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Résumé – Les méthodes de super résolution d’image visent à recréer une image haute résolution à partir d’une basse résolution. La famille
d’approches basée sur les patchs a fait l’objet d’une attention et d’un développement considérable. La technique de minimum de l’erreur qua-
dratique moyenne est une méthode de restauration d’images qui utilise un modèle gaussien de probabilités sur les patchs d’images. Cet article
propose un algorithme d’apprentissage d’un modèle conjoint de mélange gaussien généralisé (GGMM) à partir des paires de patchs à basse
résolution et des patchs correspondants à haute résolution d’une image de référence. À partir de ce modèle GGMM, l’image haute résolution en
utilisant la méthode MMSE. Nos évaluations numériques indiquent que la méthode MMSE-GGMM se comporte très bien par rapport à l’état de
l’art.

Abstract – Single Image Super Resolution (SISR) methods aim to recover the clean images in high resolution from low resolution observations.
A family of patch-based approaches have received considerable attention and development. The minimum mean square error (MMSE) method
is a powerful image restoration method that uses a probability model on the patches of images. This paper proposes an algorithm to learn a joint
generalized Gaussian mixture model (GGMM) from a pair of the low resolution patches and the corresponding high resolution patches from
the reference data. We then reconstruct the high resolution image based on the MMSE method. Our numerical evaluations indicate that the
MMSE-GGMM method competes with other state of the art methods.

1 Introduction
Super resolution is the task to reconstruct the estimate X̂HR

of a high resolution (HR) image XHR based on a low resolution
(LR) observation XLR. Observed LR image is generated by an
unknown operator A

XLR = AXHR + ϵ. (1)

In recent years, various patch-based super resolution image
algorithms have been introduced. Zoran and Weiss [1] propo-
sed using the negative log-likelihood function of a GMM as
a regularizer of an inverse problem. The estimated HR image
X̂HR is computed by solving

argmin
XH

∥AXHR −XLR∥2 − λ
∑
i∈I

log p (XHR,i) (2)

where p is the probability density function of the GMM and
(XHR,i)i∈I are the patches in the HR image. This method is
called expected patch log likelihood (EPLL). C. Deledalle et
al. [2] extended the EPLL method to a new approach that com-
bines the generalized Gaussian mixture model (GGMM) with
EPLL. It is called EPLL-GGMM algorithm. They showed that
the GGMM gets the distribution of patches better than a GMM
and performs better within the EPLL framework. However, EPLL
requires knowledge of the operator A, which is not the case in

some real applications. Therefore, we investigate the alterna-
tive approach of P. Sandeep et al. [3], which uses a joint GMM
of the concatenated vectors of HR and the corresponding LR
patches. Each HR patch is estimated from the LR patch by
using the Minimum Mean Squared Error (MMSE) estimator.
To solve the minimization problem of MMSE, the parameters
of the joint GMM are required. These parameters are usually
learned using the expectation–maximization (EM) algorithm.
In the case of generalized Gaussian, there exist several me-
thods to learn the parameters, such as Fixed Point (FP) algo-
rithm [5] and Riemannian Averaged Fixed-Point (RA-FP) al-
gorithm [4]. Following these works, F. Najar et al. [6] develo-
ped a fixed-point (FP) algorithm for learning the parameters of
GGMM. However, [6] uses directly the estimated covariance
matrix and the shape parameter of GMM without the weight of
the mixture. Besides that, the EPLL-GGMM model [2] com-
putes the parameters of the GGMM as the GMM. In this paper,
we propose an algorithm that combines the EM algorithm and
the FP estimator to compute the parameters of GGMM. This
algorithm is called FP-EM algorithm.

Contribution : This paper provides a method that uses the
MMSE estimator for joint GGMM, called MMSE-GGMM. This
method adapts the FP-EM algorithm to learn the joint GGMM.

This paper is organized as follows. FP-EM algorithm to learn



the GGMM based on the EM algorithm is the major contribu-
tion of this paper and is discussed in Section 2. The MMSE es-
timator for GGMM is detailed in Section 3. Section 4 derives a
method to reconstruct the HR image using joint GGMM. Then
Section 5 illustrates the success of our method for super reso-
lution of synthetic data as well as material data with unknown
operator A.

2 GGMM learning
In this section, we focus on the parameter estimation of the

generalized Gaussian mixture model based on the EM algo-
rithm [7]. The generalized Gaussian mixture model (GGMM)
has a probability density function

Pθ (x) =

K∑
k=1

wkf (x|θk) . (3)

f(x|θk) is a probability density function of a generalized Gaus-
sian distribution (GGD)

f (x|θk) =
Cp (βk)

|Σk|
1
2

exp

[
−1

2

[
(x− µk)

T
Σ−1

k (x− µk)
]βk
]

(4)
where wk satisfies

∑K
k=1 wk = 1 and wk > 0, for all k and

θk = {µk,Σk, βk} are the parameters of the kth component
of GGMM. In detail, µk ∈ Rp is the expected value, βk ∈
(0,+∞) is the shape parameter and Σk is a p × p a posi-
tive semi-definite covariance matrix. The normalizing constant
Cp (βk) is expressed as :

Cp (βk) =
Γ
(
p
2

)
βk

π
p
2Γ
(

p
2βk

)
2

p
2βk

(5)

where Γ is the gamma function.

