
Improved EMVD for RAW video denoising
Zhe ZHENG, Gabriele FACCIOLO, Pablo ARIAS

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Centre Borelli, 91190 Gif-sur-Yvette, France
{zhe.zheng,gabriele.facciolo,pablo.arias-martinez}@ens-paris-saclay.fr

Résumé – Ces derniers temps, le domaine du débruitage d’images et de vidéos connaı̂t une révolution grâce à l’apprentissage profond. Ces
méthodes sont plus performantes que les approches traditionnelles basées sur des modèles dans presque tous les problèmes de restauration
d’images et de vidéos. Dans cet article, nous nous concentrons sur une approche récurrente récemment proposée pour le débruitage vidéo, à
savoir la méthode de débruitage vidéo multi-étapes efficace (EMVD) [1]. Elle se compose de trois étapes, à savoir la fusion, le débruitage et le
raffinement. Nous proposons d’améliorer les performances de trois manières. (1) Nous appliquons la compensation de mouvement pour mieux
utiliser la redondance temporelle, (2) nous appliquons la stabilisation de la variance pour aider ce réseau léger à gérer le bruit dépendant du signal
et (3) nous découplons la détection des occultations et la prédiction des poids de fusion.

Abstract – Recently, the field of image and video denoising is undergoing a revolution thanks to deep learning. These methods outperform
traditional model-based approaches in almost every image/video restoration problem. In this paper, we focus on a recently proposed recurrent
approach for video denoising, namely Efficient Multi-stage Video Denoising method (EMVD) [1]. It consists of three stages, including fusion,
denoising, and refinement stages. We propose to improve performance in three ways. (1) We apply motion compensation to make better use
of temporal redundancy, (2) we apply variance stabilization to help this light-weighted network deal with signal-dependent noise and (3) we
decouple occlusion detection and fusion weights prediction.

1 Introduction

Digital images/videos are inevitably corrupted by the na-
ture of imaging process, like the photon counting or electronic
readout noise. These result in noise which reduces the visual
quality and limits further usage of images and videos. As a
consequence, it is highly needed to perform restoration tech-
niques to obtain high-quality images/videos. Denoising is one
of the most important steps among the camera pipeline. In the
past decades many methods have been proposed for this pur-
pose. Recently, along with the development of the computa-
tional power of GPUs, models based on deep neural networks,
drew considerable attention since they do show great perfor-
mance on this task.

In the context of video denoising, making use of tempo-
ral redundancy is of critical importance. This characteristic
of videos should facilitate denoising performance compared
with single image denoising, as it provides additional infor-
mation. Deep learning based methods have been applied to
video denoising since 2016 [2], and several methods based on
convolutional neural networks (CNN) have been proposed, e.g.
[3, 4, 5]. In spite of their good performance, deep learning
based methods have not been adopted by the industry, espe-
cially for real-time applications or low-power devices, due to
their high computational cost. Efficiency is a key aspect for
practical video restoration. Yet, the methods in most of the
current literature focus on quality rather than efficiency. For
example, they process many input frames (past and future) to

29.24 dB 35.03 dB 35.60 dB

Figure 1: Comparison between results given by using warping
or not, PSNR values are indicated. Left: noisy frame; Center:
EMVD result without warping; Right: improved result using
warping.

produce each output frame. On the other hand, traditional ap-
proaches for real-time applications often rely on recurrence: a
recurrent method receives as input its own output for the previ-
ous frame or more generally, an encoding of it. This allows to
incorporate information from past frames, without incurring in
excessive cost [6, 7]. This can reduce computational and mem-
ory cost, plus it enforces temporal consistency in a natural and
direct way.

Recurrent CNNs for video processing have attracted atten-
tion [8], and in this paper we will focus on the EMVD (Effi-
cient Multi-stage Video Denoising) method introduced in [1].
It is a lightweight model which combines temporal averaging
with spatial denoising. It has a very low computational cost,
interpretable architecture and still reports a performance com-
parable to other state-of-the-art methods.

In this work we propose three modifications to the EMVD
method. (1) We apply motion compensation to make better use
of temporal redundancy; (2) we apply variance stabilization to
help this lightweight network deal with signal-dependent noise
and (3) we set the variance of temporal fusion as an additional
input to fusion network. We evaluate the obtained results on a
synthetic dataset of RAW videos. Ablation studies are also re-
ported, demonstrating a significant performance improvement
due to the motion compensation.

2 Review of EMVD
The EMVD method is composed of 3 convolutional net-

works, which correspond to 3 processing stages: fusion, pre-
denoising and refinement. The input data is mapped into a
transformed domain by a color and a frequency trainable trans-
forms. We will denote the clean and noisy video by yt(x) and
zt(x) respectively, where x represents spatial location on the
frame and t is the frame index.

