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Résumé – Les modèles génératifs tels que la chaı̂ne de Markov cachée, le réseau de neurones récurrents et le réseau de neurones récurrents
stochastique ont de nombreuses applications avec des données séquentielles. Dans cet article, nous nous concentrons sur une extension de ces
modèles, les chaı̂nes de Markov Couple. Nous proposons ce modèle comme un modèle génératif et un algorithme d’estimation des paramètres
basé sur une approche bayésienne variationnelle. Nous analysons également le cas linéaire et Gaussien, où nous pouvons caractériser la distribu-
tion des observations. Les résultats d’expériences montrent que ce nouveau modèle donne de meilleurs résultats que d’autres modèles génératifs.

Abstract – Generative models such as the Hidden Markov Chain, the Recurrent Neural Network, and the Stochastic Recurrent Neural Network
have found many applications with sequential data. In this paper, we focus on a particular extension of these models, the Pairwise Markov Chain.
We propose this model as a generative model with a parameter estimation algorithm based on a variational Bayesian approach. We also analyze
the particular linear and Gaussian case, where it is possible to characterize the generative distribution. Finally, we show that our model with its
associated algorithm outperforms other generative models.

1 Introduction
Let xT = (x0, . . . , xT ), xt ∈ Rdx and hT = (h0, . . . , hT ),

ht ∈ Rdh be two sequences of observed and hidden latent ran-
dom variables (r.v.) of length T + 1, respectively. As far as
notations are concerned, we do not distinguish r.v. and their
realizations.

In this article, our interest is to present a generative model
approach based on latent r.v. which is defined by a joint distri-
bution pθ(xT ,hT ) and provides learning from the observations
xT since its distribution reads pθ(xT ) =

∫
pθ(xT ,hT )dhT .

First, (xT ,hT ) are described by a parameterized distribution
pθ(xT ,hT ) which allows to model the unknown distribution
p(xT ,hT ). Next, the set of parameters θ is estimated from the
realizations xT . Finally, for a set of known parameters, we can
generate observations from pθ(xT ).

A popular generative model is the Hidden Markov Chain
(HMC) [1] which has been used for sequential data modeling
problems (e.g music, images, text). In a HMC, the sequence
hT is a Markov chain and given hT , the observations xt are in-
dependent and only depend on the corresponding ht. The joint
distribution pθ(hT ,xT ) is factorized as

pθ(xT ,hT ) = pθ(h0)

T∏
t=1

pθ(ht|ht−1)

T∏
t=0

pθ(xt|ht), (1)

where pθ(ht|ht−1) and pθ(xt|ht) are the distributions repre-
senting the transitions of the Markov chain hT and the rela-
tions between the observation and the hidden variable, respec-
tively. This model has been generalized by the introduction of
the Pairwise Markov Chain (PMC)[2] which only satisfies the
assumption that the pair (xT ,hT ) is a Markov chain. PMC in-
corporates more complex relationships between the observed

and latent variables. However, PMC has been introduced in a
Bayesian framework where the objective is to estimate the la-
tent process from the observed one [3, 4, 5]. The aim of this
paper is to present the Pairwise Markov Chain (PMC) as a (ge-
neral) generative model, which includes some generative mo-
dels such as the Hidden Markov Chain (HMC) [6, 7], the Re-
current Neural Network (RNN) [8, 9], and the Stochastic RNN
(SRNN) [10, 11] and to extend some of the models proposed in
[12]. On the other hand, a maximum likelihood estimation can
be proposed for the estimation of θ. However, a direct maximi-
zation of pθ(xT ) =

∫
pθ(xT ,hT )dhT is not always possible

due to the fact that if a model comprises many unobservable
variables the integration can become analytically burdensome
or even intractable. Here, we focus on variational Bayesian ap-
proaches, which are particularly suitable for high dimensional
models [13]. The paper is organized as follows. In Section 2,
we introduce the PMC and a variational Bayesian approach to
estimate the set of parameters θ of general PMCs. Next, in Sec-
tion 3, we present the connection between the PMC and the
popular generative models presented before. Finally, we des-
cribe examples of a generative PMCs and we compare them on
simulations in Section 4.

