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Résumé – Les équations différentielles de Lotka-Volterra jouent un rôle clé pour la modélisation mathématique de systèmes dynamiques
complexes d’agents en interaction. Quand le nombre d’agents (on parlera d’espèces dans un contexte biologique ou écologique) devient grand,
des questions simples telles que le nombre d’espèces survivantes n’ont pas de réponses théoriques claires. Dans cet article, nous considérons un
grand système d’équations de Lotka-Volterra où les interactions entre les différentes espèces sont aléatoires, et présentons une heuristique pour
calculer le nombre d’espèces survivantes. Cette heuristique combine des arguments de la théorie des grandes matrices aléatoires, d’optimisation
mathématique et de théorie des valeurs extrêmes. Des simulations numériques illustrent la précision et la portée des résultats présentés.

Abstract – Lotka-Volterra differential equations play a key role in the mathematical modeling of complex dynamical systems of interacting
components. When the number of components (we shall refer to species in a biological of ecological context) becomes large, basic but funda-
mental questions such as computing the number of surviving species still lack theoretical answers. In this paper, we consider a large system
of Lotka-Volterra equations where the interactions between the various species are random, and present a heuristics to compute the number of
surviving species. This heuristics combines arguments from Random Matrix Theory, mathematical optimization (LCP), and standard extreme
value theory. Numerical simulations illustrate the accuracy and scope of the results.

1 Introduction
Model and assumptions. Large Lotka-Volterra (LV) systems
of differential equations are widely used in various scientific
fields involving complex dynamical systems with interacting
components, such as biology, ecology, chemistry, etc. [1, 2]. A
LV system represents a good trade-off between a fairly realistic
model and a mathematically tractable one, which has yielded
insights on issues such as the link between the productivity and
stability of ecosystems [3] or the resistance of species commu-
nities against invasions [4]. In the sequel, we use the ecological
terminology and refer to the interacting components as species.

A large LV system is a system of differential equations :

dxk(t)

dt
= xk(t)

rk − θxk(t) +
1

α
√
n

∑
`∈[n]

Ak`x`(t)

 ,

(1)
where k ∈ [n] = {1, · · · , n}.

The number n represents the number of species within the
system, the unknown vector x = (xk)k∈[n] is the vector of
abundances of the various species in the foodweb and evolves
with time t > 0 according to the dynamics (1). Quantity xk(t)
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represents the abundance (a value representing the population
size) of species k at time t.

In Eq. (1), rk represents the intrinsic growth rate of species
k, θ is an intraspecific competition coefficient, and Ak` is the
per capita effect of species ` on species k (interactions).

Hereafter, we focus on the idealized model rk = θ = 1 :

dxk
dt

= xk

(
1− xk +

(Ax)k
α
√
n

)
, (2)

In an ecological or biological context (think of animal species
interacting in a lake or a remote valley, or the human micro-
biome), it is often extremely difficult and/or expensive to es-
timate precisely each interaction strength Ak`. In the absence
of any prior information, these interactions can be modeled as
random (see for instance [5]), which we assume in the sequel :
matrix (Ak`)k,`∈[n] is a n×nmatrix of independent and identi-
cally distributed (i.i.d.) standard Gaussian N (0, 1) random va-
riables (RV). Notice that eachAk` variable has a (α

√
n)−1 nor-

malizing factor. The positive number α is an extra parameter
reflecting the interaction strength.

It is our belief that understanding such a simplified model
will provide key information and guidance to analyze more so-
phisticated and realistic random models.



Remark 1. Although such a matrixA is a complex random ob-
ject, Large Random Matrix Theory (RMT) provides a number
of valuable results, among which the almost sure (a.s.) conver-
gence of the spectral radius and the spectral norm

ρ(A/
√
n)

a.s.−−−−→
n→∞

1 and ‖A/
√
n‖ a.s.−−−−→

n→∞
2 ,

and also the a.s. convergence in distribution (D) of the spectral
measure to the circular law (see for instance [6]) :

(a.s.)
1

n

∑
k∈[n]

δλk(A/
√
n)

D−−−−→
n→∞

1{x2+y2≤1}

π
dx dy .