Remark 1. The Gaussian model is a special case of the gene-
ralized Gaussian distribution with the shape parameter β = 1.

In the following, we consider the EM algorithm for estima-
ting the parameters of mixture models. Given samples x1, ..., xN

have p-dimensional generalized Gaussian mixture distribution,
we minimize the negative log-likelihood function

L(w,Θ) = − 1

N

N∑
i=1

log

(
K∑

k=1

wkf (Xi | θk)

)
, (6)

where w = (w1, ..., wk),Θ = (θ1, ..., θk). Then, the EM Al-
gorithm for GGMM is read as Algorithm 1.

The interesting step of Algorithm 1 is the second step of M-
Step which requires the maximization of a function. If the αi,k

are equal for all i = 1, ..., N , the optimization problem (9) has
been solved by B. Wang et al. in [8]. In this paper, we genera-
lize the algorithm from [8] for different weights αi,k in (9).

Algorithm 1 EM Algorithm for Mixture Model

Input : x = (x1, ..., xN ) ∈ Rp×N , initial estimate
w(0),Θ(0).
for n = 1, 2, ... do

E-Step : For k = 1, ...,K and i = 1, . . . , N compute

α
(n)
i,k =

w
(n−1)
k f

(
Xi|θ(n−1)

k

)
∑K

l=1 w
(n−1)
l f

(
Xi|θ(n−1)

l

) (7)

M-Step : For k = 1, ...,K compute

w
(n)
k =

1

N

N∑
i=1

α
(n)
i,k (8)

θ
(n)
k = argmax

θk

N∑
i=1

α
(n)
i,k log f (Xi|θk) . (9)

end for

Proposition 1. Let f be the generalized Gaussian density func-
tion (4) and αi ∈ R≥0, i = 1, ..., N . Given the samples x1, ..., xN ∈
Rp, if θ = {µ,Σ, β} is a solution of

argmax
θ

N∑
i=1

αi log f (xi|θ), (10)

they should satisfy the following equations :

µ =

∑N
i=1 αiδ

β−1
i xi∑N

i=1 αiδ
β−1
i

, (11)

Σ =

∑N
i=1 αiδ

β−1
i (xi − µ)(xi − µ)T∑N

i=1 αi

(12)

where δi = (xi − µ)
T
Σ−1 (xi − µ), ρ > 0. The parameter

shape β can be computed by using Newton-Raphson method
[9].

The proof of the previous proposition can be achieved by
setting the gradient of the objective function to zero. Therefore,
the solution of the maximization problem (9) can be generated
by the FP Algorithm 2. The EM algorithm combined with the
FP algorithm for GGMM is called FP-EM algorithm.

Algorithm 2 Fixed point (FP) algorithm for (9)

Input : x = (x1, ..., xN ) ∈ Rp×N , initial estimate
µ
(0)
k ,Σ

(0)
k β

(0)
k .

for r = 1, 2, ... do
Update µ

(r+1)
k by (11)

Update Σ
(r+1)
k by (12)

Update β
(r+1)
k by Newton-Raphson method

end for



3 SR Reconstruction
In the following, we introduce a super resolution method

using the joint generalized Gaussian mixture model. This me-
thod is an extended version of the MMSE-GMM [3] for the
generalized Gaussian case. We aim to reconstruct the unknown
HR image XHR from the LR image XLR. We assume that we
have given a pair of reference images : HR imagex̃HR and LR
image x̃LR with the magnification factor q. The super resolu-
tion reconstruction includes the three following steps.

A-Learning a joint GGMM In this step, we extract the LR
patches x̃LR,i ∈ Rτ2

and HR patches x̃HR,i ∈ Rq2τ2

, q ∈
N, q ≤ 2, i = 1, ..., N from the given images x̃LR and x̃HR.
We approximate the GGMM of the concatenated vector xi =(

x̃HR,i

x̃LR,i

)
∈ Rp, p = (q2+1)τ2 using the FP-EM algorithm.

Then, we obtain the parameters of GGMM :

w = (wk)k, µ = (µk)k, Σ = (Σk)k, β = (βk)k

with

µk =
( µH,k

µL,k

)
, Σ =

( ΣH,k ΣHL,k

ΣT
HL,k ΣL,k

)
.