2 Generative PMC

2.1 Definition

The PMC is a direct generalization of HMC which has recei-
ved a particular attention for image segmentation, see e.g. [14,
15, 16]. In this article, we present the PMC as a generative mo-
del which aim at modeling an unknown distribution pθ(x) of



observations.
The PMC only assumes that the pair (xT ,hT ) is markovian,

with transition p(ht, xt|ht−1, xt−1). The distribution pθ(hT ,xT )
reads

pθ(h0, x0)

T∏
t=1

pθ(ht|ht−1, xt−1)pθ(xt|ht−1, xt−1, ht). (2)

2.2 Variational Inference
We propose a variational Bayesian approach for estimating

the set of parameters θ from a realization xT . In the variational
inference framework, it is not the log model log(pθ(xT )) itself
which is evaluated, but rather a lower bound approximation
to it, called the Evidence Lower Bound (ELBO). This ELBO
Q(θ, qϕ) is derived from the negative (exclusive) Kullback-
Leiber (KL) divergence between a variational distribution qϕ(hT |
xT ) and the posterior distribution pθ(hT |xT ), which is conve-
nient because of the complexity of pθ(hT |xT ) [13]. The follo-
wing inequality holds for any variational distribution qϕ(hT |xT ),

log(pθ(xT ))≥ Q(θ, qϕ) (3)

= −
∫

log

(
qϕ(hT |xT )

pθ(xT ,hT )

)
qϕ(hT |xT )dhT . (4)

Our objective is to maximize the ELBO w.r.t θ and qϕ which
can be done with the Expectation-Maximization (EM) algo-
rithm [17]. However, it relies on the computation of pθ(hT |xT )
and since qϕ(hT |xT ) can be chosen, in general, as a parame-
tric function [18, 19], it is possible to approximate Q(θ, qϕ) by
using the reparametrization trick [20] which allows to obtain
samples h

(i)
T ∼ q(hT |xT ) that can be written as a differen-

tiable function of ϕ. The choice of the variational distribution
qϕ(hT |xT ) is important, we have to consider that it should be
close to pθ(hT ,xT ) but, at the same time, the associated ELBO
should be calculable or easily approximated while remaining
differentiable w.r.t. (θ, ϕ). In the case of the PMC, remember
that p(xT ,hT ) coincides with (2). Thus, the ELBO in (4) reads

Q(θ, ϕ) = −
∫

log

(
qϕ(h0|xT )

p(x0, h0)

)
qϕ(h0|xT )dhT

−
T∑

t=1

∫
log

(
qϕ(ht|ht−1,xT )

pθ(ht, xt|ht−1, xt−1)

)
qϕ(ht|,xT )dht. (5)

Since pθ(ht|ht−1,xT ) is generally not computable in PMC
models (except in the linear and Gaussian case) we can choose
a variational distribution from which a sample can be obtained
with the reparametrization trick, and which satisfies

qϕ(ht|ht−1,xT ) = qϕ(ht|ht−1,xt). (6)

Example 1. We choose a variational distribution as follows

qϕ(ht|ht−1,xt) = N (ht; fϕ(ht−1,xt); diag(gϕ(ht−1,xt))),

where N (ht;µ; Σ) denotes the Gaussian distribution with mean
µ and variance Σ taken at point ht ; and fϕ and gϕ are para-
meterized and differentiable functions of ϕ, diag(·) denotes the

diagonal matrix deduced from the values of gϕ and where a
sample h(i)t ∼ qϕ(ht|ht−1,xt) can be obtained as

h
(i)
t = fϕ(ht−1,xt) + (diag(gϕ(ht−1,xt))

1
2 × ϵ(i), (7)

with ϵ(i) ∼ N (0, I). Note that for this choice of variational dis-
tribution, the components ht are independently given (ht−1,xt)
in the regard of the variational distribution qϕ.

Thus, by sampling h
(i)
T ∼ q(h0|x0)×

∏T
t=1 qϕ(ht|ht−1,xt),

for all i, 1 ≤ i ≤ N , Q(θ, ϕ) in (5) can be approximated by
(up to the term associated to t = 0 that we omit for clarity)

Q̂(θ, ϕ) = −
N∑
i=1

T∑
t=1

log

(
qϕ(h

(i)
t |h(i)t−1,xt)

pθ(h
(i)
t , xt|h(i)t−1,xt−1)

)
(8)

and optimized with a gradient ascent algorithm w.r.t. (θ, ϕ).

