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Résumé – Dans cette communication, nous proposons une extension d’un travail récent sur les espaces latents dans le cadre de la classification
ordinale. Nous rappelons la méthode de réduction de dimension que nous venons de développer pour ce problème et introduisons deux nouvelles
métriques permettant de quantifier l’interprétabilité, i.e. l’ordinalité de ces espaces après une étape de réduction de dimension.

Abstract – In this paper, we propose an extension of a recent work on latent spaces in the ordinal classification framework. We mention the
dimension reduction method we have just developed for this problem and introduce two new metrics for quantitative interpretation of the ordinality
of latent spaces after a dimension reduction step.

1 Introduction
Ordinal classification refers to the classification problems where
there is a natural order between categories [1]. The categories
are usually represented with one-dimensional discrete values
following their inherent order. It is expected that the features
used to predict the ordinal categories of the instances also pos-
sess an intrinsic order in the high-dimensional space. In order
to visualize and assess whether these features follow the ordi-
nality of the categories, dimensionality reduction can be used.
Although many techniques can be very useful for dimension
reduction none of the classical ones do incorporate the ordinal
structure of the categories into their original formulation for
ordinal classification problems. Recently, we have introduced a
dimension reduction technique, called Best View Point (BVP),
especially suited for ordinal classification [2]. In [2], BVP was
successfully compared to other classical reduction techniques
for visual assessment of the quality of the dimension reduction.
In this communication we extend these results and introduce
two new metrics to quantify the ordinality after applying dimen-
sion reduction. We first shortly review BVP, define our new
metrics and then apply them on real ordinal datasets.

2 Best view point dimension reduction
Let us consider an ordinal classification problem, where the
features are in 3D space and the categories are ordered. We
would like to find a viewpoint on the view sphere such that
when viewed from that point the adjacent class centers seem
as apart as possible from each other. Our BVP method finds
the optimum viewpoint that maximizes the projected square
distances between adjacent class centers and projects the data

points to the space defined by the optimum viewpoint. To
generalize the problem for N-dimensional space, let us first
suppose that we have K classes, ordered and identified as k =
1,2, ...,K. A class l is adjacent to class k if l = k− 1 or l =
k+1. The instances of class k are represented as N-dimensional
column vectors denoted as xk

i ∈ RN , with i = 1,2, ..., Ik, where
Ik is the number of instances in class k. The class centers
are denoted as ck corresponding to the arithmetic mean of the
instances in class k. For the sake of simplifying the equation
of the view sphere, the data is translated beforehand such that
the origin of the N-dimensional space corresponds to 1

K ∑
K
k=1 ck,

i.e. the mean of the class centers. Let us define the n-sphere
(n = N−1) in the N-dimensional space as S = {v ∈ RN : ‖v‖=
1}. Given a viewpoint v ∈ S, we can define an orthogonal
projection P : RN → RN , whose N−1 columns are defined by
the vectors orthonormal to v, and whose last column is equal to v.
Then, a point x ∈ RN can be projected to the N−1-dimensional
space defined by v by computing y = Px and dropping the last
component of y. This point, x(v) ∈ RN−1 can be interpreted as
point x as seen from the viewpoint v. Its component parallel to v
is invisible to the viewer. Our objective is to find the viewpoint
v* on the n-sphere such that the sum of the squared distances
between the centers of the adjacent classes is maximized. If we
define c̄k(v) ∈ RN−1 to be the projected center of class k in the
N−1-dimensional space defined by viewpoint v, we search for
v* maximizing

G(v) =
K−1

∑
k=1

∥∥c̄k+1(v)− c̄k(v)
∥∥2 (1)

subject to the constraint ‖v‖= 1. Maximizing G(v) is equivalent
to solving the following minimization problem:



Minimize F(v) =
K−1

∑
k=1

[vT (ck+1−ck)]
2subject to ‖v‖= 1 . (2)

For more details on the implementation of BVP, the reader can
refer to [2].