As a consequence, the normalized interaction matrix A/
√
n

has a macroscopic effect, non vanishing asymptotically on the
dynamics of system (1).

Understanding the dependence between factor α > 0 and
the number of surviving species is the key issue adressed in this
paper. A complementary result adressing the elliptical random
matrix model by means of theoretical physics methods can be
found in [7] and [8].

Notice that in [9], Bizeul et al. have described an appropriate
scaling for α, namely α ∼

√
2 log(n), to guarantee the survi-

val of all species. For fixed α > 0, which we will assume in
the sequel, a consequence of Dougoud et al. [10] is that some
species will go to extinction.

2 Equilibrium and stability results
A key element to understand the dynamics of (1) is the exis-

tence of an equilibrium x∗ = (x∗k)k∈[n] such that

x∗k

(
1− x∗k +

(Ax∗)k
α
√
n

)
= 0 ∀k ∈ [n] , (3)

and the study of its stability, that is the convergence of a solu-
tion x to the equilibrium x∗ : x(t) −−−→

t→∞
x∗ if x(0) is suffi-

ciently close to x∗.
It is well known that for LV equations, the fact that x(0) > 0

(componentwise) implies that x(t) > 0 for every t > 0, but one
can have some components xk(t) of x(t) vanishing to zero. We
hence only consider non-negative equilibria x∗ ≥ 0.

Notice that the situation differs substantially whether x∗ >
0 or x∗ has vanishing component(s). In the former case, the
equilibrium set of equations becomes a linear equation :

x∗ = 1 +
Ax∗

α
√
n

whose positive solution has been studied in [9] (notice that the
existence of such a solution requires α�

√
2 log(n)).

In the latter case, either x∗k = 0 or 1 − x∗k + (Ax∗)k
α
√
n

=

0. The equilibrium equations become ill-posed as there might
be many equilibria. In any case, we no longer remain in the
comfort zone of a linear matrix equation. However, relying on
standard properties of dynamical systems, see for instance [11,

Theorem 3.2.5], a necessary condition for the equilibrium x∗

to be stable is that

1− x∗k +
(Ax∗)k
α
√
n
≤ 0 .

This casts the problem of finding a non negative equilibrium
into the class of Linear Complementarity Problems (LCP).

Linear Complementarity Problem (LCP). LCP is a class
of problems from mathematical optimization which in particu-
lar encompasses linear and quadratic programs ; standard re-
ferences are [12, 13]. Given a n × n matrix M and a n × 1
vector q, the associated LCP denoted by LCP (M, q) consists
in finding two n× 1 vectors z,w satisfying the constraints :

z ≥ 0 ,

w = Mz + q ≥ 0 ,

wTz = 0 (⇔ wkzk = 0 ∀k ∈ [n]) .

(4)

Since w can be inferred from z, we denote z ∈ LCP (M, q) if
(w, z) is a solution of (4).

A theorem by Murty [14] states that the LCP (M, q) has a
unique solution (w, z) iff M is a P -matrix, that is :

det(MI) > 0 , ∀ I ⊂ [n] , MI = (Mk`)k,`∈I .

Let us denote Ǎ = A
α
√
n

. Gathering the constraints of the equi-
librium x∗ defined in (3), we get :

x∗ ≥ 0 ,

1− x∗k + (Ǎx∗)k ≤ 0 ,

xk
(
1− x∗k + (Ǎx∗)k

)
= 0 .

Otherwise stated, x∗ ∈ LCP (I − Ǎ,−1).

The equilibrium x∗ and its stability. For a generic LV sys-
tem

d yk(t)

dt
= yk(rk + (By)k) , k ∈ [n] , (5)

Takeuchi and Adachi provide a criterion for the existence of a
unique equilibrium y∗ and the global stability of LV systems,
see Theorem 3.2.1 in [11].