3 Relation with other generative models

3.1 Generative models
HMC. As recalled in the Introduction, the HMC is a popular

model which satisfies

pθ(xT ,hT ) = pθ(h0)

T∏
t=1

pθ(ht|ht−1)

T∏
t=0

pθ(xt|ht). (9)

where hT is a Markov chain, and p(xT |hT ) =
∏T

t=0 p(xt|ht).
RNN. An RNN is a particular neural network where the

latent variable ht is deterministically obtained given the pre-
vious observation xt−1 and the previous latent variable ht−1

(so pθ(ht|ht−1, xt−1) becomes a Dirac measure). Its expres-
sion relies on an activation function fθ. As in the HMC, given
hT , the observations xT are independent and xt only depends
on ht. The distribution of (xT ,hT ) reads

ht = fθ(ht−1, xt−1), (10)
pθ(xt|xt−1) = pθ(xt|ht). (11)

SRNN. The SRNN is an extension of the RNN where the
latent variable ht becomes random and also depends on xt−1

given the past observations and the latent variables. The gene-
rative model is given by,

pθ(xT ,hT ) = pθ(h0)

T∏
t=0

pθ(xt|ht)
T∏

t=1

pθ(ht|xt−1, ht−1).

(12)
This model includes the Variational RNN (VRNN) [11] or the
Stochastic Recurent network (STORN) [10].

3.2 Theoretical comparison
In this section, we focus on linear and Gaussian PMC with

ht ∈ R and scalar observations. Model (2) satisfies

pθ(h0, x0) = N
((

h0
x0

)
;

[
0
0

]
,

[
η γη
γη 1

])
(13)

pθ(ht|ht−1, xt−1) = N (ht; aht−1 + cxt−1, α), (14)
pθ(xt|ht−1:t, xt−1) = N (xt; bht + eht−1 +fxt−1, β), (15)



where θ = (a, b, c, e, f, α, β, η, γ). The linear and Gaussian
SRNN coincides with e = f = 0, γ = b, while the linear and
Gaussian HMC also satisfies c = 0.

Our objective is to build a generative model pθ(xT ) such that
it coincides with a Gaussian distribution p(xT ), for all T ≥ 0,
which satisfies

p(xt) = N (xt; 0; 1), for all 0 ≤ t ≤ T. (16)

We have shown in [12] that the associated generative distribu-
tion reads, for all positive integers T, t, k,

pθ(xT ) = N (xT ;0; Σ), (17)

cov(xt, xt+k) = A
k
(B +

1

2
)− C

k
(B − 1

2
), (18)

whereA,B,C andK depend on θ, and the following constraints
are satisfied :

γη = bη + (ae+ afγ + ceγ) + fc, (19)

0 ≤ (1− a2 − 2acγ)η − c2, (20)

0 ≤ 1− b2η − 2bη(γ − b)− eη(e+ 2fγ)− f2. (21)

The proof of this result is presented in [12]. This results shows
that the linear and Gaussian PMC can model some Gaussian
distributions which cannot be modeled by the linear and Gaus-
sian SRNN [21] since the linear and Gaussian SRNN is able
to model any centered Gaussian distribution with a covariance
matrix cov(xt, xt+k) = Ak−1B, for all T ≥ 0, t ≥ 0 and
k ≥ 0.

4 Simulations

4.1 Deep generative PMCs
In this section, we present our deep generative PMCs (DPMCs),

a generalization of the VRNN [11]. DPMCs a particular ins-
tance of the PMC where the parameters can be produced by any
function ψ(·), in particular, by (deep) neural networks. Addi-
tionally, we set ht = (h′t, zt) with the latent variable h′t deter-
ministic. The transition (2) of this model is described with the
following set of equations :

h′t = f(xt−1, zt−1, h
′
t−1), (22)

pθ(zt|zt−1, h
′
t−1:t, xt−1)= N (zt;µpz,t; diag(σpz,t)), (23)

pθ(xt|zt−1:t, h
′
t−1:t, xt−1) = Ber(xt; ρx,t). (24)

