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Résumé – Le nouveau paradigme adopté dans cet article consiste, dans un schéma de compression, à adapter l’étage de transformation linéaire
et celui de quantification à l’utilisation finale du signal compressé. La métrique de performance finale retenue est une norme de type Lp qui
apparait dans de nombreuses applications et notamment pour le problème fondamental d’ordonnancement de consommation électrique flexible
(par exemple pour la charge de véhicules électriques). En appliquant l’approche proposée à des données réelles issues de la base de données
Ausgrid, nous montrons que celle-ci permet d’avoir une perte d’optimalité due à la compression qui est bien moindre qu’un étage linéaire
standard suivi d’un quantificateur uniforme.

Abstract – In this paper, a goal-oriented coding scheme comprising both precoding and quantization is considered in smart grids. Instead of
searching a trade-off between compression ratio and distortion, our objective is to transmit the most relevant information to the decision-making
entity under few bits constraint so that the optimality loss is minimized for a given utility function. Numerical results show that our approach
could reduce the optimality loss tremendously compared to conventional compression approach, even when the target bitrate is extremely limited.

1 Introduction

The growing size of the electricity transport and distribution
infrastructure leads to increasing needs to characterize its state.
For that purpose, the states of the electricity network are mea-
sured by many sensors, generating a massive volume of data.
Therefore, data compression is required to limit transmission
and storage resource requirements [1].

Data compression techniques are either lossless or lossy [2].
For instance, for the target application of this paper, which
is the problem of flexible power consumption in smart grids,
[3] uses a lossless compression scheme for power quality data.
Lossy compression achieves usually a higher compression ra-
tio, at the price of some distortion introduced in the compres-
sed data. The two first stages of a lossy compression scheme
are typically a (linear) transform and a (uniform) quantizer. In
[4] and [5], the discrete wavelet transform (DWT) is exploited
for compressing power quality disturbance data.

The conventional data compression paradigm aims at rea-
ching a tradeoff between the compression ratio and the resul-
ting distortion. In the present paper, we revisit this paradigm by
tailoring the compression stages to the final use of the compres-
sed data. For that purpose, we rely on recent results developed
in [6, 7, 8]. The concept of goal-oriented quantization has been
introduced in [6, 7] and goal-oriented precoding schemes have
been proposed in [8]. In the present paper, we consider a rele-
vant utility function, which can be applied into the key problem

such as the total energy consumption, the peak power and Joule
losses minimization, and design a compression scheme which
includes both the precoder and the quantizer and is adapted to
the considered performance metric.

The paper is structured as follows. In Section 2, we introduce
the coding scheme and formulate the problem to be solved.
In particular, a utility function is considered to be maximized
and an optimality loss, which need to be reduced, is introdu-
ced. To solve the considered problem, goal-oriented precoding
and quantization schemes are proposed in Section 3. Section 4
shows the numerical results. Section 5 concludes this paper.

2 Problem formulation
Consider a decision-making entity with the following perfor-

mance metric or utility function

u (x; ℓ) = −||x+ ℓ||p (1)

where x = [x1, x2, . . . , xP ]
T ∈ RP

+ corresponds to the deci-
sion to be made, ℓ = [ℓ1, ℓ2, . . . , ℓP ]

T ∈ RP is a vector of
non-controllable but observable parameters, and ||x||p stands
for the Lp-norm : ∥x∥p = (|x1|p + · · · + |xn|p)1/p. In the
case of a home power consumption scheduler (e.g., for an elec-
tric vehicle), x would represent the flexible power consumption
and ℓ can represent the non-flexible part. Assume that E > 0
indicates the total flexible power consumption budget. The op-
timization problem (OP) consisting in maximizing the utility



with respect to x can be written as

maximize
x

u (x; ℓ)

s.t.
P∑

j=1

xj − E = 0

xj ⩾ 0, j = 1, . . . , P,

(2)

and x⋆ (ℓ) is one solution for this OP. Due to limitations in
terms of volume of data that may be transmitted, the exact/actual
value of ℓ may be typically unavailable to the decision maker.
We consider a situation where a lossy compression technique
is used to reduce the amount of data to be transmitted to the de-
cision maker. The latter has then only access to an approximate
version ℓ̂ ∈ RP of ℓ. The decision is made based on ℓ̂ while the
utility function still experience the real parameter ℓ, leading to
the de facto utility of the system expressed as

u(x⋆(ℓ̂); ℓ) = −||x⋆(ℓ̂) + ℓ||p. (3)

One always has u(x⋆(ℓ̂); ℓ) ⩽ u (x⋆ (ℓ) ; ℓ) due to the ap-
proximation of ℓ by ℓ̂ which leads to an optimality loss.