Theorem 1 (Takeuchi and Adachi, see [11]). If there exists a
positive diagonal matrix ∆ such that ∆B + BT∆ is negative
definite, then LCP (−B, r) admits a unique solution and there
is a unique equilibrium y∗ to (5), which is globally stable :

∀y0 > 0 ,

{
y(0) = y0

y(t) satisfies (5)
, y(t) −−−→

t→∞
y∗ .

Combining this result (with I − Ǎ = −B) with results from
RMT, we can guarantee the existence of a globally stable equi-
librium x∗ of (1) for a wide range of α’s.

Proposition 2. Let α >
√

2, then almost surely, matrix

(I − Ǎ) + (I − Ǎ)T



is eventually positive definite : with probability one, for a gi-
ven realization of the matrix Ǎω , there exists N(ω) such that
for n ≥ N(ω), (I − Ǎω) + (I − Ǎω)T is positive definite.
In particular, there exists a unique globally stable equilibrium
x∗ ∈ LCP (I − Ǎω,−1).

Proof. We have

I − Ǎ+ I − ǍT = 2I −
√

2

α

1√
n

(
A+AT√

2

)
.

Notice that (A + AT )/
√

2 is a symmetric matrix with inde-
pendent N (0, 1) entries above the diagonal (the distribution of
the diagonal entries is different from the off-diagonal entries,
with no asymptotic effect). In this case, the largest eigenva-
lue of the normalized matrix (or equivalently its spectral norm
since the matrix is symmetric) a.s. converges to the right edge
of the support of the semi-circle law (see [15, Theorem 5.2]) :

λmax

(
A+AT√

2n

)
a.s.−−−−→
n→∞

2 .

Now if α >
√

2, we can conclude that (a.s.) eventually the
smallest eigenvalue of 2I − (Ǎ+ ǍT ) is positive. We can then
rely on Theorem 1 to conclude.

3 Surviving species : A heuristics
In Section 2, we have presented a theoretical guarantee, condi-

tion α >
√

2, for the existence of a globally stable equilibrium
x∗ to (1). As x∗ depends on the realization of matrix A, it is a
random vector that will feature vanishing components as α > 0
is fixed and does not depend on n.

In this section, we study the proportion of x∗’s non-vanishing
components, referred to as surviving species in an ecological
context. The vanishing components correspond to the species
going to extinction : if x∗k = 0 then xk(t) −−−→

t→∞
0 . Associated

to x∗, we introduce :

S = {i ∈ [n], x∗i > 0} , p̂ =
|S|
n
, σ̂2 =

1

|S|
∑
i∈[n]

(x∗i )
2 .

Denote by Z ∼ N (0, 1) a standard Gaussian random variable
and by Φ the cumulative Gaussian distribution function :

Φ(x) =

∫ x

−∞

e−
u2

2

√
2π

du . (6)

Heuristics 1. Let α >
√

2. The following system of two equa-
tions and two unknowns (p, σ)

σ
√
pΦ−1(1− p) + α = 0 , (7)

and

1 +
2σ
√
p

α
E(Z | Z > −δ) +

σ2p

α2
E(Z2 | Z > −δ) = σ2

(8)
where δ = α

σ
√
p , admits a unique solution (p∗, σ∗) and

p̂
a.s.−−−−→
n→∞

p∗ and σ̂
a.s.−−−−→
n→∞

σ∗ .

Simulations. We fix n = 500, draw L independent realiza-
tions of matricesA(i), compute corresponding equilibria x∗(i)(α)
and related quantities (p̂(i)(α), σ̂(i)(α)) for fixed α > 0. We
then compare the empirical Monte Carlo (MC) averages

p̂L(α) =
1

L

L∑
i=1

p̂(i)(α) and σ̂L(α) =
1

L

L∑
i=1

σ̂(i)(α)

to their theoretical counterparts p∗(α), σ∗(α) with L = 400.
As shown in Figure 1, the matching is remarkable.

FIGURE 1 – The plot represents a comparison between the
theoretical proportion of surviving species p∗(α) (up) and se-
cond moment (down) computed as solutions of (7)-(8), and
their empirical MC counterpart (p̂L(α), σ̂L(α)). The para-
meter α on the x-axis ranges from 1 to

√
2 log(n) ' 3.53.