B-Estimating the HR patches using the MMSE estimator
For estimating the HR patch from a given LR patch xLR ∈
Rτ2

, we first select the best component of the joint GGMM,
such that the likelihood that xLR belongs to the k∗-th com-
ponent is maximal, i.e.

k∗ = argmax
k=1,...,K

wkf
(
xLR | µk

L,Σ
k
L, β

k
)
. (13)

Now, each HR patch can be estimated by the MMSE method
thanks to Theorem 1 in Section 4 based on the parameters of
the generalized Gaussian mixture k∗i

x̂HR = µH,k∗ +ΣHL,k∗Σ−1
L,k∗ (xLR − µL,k∗) . (14)

C-Reconstructing HR image from HR patches Finally, we
reconstruct the high-resolution image from all estimated HR
patches from the previous step. Let xHR = (xk,l)

qτ
k,l=1 ∈ Rqτ,qτ

be a two-dimensional high-resolution patch. Then, we assign to
each pixel xk,l the weight

ρk,l := exp
(
− γ

2

(
(k − qτ+1

2 )2 + (l − qτ+1
2 )2

))
.

After that, we add up for each pixel in the high resolution image
the corresponding weighted pixel values and normalize the re-
sult by dividing by the sum of the weights.

4 MMSE estimator with GGD
This section discusses a method to estimate the HR patches

for step B in Section 3. Assume that the estimator T : Rd →
RD satisfies XH = T (XL) and X = (XH , XL) has a GGD,

which is selected as the best component of GGMM. Estimation
X̂H using the MMSE estimator is

TMMSE ∈ argmin
T

E∥XH − T (XL) ∥22. (15)

The Lehmann-Scheffé theorem [10] states that the general so-
lution of the minimization problem (15) is given by

TMMSE = E(XH |XL).

Since a generalized Gaussian distribution is also an elliptical
distribution, the following theorem about the MMSE estimator
TMMSE for GGD is a consequence of Theorem 8 in [11].

Theorem 1. Assume that X = (XH , XL) : Ω → Rp has
a generalized Gaussian distribution Pθ with parameters θ =
(µ,Σ, β), where

µ =
( µH

µL

)
, Σ =

( ΣH ΣHL

ΣT
HL ΣL

)
Then, for each PXL

-almost every xLR, we have that the condi-
tional distribution PXH |XL=xLR

is given by the generalized
Gaussian distribution Pθ̂, where the parameters θ̂ = (µ̂, Σ̂, β̂)
are given by

µ̂ = µH+ΣHLΣ
−1
L (xLR−µL), Σ̂ = ΣH−ΣHLΣ

−1
L ΣT

HL, β̂ = β.

The MMSE estimator for GGD can be written as :

TMMSE = µH +ΣHLΣ
−1
L (xLR − µL) . (16)

5 Experimental Results
Experimental results are given both on synthetic data of ba-

sic images such as Gold-hill, Barbara, Camera-man, and our
real material data : Fontainebleau sandstone (FS) and SiC Dia-
monds, which were presented in [12]. The observed LR image
is generated from ground truth images with q = 2 by the opera-
tor A that is exactly given and defined as in [12]. In the training
step, we use the upper left quarter of the HR and LR images.

TABLE 1 – PSNRs of the reconstructions using MMSE and
EPLL approaches for GMM and GGMM.

Hill Camera Barbara FS Sics
MMSE-GMM 31.60 32.75 25.27 33.09 28.00

MMSE-GGMM 31.70 32.86 25.33 33.35 28.08
EPLL-GMM 31.62 32.91 25.39 31.83 26.04

EPLL-GGMM 31.58 32.94 25.33 31.89 26.06

Table 1 gives the PSNR values for the MMSE and EPLL me-
thods using GMM and GGMM with K = 100 components. For
basic images, the MMSE-GGMM method gives higher PSNR
values than the MMSE-GMM model, and they are not signi-
ficantly different from EPLL-GGMM while our method does
not require knowledge of A.



Reconstructions of the material images are shown in Figures
1 and 2. We observe that the MMSE-GGMM results are shar-
per and visually better than the ones of the EPLL method. The
PSNR values show that our method outperforms the EPLL-
GGMM in this setting. This proves that our method does not
need to learn parameters but can still achieve better results for
the material data.

(a) HR (b) MMSE-GMM (c) MMSE-GGMM

(d) LR (e) EPLL-GMM (f) EPLL-GGMM

FIGURE 1 – Reconstructions of 2D low resolution FS images
by using MMSE and EPLL method.

(a) HR (b) MMSE-GMM (c) MMSE-GGMM

(d) LR (e) EPLL-GMM (f) EPLL-GGMM

FIGURE 2 – Reconstructions of 2D low resolution Sic Dia-
monds images by using MMSE and EPLL method.

6 Conclusion
This paper proposed a new algorithm to perform image SR.

We extended the image SR using the GMM method provided
by Sandeep and Jacob [3] to the GGMM model, which is lear-
ned by the FP-EM algorithm. Experiments on synthetic and
material images demonstrate that our method is a promising
solution for image SR. In future work, we will consider some

deep learning approaches for super resolution with high mag-
nification factor and high dimensional data.
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