quantization transmission decodingprecoding

FIGURE 1 – Coding scheme

Figure 1 illustrates the coding scheme that we consider to
minimize the expected optimality loss

Eℓ

[∣∣∣u (x⋆ (ℓ) ; ℓ)− u(x⋆(ℓ̂); ℓ)
∣∣∣2] , (4)

where the expectation is performed with respect to ℓ. The pre-
coding function g maps a given parameter ℓ to its encoded ver-
sion θ

g : RP
+ → RN

ℓ 7→ θ

We always have N ⩽ P to reduce the dimension of ℓ. Then θ
quantized with

q : RN → RN

θ 7→ θ̂

We assume that θ̂ is transmitted without error to the decision
maker which can reconstruct the signal ℓ̂ through a decoding
function

h : RN → RP

θ̂ 7→ ℓ̂

Our objective is to find a coding scheme (precoder, quantizer,
and decoder) that minimizes the expected optimality loss

(g⋆, q⋆, h⋆) ∈ arg min
(g,q,h)

Eℓ

[∣∣∣u (x⋆ (ℓ) ; ℓ)− u(x⋆(ℓ̂); ℓ)
∣∣∣2] .

(5)

3 Proposed solution
It is rather difficult to jointly find the precoder, quantizer, and

decoder satisfying (5). We thus propose a suboptimal solution
which optimize them separately.

3.1 Linear transformation
A signal can be projected to a chosen basis by linear trans-

form. Such transform can be used to design a precoder and a
decoder. For simplicity, we consider an linear transform wi-
thout quantizer. Then θ = g (ℓ) = Bℓ, ℓ̂ = h (θ) = BTBℓ,
where B ∈ RN×P . Then (4) becomes

Eℓ

[∣∣∣u (x⋆ (ℓ) , ℓ)− u(x⋆(BTBℓ), ℓ)
∣∣∣2] . (6)

Since x⋆ (ℓ) is usually a nonlinear function of ℓ, by tayloring
x⋆ (ℓ), a piecewise linear approximation

x⋆ (ℓ) ≈H (ℓ) ℓ+ b (ℓ) . (7)

of x⋆ (ℓ) is considered. The way H (ℓ) and b (ℓ) are evaluated
is detailed in [8].

Considering a set L = {ℓ(1), ℓ(2), . . . , ℓ(T )} of realizations
of the parameter ℓ, one evaluates the empirical optimality loss

Γ (B)

=
1

T

T∑
i=1

∣∣∣u(x⋆(ℓ(i)), ℓ(i))− u(x⋆(BTBℓ(i)), ℓ(i))
∣∣∣2

=
1

T

T∑
i=1

∣∣∣u(H (
ℓ(i)

)
ℓ(i) + b

(
ℓ(i)

)
, ℓ(i))−

u(H
(
BTBℓ(i)

)
BTBℓ(i) + b

(
BTBℓ(i)

)
, ℓ(i))

∣∣∣2 .
A value B∗ of B minimizing Γ (B) can be found using a

gradient descent, see Algorithm 1. Then, ℓ̂ is obtained as ℓ̂ =

B⋆T

B⋆ℓ.

Algorithm 1 Gradient descent search of B∗

Require: Initial matrix B
Input : Learning rate ϵ
Output : Matrix B⋆

while itermax not reached and optimality loss reduced more
than 0.01% do

Compute gradient : G← ∇BΓ (B)
Apply update : B = B − ϵG

end while

A local minimum of Γ (B) can be found numerically, even
if the considered problem is not convex.

3.2 Goal-oriented quantizer
In this part, we assume that the precoding function g (·) and

decoding function h (·) are given, we focus on the goal-oriented
quantizer. A quantizer partitions the space RN of the encoded



parameter θ = g (ℓ) into several disjoint quantization regions
C1, . . . , CM , i.e.,

∀i ̸= j, Ci
⋂
Cj = ⊘ and

M⋃
i=1

Ci = RN ,

with the quantization rule

q (θ) = ri ⇐⇒ θ ∈ Ci, (8)

whereR ≜ {r1, . . . , rM} is the set of representatives of the set
of quantization regions C ≜ {C1, . . . , CM} respectively. Dif-
ferent from conventional quantizers, in what follows, we search
a pair (R⋆, C⋆) that minimizes the expected optimality loss

Eℓ

[∣∣∣u (x⋆ (ℓ) ; ℓ)− u(x⋆(ℓ̂); ℓ)
∣∣∣2] =

M∑
m=1

∫
ℓ∈Lm

|u (x⋆ (ℓ) ; ℓ)− u (x⋆ (h (rm)) ; ℓ)|2 ϕ (ℓ) dℓ, (9)

where ϕ (ℓ) is the probability density function of ℓ and

Lm ≜ {ℓ ∈ RP |g (ℓ) ∈ Cm}, 1 ≤ m ≤M.