The threshold α >
√

2 represents the theoretical guarantee to
have a stable equilibrium ; α =

√
2 log(n) is the upper-limit

above which we have no extinction (p∗ = 1). Notice that for
α ∈ [1,

√
2], the heuristics shows a remarkable matching with

the empirical data despite no theoretical guarantees.

4 Construction of the heuristics
We successively establish (7) and (8).

Equation (7). We first recall a result on order statistics of
a Gaussian sample (see [16]). Consider a family (Zk)k∈[n] of
i.i.d. random variables N (0, 1) and their order statistics

Z∗1 ≤ Z∗2 ≤ · · · ≤ Z∗n .
Consider index bnαc ∈ [n] where α ∈ (0, 1) is fixed, then the
typical location of Z∗bnαc is Φ−1(α), where Φ is defined in (6) :

Z∗bnαc ' Φ−1(α) as n→∞ . (9)



Intuitively, (9) follows from the empirical approximation :

Φ(Z∗[αn]) '
1

n

n∑
i=1

1(−∞,Zi](Z
∗
[αn]) =

[αn]

n
.

Let x∗ be the equilibrium of (1) and consider the RV :

Žk =
1

α
√
n

∑
i∈S

Akix
∗
i .

Assume that asymptotically, the x∗i ’s are i.i.d. and independent
from the Aki’s. A natural consequence is that Žk is asympto-
tically Gaussian and that the Žk’s are uncorrelated. Suppose
also that S is deterministic (which is clearly a limitation of this
computation) ; denote by σ2 = E(x∗1)2.

EŽk = 0 and EŽ2
k =

1

α2n

∑
i∈S

EA2
kiE(x∗i )

2 =
p∗

α2
σ2 .

We now introduce theN (0, 1) random variables (Zk)k∈[n] such
thatZk = α/(σ

√
p∗)Žk. Consider the equilibrium x∗ = (x∗k)i∈[n].

If k ∈ S, that is x∗k > 0, we have

1−x∗k +
(Ax∗)k
α
√
n

= 0 ⇒ 1 +
(Ax∗)k
α
√
n

= 1 +
σ
√
p∗

α
Zk > 0 .

If k /∈ S then

1 +
(Ax∗)k
α
√
n

= 1 +
σ
√
p∗

α
Zk ≤ 0 .

Otherwise stated,{
Zk ≤ −α/(σ

√
p∗) if k /∈ S ,

Zk ≥ −α/(σ
√
p∗) if k ∈ S .

Considering the order statistics of the Zk’s we obtain :

Z∗1 ≤ · · · ≤ Z∗i ≤ −
α

σ
√
p∗
≤ Z∗i+1 ≤ · · · ≤ Z∗n .

Now, there are exactly n− |S| = n(1− p∗) indices before the
threshold so i = n(1 − p∗) and Z∗i ' − α

σ
√
p∗

. Relying on (9)
and replacing p∗ by its (supposedly existing) limit p, we finally
obtain Φ−1(1− p) = − α

σ
√
p , which is exactly (7).

Equation (8). Let k ∈ S, then

1−x∗k+
(Ax)k
α
√
n

= 0 ⇔ x∗k = 1+
σ
√
p∗

α
Zk , Zk ∼ N (0, 1)

provided that Zk > −δ := − α
σ
√
p∗

. Taking the square and the
expectation conditionnally to Zk > −δ, we end up with

E(x∗k)2 = 1+
2σ
√
p∗

α
E(Z | Z > −δ)+σ2 p∗

α2
E(Z2 | Z > −δ) ,

which is the desired result, once replacing p∗ by p.

5 Concluding remarks
In this paper, we provide a heuristics to evaluate the pro-

portion of surviving species in a large LV system. Simulations
show a striking matching with the empirical data.

Two questions naturally arise. First, is it possible to prove
mathematically this heuristics ? The dependence induced by
the LCP procedure seems a priori difficult to handle. Second,
would it be possible to extend this heuristics to non-centered
elliptical matrix models as in [7] ? We are confident that this
should be possible, at least in the non-centered i.i.d. case.
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