Trainable transforms. Each noisy frame zt is pre-processed
by linear trainable color and frequency transforms. The color
transform Tc is a matrixM ∈ RC×C , whereC is the number of
channels (4 for a packed RAW frame). It aims at decorrelating
the color to luminance-chrominance representation, and its ini-
tial value is the same as proposed in [9]. The frequency trans-
form decorrelates the input frequencies into four half-resolution
components: one low-pass LL subband and three high-pass
LH, HL, HH subbands. It is initialized with the Haar transform,
whose decomposition and reconstruction filters are denoted by
ψ and ϕ. At the output of the network the inverse transforms
are applied. To enforce the invertibility of the transforms dur-
ing training, two additional loss terms are added:

Lc = ∥MMT − IC∥2F , Lf = ∥ψϕT − I2∥2F . (1)

Temporal fusion. EMVD achieves temporal denoising by keep-
ing running frame average ȳt, and its corresponding variance
map σ̄2:

ȳt = ȳt−1 ⊙ γt + zt ⊙ (1− γt), (2)

σ̄2
t = σ̄2

t−1 ⊙ γ2t + σ2
t ⊙ (1− γt)

2, (3)

where ⊙ denotes the element-wise product. The average weight
maps γt are between zero and one, and are computed by the fu-
sion network FCNN, which takes as input the absolute value of
the difference between the LL subbands of zt and the previous
average ȳt−1, together with the input’s noise variance map σ2

t :

γt = FCNN(|zLL,t − ȳLL,t−1|, σ2
t). (4)

The fusion weights should allow temporal averaging at loca-
tions where zt and ȳt−1 are well aligned and prevent averaging
if changes are detected. In these locations, the output should
coincide with the noisy input zt. The running average is initial-
ized with the first noisy frame.

Denoising and refinement. The remaining stages of EMVD
apply a spatial denoising to ȳt. This is divided into two steps:
a pre-denoising and a final refinement. The pre-denoising is
given by a denoising network DCNN, which takes as input the
temporal average and its variance map, plus the LL subband of
the noisy frame

ỹt = DCNN(ȳt, zLL,t, σ̄
2
t). (5)

The refinement is a weighted average of the pre-denoised frame
ỹt and the temporal average, with weights computed by the
refinement network RCNN:

ωt = RCNN(ỹt, ȳt, σ̄
2
t) (6)

ŷt = ȳt ⊙ ωt + ỹt ⊙ (1− ωt). (7)

The EMVD method can be easily extended to a multiscale
structure by applying frequency transform several times. In our
experience, the effect of this multiscale structure is marginal.
For the sake of simplicity, we omit it in this work. Please refer
to [1] for details.

3 Improvements on EMVD

Motion compensation. Since the temporal fusion (2) is just a
temporal average, a good frame alignment is essential to attain
good results. This is especially true for videos with background
movement. In our experiment, we use the REDS dataset [10],
which is captured by a hand-held camera, resulting in a lot of
motion in these sequences. We choose the TV −ℓ1 method [11,
12] to compute the optical flow between the noisy frames t and
t − 1, which we use to warp the previous temporal average
ȳt−1 and align it to zt. This will enable us to make better use
of temporal redundancy.

Variance stabilization. The noise in the RAW video can be ap-
proximated as a heteroscedastic Gaussian with signal-dependent
variance. A variance stabilizing transform (VST) can trans-
form this noise to a standard additive Gaussian white noise
(AGWN). VSTs are a common way to adapt a AGWN denoiser
to real noise. With learning-based methods, VSTs are not nec-
essary anymore, as it has been shown that the networks can
handle signal dependent noise. However, since the networks
in EMVD are rather small, stabilizing the variance might help.
The procedure of applying VST involves three steps. First, we
transform the noisy data by a nonlinear VST which is designed
for a specific noise model. Then, we denoise such transformed
data. Lastly, we apply an inverse VST to the denoised data,
obtaining data in the original range.

For the signal-dependent Gaussian noise we assume nt(x) ∼
N (0, ayt(x) + b), and we use the following VST: f(x) =
2
a

√
ax+ b.After the VST, we have approximately AWGN with

unit variance. We invert the VST with the algebraic inverse
f−1(x) = ax2

4 − b
a . This inverse is known to introduce a bias

for dark values [13], but since the bias is deterministic, the net-
work can learn to compensate it.