Again, finding jointly (R⋆, C⋆) is not trivial, a practical algo-
rithm is proposed which is similar to the decisional quantizer
used in [7] :

1. Determine the optimal quantization region for a givenR

C⋆m = {g (ℓ) ∈ RN |E (rm; ℓ) = min
i
E (ri; ℓ)} (10)

with

E (rm; ℓ) = |u (x⋆ (ℓ) ; ℓ)− u (x⋆ (h (rm)) ; ℓ)|2 (11)

2. Determine the set of optimal representatives for given
quantization regions C

r⋆m ∈ argmin
r

∫
ℓ∈Lm

E (r; ℓ)ϕ (ℓ) dℓ (12)

Like Lloyd-Max algorithm [9], Algorithm 2 performs these two
steps iteratively to find the optimal quantizer.

Algorithm 2 Goal-oriented quantizer design algorithm
Require: Utility function u (x; ℓ)

Require: InitialR(0) = {r(0)1 , . . . , r
(0)
M }

Require: Initial C(0) = {C(0)1 , . . . , C(0)M }
Output : (R⋆, C⋆)

while i ⩽ itermax not reached and optimality loss reduced
more than 0.01% do

Update C(i)k fromR(i−1) using (10), m = 1, . . . ,M

Update r
(i)
m from C(i)m using (12), m = 1, . . . ,M

end while

4 Numerical results
The following simulation results consider the energy consump-

tion data set [10]. We compared the performance of a compres-
sion scheme implementing the proposed linear transformation
and a uniform quantizer to a scheme implementing the propo-
sed linear transformation and goal-oriented quantizer.

In the considered scenario, ℓ represents daily energy consump-
tion of one user. The dataset is constructed by daily energy
consumption of one user during one year. The data are mea-
sured each half hour and transmitted each day, consequently,
P = 48 and T = 365. Set N = 1. We compare the propo-
sed linear transformation with Karhunen-Loève Transforma-
tion (KLT), the optimal approximation in the sense of mean-
square error [11].
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FIGURE 2 – Evolution of the relative optimality loss (%) as a
function of the iteration of Algorithm 1 ; Proposed linear trans-
form outperforms the KLT.

Figure 2 illustrates the evolution of relative optimality loss
(ROL) as a function of iteration of Algorithm 1 for proposed
linear transformation and for the KLT with different value of p
in (1). The relative optimality loss is defined as∑T

i=1

∣∣∣u(x⋆(ℓ(i)), ℓ(i))− u(x⋆(ℓ̂(i)), ℓ(i))
∣∣∣2∑T

i=1

∣∣u(x⋆(ℓ(i)), ℓ(i))
∣∣2 × 100%.

One could observed that for both p = 20 and p = ∞, the
proposed linear transform largely reduces the ROL compared
to the KLT.

The goal-oriented quantization process is implemented af-
ter the precoding. The goal-oriented quantizer is compared to a
dead-zone uniform quantizer. We assume that the quantized pa-
rameters are transmitted without error to simplify the problem.
Figures 3 and 4 illustrate the performance of the two different
quantizers when p = 20 and p → ∞ as a function of number
of bits used to represent the quantizer output.

In both Figure 3 and Figure 4, the proposed linear transfor-
mation with the goal-oriented quantizer performs better than
when combined with the uniform quantizer in the sense of rela-
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FIGURE 3 – Relative optimality loss v.s. the number of bits for
goal-oriented quantizer and uniform quantizer when p = 20
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FIGURE 4 – Relative optimality loss v.s. the number of bits for
goal-oriented quantizer and uniform quantizer when p→∞

tive optimality loss. Even with 0 bit, i.e., when there is a single
representative to optimize (M = 1), the goal-oriented quanti-
zer provides a relatively small ROL which evidences the benefit
of our approach.

5 Conclusions
In this paper, we design a goal-oriented compression scheme

combining a precoder, a quantizer, and a decoder for the para-
meters of a parametrized Lp-norm-based utility function. For
instance, such a utility function is well suited as a final perfor-
mance metric in smart-grid applications. This function has to
be minimized considering approximate parameter values due to
compression. A utility loss is obtained compared to a situation
where the actual parameter values are available. The joint de-
sign of the precoding and quantization stages, minimizing the
expected utility loss, is generally complicated. Consequently,
we have resorted to a separation assumption. Significant gains
are observed when comparing the proposed goal-oriented li-
near transformation to the Karhuenen-Loeve transformation.

Similarly, the goal-oriented quantizer yields very significant
gains compared to a uniform quantizer. These results show the
high potential of formulating the final task as an optimization
problem and then tailoring the compression stages to this opti-
mization problem.
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