3 Ordinality metrics
To go beyond the sole visualization of the dimension reduction,
we now target to quantify ordinality in the reduced latent space.
In the literature, several researches have developed specific
metrics dedicated to ordinal classification problems [1, 3–5].
Nevertheless, these references focus on the characterization of
the classification performance themselves while we care here
about the interpretability of the latent space before classification.
Related works [6] proposed a framework, to solve the perfor-
mance versus interpretability trade-off in the context of ordinal
problems. Although this work covers interpretability of ordinal-
ity, it is related to In-Model and equation-Model interpretability
techniques [5] while we focus on Pre-Model here. As the most
related work [7], focused on the intersection between instances
of ordinal data in the latent space. In this investigation, the au-
thors proposed a projection method from N-dimensional latent
space to 1-dimensional latent space, using insights about the
class distribution obtained from pairwise distance calculation
between instances of all classes. The idea in [7] is to project
an instance in the 1D interval of a given class, according to its
distance to instances of other classes. A threshold is set man-
ually, to split the interval on segments of classes. The output
projection is then used to perform an ordinal regression. By
contrast to the pairwise method in [7], we propose metrics to
quantify the intersection between classes by penalizing the ordi-
nal distance of these misclassifications. This can not be deduced
from [7], where all instances are mapped in their corresponding
class interval. In addition, unlike the thresholds selected man-
ually in [7], our proposed metric is fully automatic. Moreover,
we complement our new metric of ordinal intersection between
classes with another metric assessing the ordinality at the level
of the centroids of the clusters of the classes. This can help to
discriminate ordered and unordered latent spaces for noise-free
datasets having no class intersection in the latent space. This
aspect was not taken into account in [7] which assumes that
centroids in latent space are already well aligned and does not
quantify their order in this latent space. We detail the expression
of these two metrics in the next subsections.

3.1 Deviation from ordinality
The deviation from ordinality (DFO) is a metric that quantifies
how much the order of the centroids departs from the expected
order after dimension reduction. Technically, it compares the
position of centroids in the path connecting them in the expected
order k = {1, . . . ,K} (reference path), with the position of the
same centroids in the shortest path. The shortest path is a path

where the nearest centroids are connecting to each other based
on the Euclidean distance. This metric can be considered as
an edit distance metric. Several edit distance metrics already
exist in the literature [8]. Here, we propose a simple binary
output: ordered or unordered. The mathematical formulation of
deviation from ordinality metric is a simple subtraction between
order of centroids in shortest and reference paths

DFOk =

∣∣∣pre f
k − pshort

k

∣∣∣
K−2

, (3)

where pre f
k is the position of centroid k in the reference path and

pshort
k is the position of centroid k in the shortest path. The sub-

traction is normalized by the maximum distance K−2. Centroid
of class 1 is chosen as the starting point for the reference path
and the shortest path, hence the normalization by K−2 provides
a metric between 0 and 1. DFOk is 0 when the centroid k has
the same position in both paths (ordered case) while DFO is 1 if
the centroid k is displaced to position K (the extreme case). An
average value of the DFOk over all k can then be computed to
provide a global assessment in addition to the local order DFOk

associated to each class.

3.2 Inter-class intersection
We now introduce a second metric to quantify ordinality coined
as Inter-Class intersection. The metric has two outputs: the
first scalar quantifies the severity of intersection between classes
and the second is a binary scalar that states if the intersection
is only between adjacent classes or also between non-adjacent
classes. The definition of intersection between classes depends
on the decision boundaries for classes. In this work, we assume
elliptic regions for data reduced to two dimensions to account for
second order statistics of the data. The inter-class intersection
metric we propose can be generalized to higher dimensions (e.g.
3D ellipsoids) and other decision boundaries such as polygonal
shapes. Here, the computation of the Inter-Class intersection
is performed in the following. First, a boundary Bk (ellipse) is
computed around each class lk (algorithm 1). The ratio ak

j of
instances xk

i inside the boundary Bk is evaluated by counting
the number of instances of the class lk inside Bk, normalized by
the dimension Ik. The output is a confusion matrix K×K. The
second step is to penalize boundaries in the confusion matrix,
containing instances of non-adjacent classes (equation 4). This
is achieved by multiplying the ratio ak

j by the square distance
( j− k)2 in the matrix K×K. A normalization is applied on
all matrix-elements via dividing them by the sum of square
distances ( j− k)2, so that the Inter-Class intersection value is
between 0 and 1, as given in