Decoupling occlusion detection and fusion weights predic-
tion. In the original EMVD paper [1], the fusion network
FCNN aims at estimating the combination weights between
temporal fusion ȳt−1 and the current noisy frame zt. These
weights fulfill two goals: (1) They have to avoid using the mo-
tion compensated ȳt−1 in locations where the alignment failed,
and (2) in the regions where the alignment is accurate, the
weight has to be chosen to determine an optimal temporal fu-
sion. For the latter, it is reasonable to give as input to the fu-
sion network both the estimated variances of the current noisy
frame σ2

t and of temporal fusion σ̄2
t−1. Indeed, assuming that

the alignment is correct at pixel x, the optimal weights (in the
means square error sense) are given by the variance ratio (VR)
V(zt(x))/(V(ȳt−1(x))+V(zt(x))). Note however, that in [1],
only the variance of zt is given as input to the network (see Eq.
(4)).

Directly adding the estimated temporal fusion variance as in-
put to the fusion network is problematic. Indeed, σ̄t−1 itself is
a function of the previous fusion weights γt−1. This feedback
loop creates a bias in the fusion network towards low fusion
weights. So we propose to decouple the two tasks of the fusion
network. We first compute the alignment weights as in [1], and
then we multiply them by the optimal fusion weights:

γocct = FCNN(|zLL|t − ȳLL|t−1|, σ̂2
t), (8)

γt = γocct × σ2
t

σ̄2
t−1 + σ2

t

. (9)

4 Experiments

Training settings. At the beginning of each epoch we load a
set of spatio-temporal volumes. We sample crops of a spatial
size 136 × 136 with 5 consecutive frames and choose mini-
batches of size 2 to train the network. By choosing 5 consec-
utive frames, the recurrence is run 4 times (the first frame is
used as initialization for the temporal fusion). Following the
terminology used in recurrent networks, we call “unrollings”
each iteration of the network.

The total loss is the sum of the losses for the color and fre-
quency transforms (1), and ℓ1 image reconstruction loss as cri-
terion in the training. The reconstruction loss is a weighted
sum of the outputs of the unrollings:

loss(ŷt, ỹt) =
n∑

t=1

wt (λo∥yt − ŷt∥1 + λd∥yt − ỹt)∥1) , (10)

where
∑n

t=1 wt = 1. Note that we have added a loss term for
the output of the pre-denoising network ỹt, which is absent in
the original work [1]. The reason for this is that there are sev-
eral combinations of refinement weights wt and pre-denoising

ỹt which verify yt ≈ ȳt ⊙ wt + ỹt ⊙ (1 − wt). In most cases,
the training converges to the expected solution, where ỹt is a
preliminary estimation of the clean frame yt (typically over-
smoothed), and is then refined by adding back some details
from ȳt. But in some cases the training converges to other so-
lutions which are less interpretable, although they might have
a similar final PSNR. We use λo = 100 and λd = 1, and in this
way we ensure convergence to the expected solution.

To speed up the training, we use a transition strategy for the
unrolling weights wt. We set 100% weight on the first un-
rolling in the first 20 epochs, in this way we only need to run
the first unrolling. In the next 5 epochs, we gradually shift the
weights to the last unrolling. The final weights are, 90% on the
last unrolling, and the remaining 10% weights divided evenly
among the first 3 unrollings. The reason why we prefer putting
most of the weight on the last unrolling is that, at test time the
network will be applied to long sequences of frames. Although
the network was not trained with many unrolled frames the last
unrolling is assumed to be the closest to the steady state in the
testing.

We use the Adam optimizer [14] to update the weights. The
total training takes 100 epochs. During the first 70 epochs,
the network is trained with a fixed learning rate (2e-4 in our
experiments) and in the following 30 epochs, the learning rate
would be reduced at each epoch linearly to 0.

Dataset. We use data from the public REDS [10] dataset. The
original videos are RGB captured at 30 frames per second.
This dataset consists of 270 sequences with 90 frames of size
1280 × 720 pixels, split into 240 sequences for training and
30 of them for testing and validation. To simulate RAW data,
we use an unprocessing pipeline similar to that of [15]. This
unprocessing consist in inverting the main steps of an image
camera pipeline: inverse tone mapping; inverse Gamma curve;
inverse color matrix; inverse white balance; mosaicking.

After unprocessing, we added noise of two levels to the RAW
sequences, using noise model which are estimated from the
CRVD dataset [16], ISO3200 and ISO12800. We store each
image as 4 channel images of half the size. Each channel cor-
responds to a phase of the mosaicking pattern.

Experimental results. We report the ablation study on the
methods we proposed in Table 1. To assess how the network ca-
pacity would influence the performance, we consider the EMVD
under two configurations, one allocating a small capacity with
3 layers and 16 features for each one of the three networks, the
other one with a big capacity has 5 layers and 64 features for
all three networks. We use “S” and “L” for small and big con-
figurations respectively in the table. In all cases, warping leads
to big improvement. This is reasonable, since there is a lot
of motions in the REDS dataset. Without temporal alignment,
the fusion weights are mostly 0, meaning that the network just
performs a single image denoising (see Figure 1).