We denote N (z;µ; Σ) the Gaussian distribution, Ber(x; ρ) the
Bernoulli distribution with parameter ρ ; and f is a determinis-
tic non-linear function describring a RNN cell. On the other
hand, the variational distribution qϕ is given by

qϕ(zt|zt−1,xt) = N (zt;µqz,t; diag(σqz,t)). (25)

The parameters θ = {µpz,t, σpz,t, ρx,t} and ϕ = {µqz,t, σqz,t}
can be derived with

[µqz,t, σqz,t] = ψqz

(
xt, h

′
t

)
, (26)

[µpz,t, σpz,t] = ψpz(h
′
t), (27)

ρx,t = ψpx

(
zt:−1:t, h

′
t−1:t, xt−1

)
. (28)

In the VRNN [11], Eq. (24) does not depend on h′t−1, zt−1

and xt−1 . We also introduce three particular instances of this
model, DPMC-I, DPMC-II and DPMC-III whose simulation
results will be presented in the next section. Note that DPMC
is the model defined by Eqs. (22)-(28). For the DPMC-I (resp.
DPMC-II), Eq. (24) does not depend on h′t−1 and zt−1 (resp.
zt−1 ). In the DPMC-III, ψpz in (27) also depends on xt−1 and
satisfies the conditions of DPMC-II.

4.2 Results
In this section, we compare the VRNN with the classical

RNN (10)-(11), the DPMC and its instances. We use the set
of MIDI music [22] and the MNIST [23] data set.

MNIST data set contains 60000 (resp. 10000) train (resp.
test) 28 × 28 binary images. An observation xt consists of a
column of the image, and the length of a sequence is T = 28. In
the MIDI music set, three polyphonic music data sets are used,
the classical piano music (Piano), the folk tunes (Nottingham)
and the four-part chorales by J.S. Bach (JSB). In this case, we
use an input of 88 binary visible units that span the whole range
of piano from A0 to C8.

Each model was trained with stochastic gradient descent on
the negative evidence lower bound using the Adam optimizer
[24]. ψpz , ψqz , ψpx in Eqs. (26)-(28) are the outputs of two hid-
den layers using rectified linear units. Note that the standard
RNN model only has ψxp . Additionally, we match the total
number of parameters of all models to be equal or close bet-
ween them, so the number of hidden units is different for each
model.

For MIDI data sets, we set the dimension of z to be 300 and
we use 300 (resp. 260, 272, 278, 294, 562) hidden units for the
VRNN (resp. DPMC, DPMC-III, DPMC-II, DPMC-I, RNN).
On the another hand, for MNIST we set 100 (resp. 78, 74, 79,
95, 162) hidden units for the VRNN (resp. DPMC, DPMC-III,
DPMC-II, DPMC-I, RNN) and the dimension of z is three.

In Table 1, we report the log-likelihoods log pθ(xT ) on the
test datasets. Except for the RNN, these likelihoods are ap-
proximated by an importance sampler [25] using 100 samples.

TABLE 1 – Results on the MIDI and MNIST data sets.
MNIST Piano Nottingham JSB

RNN -65,70 -10,52 -23,89 -10,77
VRNN ≈ -64,76 ≈ -9,40 ≈ -13,30 ≈ -10,27
DPMC ≈ -64,88 ≈ -9,23 ≈ -13,39 ≈ -10,11
DPMC-I ≈ -64,70 ≈ -9,31 ≈ -11,39 ≈ -10,31
DPMC-II ≈ -64,26 ≈ -8,83 ≈ -14,85 ≈ -10,24
DPMC-III ≈ -64,92 ≈ -9,41 ≈ -10,60 ≈ -9,23

In general, higher numbers are better. Our results show that
DPMC-II (resp. DPMC-III) has the higher average approxima-
ted log-likelihood with the MNIST and Piano (resp. Nottin-
gham and JSB) data sets. In other words, the results show that
we have an improvement in terms of likelihood by incorpo-
rating more complex relationships between the observed and



latent variables. As we see, the particular instances of DPMC
perform better than the VRNN and the classical RNN.

5 Conclusion
In this paper, we have included popular generative models

into a common model. We have shown that the PMC allows to
model complex distribution w.r.t. the SRNN, in the linear and
Gaussian case. We have proposed a parameter estimation algo-
rithm for PMCs and our experiments have indeed shown that a
better performance can be attained over the classical models.
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