ICBk =
∑

K
j=1 ak

j× (
∣∣( j− k)

∣∣)2

∑
K
j=1( j− k)2

for k={1,. . . ,K} . (4)

Inter-Class intersection ICBk equals to 0 when there is no
intersection between classes. To be able to separate the case
of intersection only between adjacent classes and intersection



between non-adjacent classes, we add a complementary infor-
mation through a binary scalar (BS). If all the non-diagonal and
the non-adjacent cell values to the matrix K×K are equal to 0,
the binary output is equal to 0. Otherwise, the binary output is
equal to 1.

Algorithm 1: Pseudo-code to compute the Inter-Class
intersection metric.

Data: Coordinates of instances xk
j of all classes lk.

Result: KxK matrix containing the percentage of
instances xk

j of all class lk in each boundary Bk

1 Fit an ellipse Bk over instances xk
j , by computing the

covariance matrix and eigen vectors and value; find
instances xk

j of class lk inside the boundary Bk;
2 Normalize the number of instances xk

j found by the
dimension Ik of the class lk;

3 Save all ratios in an KxK matrix, where K is the number
of classes;

4 Data sets
We tested our dimensionality reduction technique on real ordinal
classification datasets [9, 10]. The datasets and their properties
are given in Table 1.

TAB. 1: Real ordinal datasets used for the experiments [9,10] (I
is the total number of instances, Q is the dimensionality of the
original data and K is the number of classes).

Dataset I Q K Class Distribution
pasture 36 25 3 (12,12,12)
bondrate 57 37 5 (6,33,12,5,1)
contact-lenses 24 6 3 (15,5,4)
newthyroid 215 5 3 (30,150,35)
squash-stored 52 51 3 (23,21,8)

5 Results on ordinality metrics
The two ordinal metrics of the previous section have been ap-
plied on the ordinal data of Table 1 after dimension reduction by
PCA, TSNE, LDA, ISOMAP, MDS, LSDA and our proposed
method BVP. The quantitative results are provided in Tables 2-6.
The quantitative results are in accordance with the qualitative
visualizations provided in our recent paper [2]. It appears that
BVP is providing good results with almost no deviation from
ordinality and low mean inter-class intersection. By compari-
son with the other classical dimension reduction methods, BVP
provides better results than PCA, TSNE, ISOMAP and MDS.
The closest quantitative results of BVP with existing methods is
with LDA and LSDA. On some datasets (bondrate) BVP shows
a deviation from ordinality not committed by LDA and LSDA.

However, in other dataset (contact lenses) BVP outperforms
LDA and LSDA. This demonstrates the complementary role
of BVP in relation with the existing literature on dimension
reduction. It is important to underline the quality of BVP on
the Inter-class intersection metrics. Indeed, BVP is designed
based on a metric applied on the centroids of the cluster and
does not take into account the dispersion around these clusters.
The encouraging results found on Inter-class intersection indi-
cates that BVP also has a potential to be used for classification
purposes. This is also in agreement with its good performance
in comparison with LDA, which is specifically designed for
classification. These are interesting perspectives on which we
currently work.

6 Conclusion
We proposed the quantitative evaluation of a new and intuitive
technique for the visualization of high-dimensional data for
ordinal classification (BVP). We provided two new metrics
to quantify the ordinality in the latent space after dimension
reduction by this technique which confirms its interest and com-
plementarity in comparison with the state of the art.
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