Table 1: Ablation study of proposed improvements in terms of
PSNR. Results for two ISOs, and two network capacities.

ISO net full no VST no VR no VST, no VR no warp

12.8k S 36.21 36.32 36.25 36.24 35.66
L 37.74 37.77 37.78 37.84 37.09

3.2k S 40.95 40.77 40.77 40.86 37.37
L 42.12 42.04 42.12 42.02 41.63

Figure 2: Comparison between fusion weights under different
settings. From left to right: no VR, no VST, full.

For the other modifications, i.e. VST and the multiplication
by the variance ratio (VR), we obtain very similar PSNR val-
ues. Inspecting the intermediate results we observed that the
VST does not improve them either, while exploiting extra vari-
ance information can lead to 0.2-0.4 dB gains in the output of
temporal fusion, depending on the capacity of networks. These
modifications are expected to improve temporal fusion. Fig-
ure 2 shows different fusion weights under different settings.
We can see that without the VST, the fusion weights are more
correlated with the image content. This is to be expected, as the
variance is proportional to the image. It can also be observed
that when adding the product with the variance ratio, the fusion
weights tend to be higher (e.g. in the sky), which implies more
temporal averaging.

5 Conclusions
In this paper, we reviewed the EMVD method, a lightweight

and interpretable recurrent video denoising CNN. We proposed
to improve this method in three ways, including applying VST,
incorporating the variance of temporal fusion in the computa-
tion of the fusion weights, and motion compensation. Among
these, the latter makes significant improvement, which stresses
the importance of using temporal redundancy in video process-
ing. The other modifications have a positive effect on the tem-
poral fusion (specially the VR), however this gain does not re-
flect in the final PSNR. A possible reason for this is that the
gains are located in smooth parts of the image that are easy to
handle by denoising network.

References

[1] M. Maggioni, Y. Huang, C. Li, S. Xiao, Z. Fu, and
F. Song, “Efficient multi-stage video denoising with re-
current spatio-temporal fusion,” in CVPR, 2021.

[2] X. Chen, L. Song, and X. Yang, “Deep rnns for video
denoising,” in Applications of digital image processing
XXXIX. SPIE, 2016, vol. 9971, pp. 573–582.

[3] A. Davy, T. Ehret, J.-M. Morel, P. Arias, and G. Facciolo,
“A non-local cnn for video denoising,” in ICIP. IEEE,
2019.

[4] M. Claus and J. van Gemert, “Videnn: Deep blind video
denoising,” in CVPR, 2019.

[5] M. Tassano, J. Delon, and T. Veit, “Fastdvdnet: Towards
real-time deep video denoising without flow estimation,”
in CVPR, 2020.

[6] P. Arias and J.-M. Morel, “Kalman filtering of patches for
frame-recursive video denoising,” in CVPR Workshops,
2019.

[7] T. Ehret, J.-M. Morel, and P. Arias, “Non-local kalman:
A recursive video denoising algorithm,” in ICIP. IEEE,
2018.

[8] T. Isobe, X. Jia, S. Gu, S. Li, S. Wang, and Q. Tian,
“Video super-resolution with recurrent structure-detail
network,” in ECCV. Springer, 2020, pp. 645–660.

[9] A. Buades and J. Duran, “Cfa video denoising and de-
mosaicking chain via spatio-temporal patch-based filter-
ing,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 30, no. 11, pp. 4143–4157, 2019.

[10] S. Nah, S. Baik, S. Hong, G. Moon, S. Son, R. Timofte,
and K. Mu Lee, “Ntire 2019 challenge on video deblur-
ring and super-resolution: Dataset and study,” in CVPR
Workshops, 2019.

[11] C. Zach, T. Pock, and H. Bischof, “A duality based ap-
proach for realtime tv-l 1 optical flow,” in Joint pattern
recognition symposium. Springer, 2007.

[12] J. S. Pérez, E. Meinhardt-Llopis, and G. Facciolo, “Tv-l1
optical flow estimation,” Image Processing On Line, vol.
2013, pp. 137–150, 2013.

[13] M. Makitalo and A. Foi, “Optimal inversion of the gen-
eralized anscombe transformation for poisson-gaussian
noise,” IEEE transactions on image processing, vol. 22,
no. 1, pp. 91–103, 2012.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[15] T. Brooks, B. Mildenhall, T. Xue, J. Chen, D. Sharlet,
and J. T. Barron, “Unprocessing images for learned raw
denoising,” in CVPR, 2019.

[16] H. Yue, C. Cao, L. Liao, R. Chu, and J. Yang, “Super-
vised raw video denoising with a benchmark dataset on
dynamic scenes,” in CVPR, 2020.

