . ,Xn), x ∈ IRd
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Density estimation
Parametric density estimation

Assume that density class F = FΘ = {gθ : θ ∈ Θ} is a family of functions
parameterized by a small number of parameters θ = [θ1, . . . , θp].

Parametric θ̂ estimator of θ provides plug-in estimator of density

f̂ (x) = gθ̂(x)

Most common approach: maximum likelihood parameter estimator

θ̂ = argmaxθ∈Θ

n∏
i=1

gθ(Xi ) = argmaxθ∈Θ

n∑
i=1

log gθ(Xi )

Properties of MLE for finite dimensional smooth densities

Strong consistency: θ̂ → θ (w.p.1)

Asymptotic unbiasedness: Eθ[θ̂]→ θ

Minimum asymptotic covariance:
covθ(θ̂) = 1

nFθ = 1
n Eθ[−∇2 log fθ(X1)]
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Density estimation
Parametric density estimation

If f ∈ FΘ then parametric density estimator has many desirable properties -
inherited from finite dimensional MLE θ̂ (Ibragimov and Hasminkii [4])

For all x ∈ IRd

f̂ → f (x) = gθ(x) (w.p.1)

E [f̂ (x)]→ f (x) as n→∞, estimator is asymptotically unbiased

var(f̂ (x)) = O(1/n) for large n

MSE decreases at rate 1/n

E [(f̂ (x)− f (x))2] = var(f̂ (x)) + (E [f̂ (x)]− f (x))2 = O(1/n)
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Density estimation
Parametric density estimation

Equivalently: √
E [(f̂ (x)− f (x))2] = O(1/

√
n)

and we say that the density estimator MSE has “root-n consistency”

It is more customary to use the mean integrated squared error to measure
performance of a density estimator

MISE =

∫
E [(f̂ (x)− f (x))2]dx

When f has bounded support, these properties guarantee that MISE also
has root-n consistency
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Density estimation
Parametric density estimation

If f 6∈ FΘ then parametric density estimator is not consistent (Ibragimov
and Hasminkii [4])

For all x ∈ IRd

f̂ → gθo 6= f (x) (w.p.1), where θo = argminθ∈ΘD(f ‖fθ).

E [f̂ (x)]→ gθo , irreducible bias

var(f̂ (x)) = O(1/n), dominated by bias

MISE does not converge to zero in limit of large sample size
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Density estimation
Histogram estimators

Assume f (x) has support in [0, 1]d and let {Si} be a uniform partition of
[0, 1]d into N cells each of volume 1/N.

Define nj =
∑n

i=1 ISj
(Xi ) the number of observations falling into cell Sj

The histogram density estimator is the peicewise constant function

f̂ (x) =
N∑

j=1

nj

n|Sj |
ISj

(x)
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Density estimation
Histogram estimator

For large N:

MISE ≈ N

n
+ N−2/d c

c = 1
4

∫
tr
(
∇2f (x)

)
dx

To ensure bounded MISE, assume F is a set of smooth densities satisfying
c(f ) ≤ cmax .

Variance ( N
n ) does not depend on f but bias (N−2/d c) does.

Maximum MISE over f ∈ F is worst case MISE

max
f

MISE =
N

n
+ N−2/d cmax

Worst case MISE has a bias vs variance tradeoff over N
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Density estimation
Histogram estimator (Proof)

Using

f̂ (x) =
N∑

j=1

nj

n|Sj |
ISj

(x), E [f̂ (x)] =
N∑

j=1

pj

|Sj |
ISj

(x)

where pj = P(Xi ∈ Sj ) and |Sj | = 1/N.

MISE =

∫
var(f̂ (x))dx +

∫
(E [f̂ (x)]− f (x))2dx

=
N∑

j=1

∫
Sj

var(f̂ (x))dx +
N∑

j=1

∫
Sj

(E [f̂ (x)]− f (x))2dx

=
N∑

j=1

∫
Sj

1

|Sj |2
var
(nj

n

)
dx +

N∑
j=1

∫
Sj

(pj/|Sj | − f (x))2dx
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Density estimation
Histogram estimator (Proof (ctd))

MISE =
N∑

j=1

1

|Sj |
1

n
pj (1− pj ) +

N∑
j=1

∫
Sj

1

2
(x − xj )∇2f (xj )(x − xj )dx

=
N

n

N∑
j=1

pj (1− pj ) +
N∑

j=1

1

2
tr

(∫
Sj

(x − xj )
T (x − xj )

T dx ∇2f (xj )

)

Note: As Si is a cube in IRd with side N−1/d∫
Sj

(x − xj )(x − xj )
T dx = N−2/d |Sj |

2
I

and
∑N

j=1 pj (1− pj ) = 1 + O(1/N)
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Density estimation
Histogram estimator performance (Proof)

Therefore

MISE =
N

n
+ N−2/d

N∑
i=1

tr
(
∇2f (xi )

) 1

4N
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Density estimation
Histogram estimator (Convergence Theorem)

Again, for large N:

MISE ≈ N

n
+ N−2/d c

The histogram density estimator bias-variance tradeoff is optimized by
choosing N increasing in n at optimal rate that minimizes maximum MISE.

Theorem: Define Nopt = argminN maxf ∈F MISE. Then

Nopt = (cmax n)
d

d+2 and resulting minimax MISE is

MISE ∗ = min
N

max
f ∈F

MISE = an−
2

d+2

where a = (2cmax/d)
d

d+2 + c(2cmax/d)
−2
d+2
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Density estimation
Plug-in entropy estimator performance (Theorem)

Recall form of plug-in entropy estimator

ĥ = h(f̂ )

Define norm ‖f̂ − f ‖2 =
∫

(f̂ − f (x))2dx .

Theorem: Assume

1 MISE-consistent f̂ : limn→∞
∫

E [(f̂ (x)− f (x))2]dx = 0 (w.p.1))
2 h(f ) =

∫
φ(f (x))dx is a smooth functional of f

3
∫
|φ′(f (x))|2dx <∞

Then ĥ is a consistent estimator of entropy.

Furthermore, if minimax histogram estimator is used then for large n

E [(ĥ − h)2] = bn−
2

d+2
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Density estimation
Plug-in entropy estimator performance (Proof)

We have

ĥ = h(f̂ ) = h(f ) +

∫
φ
′
(f (x))(f̂ (x)− f (x))dx + O(‖f̂ (x)− f (x)‖)

By CS inequality(∫
φ
′
(f (x))(f̂ (x)− f (x))dx

)2

≤
∫
|φ′(f (x))|2dx

∫
(f̂ (x)− f (x))2dx

which converges to zero as n→∞.

Recall that for the minimax histogram estimator

MISE ∗ =

∫
E [(f̂ ∗ − f )2] = an−

2
d+2

which guarantees that MSE of ĥ will have the same rate.
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Density estimation
Drawbacks

Drawbacks of density estimation methods for entropy estimation

Bandwidth selection σ = N−1/d may be difficult

Datastructures for histograms are impractical in very high dimensions

Convergence rate becomes logarithmic in N for large d

N−1/d =
d

d + log N
+ O(1/d)

May have few samples (fewer than dimensions) in some cases

Density estimation in very high dimensions is fraught with difficulties
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