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Résumé – Afin de résoudre des problèmes d’optimisation non contraints avec des objectives différentiables et convexes, et où le gradient est
soumis à des erreurs, nous analysons le comportement des flots de type gradient sous des perturbations stochastiques. Plus précisément, nous
étudions une équation différentielle stochastique où le terme de dérivé est l’opposé du gradient de la fonction objective, et le terme de diffusion
est borné ou carré-intégrable. Dans ce contexte, sous des conditions de Lipschitz continuité du gradient, en plus d’assurer l’existence standard
et l’unicité d’une solution, un premier résultat principal montre la convergence presque sûre de l’objectif et de la solution/processus vers un
minimiseur. Nous menons ensuite une étude de complexité et établissons des taux de convergence ponctuels et ergodiques en espérance lorsque
l’objective est convexe, fortement convexe ou vérifie (localement) l’inégalité de Polyak-Łojasiewicz. Cette dernière, qui implique une analyse
locale, nécessite des arguments fins en théorie de la mesure.

Abstract – In order to solve differentiable and convex unconstrained optimization problems with a noisy (inexact) gradient input, we analyze
the behavior of gradient-like flows under stochastic errors. More precisely, we study a stochastic differential equation where the drift term is
minus the gradient of our objective function and the diffusion term is bounded or square-integrable. In this context, under Lipschitz continuity of
the gradient, beside ensuring standard existence and uniqueness of a solution, our first main result shows almost sure convergence of the objective
and the solution/process to a minimizer of the objective function. We also provide a comprehensive complexity analysis by establishing several
new pointwise and ergodic convergence rates in expectation for the convex, strongly convex and local Polyak-Łojasiewicz case. The latter, which
involves a local analysis, is very challenging and necessitates non-trivial arguments from measure theory.

1 Introduction

1.1 Problem Statement
Consider the unconstrained convex problem

min
x∈Rd

f(x), (P)

where f : Rd → R (called the potential) is a continuously
differentiable convex function with gradient Lipschitz. We will
assume that

argmin(f) ̸= ∅. (H0)

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space. Our goal
in this paper is to get deeper understanding into local and global
convergence properties of stochastic gradient descent (SGD)
through the lens of stochastic differential equations. Toward
this goal, we will consider the following stochastic dynamic,
defined for (deterministic) initial data X0 ∈ Rd as

dX(t) = −∇f(X(t))dt+ σ(t,X(t))dB(t), t ≥ 0 (SDE)
X(0) = X0,

where:

1. B is a Ft-adapted m−dimensional Brownian motion.
2. The d × m volatility matrix σik : R+ × Rd → R is

measurable and

sup
t,x

|σik(t, x)| < +∞, |σik(t, x
′)− σik(t, x)| ≤ l0∥x′ − x∥,

(H)

for some l0 > 0 and for all t ≥ 0, x, x′ ∈ Rd.

1.2 Contributions
For a function f : Rd → R that is differentiable, convex,
and has Lipschitz continuous gradient, we study (SDE) under
hypotheses (H0) and (H). Assuming that the diffusion term
is uniformly bounded, we present upper bounds of the quan-
tity E[f(X(t)) −min(f)] for the convex and strongly convex
case. Moreover, we analyze the case when the diffusion term
is square-integrable, showing the almost sure convergence of
the process defined by the algorithm (SDE) to the set of mini-
mizers of (P) (see Theorem 3.2), a result that is new to the best
of our knowledge. Besides, we show new asymptotic conver-



gence rates of E[f(X(t))−min(f)] for the convex and strongly
convex case (see Theorem 3.3). Furthermore, we show rigor-
ously local convergence properties of the objective under the
Polyak-Łojasiewicz inequality for the first time (see Theorem
3.6). To show this precisely, let δ > 0 be sufficiently small, and
consider (SDE) under hypothesis (H), then there exists σ2

∗ > 0
such that: ∥σ(t, x)∥2F ≤ σ2

∗, ∀t ≥ 0,∀x ∈ Rd. Moreover,
denoting σ∞(t) := supx∈Rd ∥σ(t, x)∥F and assuming it is de-
creasing, then the asymptotic order O(·) of the convergence
rate of the objective in expectation, E[f(X(t)) − min(f)], is
summarized in the following table:

Property SDE (σ∞ ≤ σ∗) SDE (σ∞ ∈ L2)
Conv. t−1 + σ2

∗ t−1

µ−Str. Conv. e−2µt + σ2
∗ max{e−µt, σ2

∞(t)}
Conv.+ PLloc ✘ max{e−µt, σ2

∞(t)}+
√
δ

Although it is natural to think that we can take the limit when
δ goes to 0+, the time from which these convergence rates are
valid depends on δ and increases (potentially to +∞) as δ ap-
proaches 0+.

Assuming just the boundedness of the diffusion and the local
PL Inequality, we could not find better results (marked with ✘)
than those shown in the convex case. In that case, we would
like to localize the process in the long term with high proba-
bility. However, at this stage, it is not clear how to accomplish
so.

1.3 Relation to prior work
Let f : Rd → R such that argmin f ̸= ∅, the Gradient Flow:

ẋ = −∇f(x) (GF)

is a transcendental dissipative system in convex optimization
since it turns the problem of minimizing f into one of analyzing
the behavior of a process in the long term. Its Euler forward
discretization (with stepsize γk > 0) is the celebrated gradient
descent scheme

xk+1 = xk − γk∇f(xk). (GD)

If f has L-Lipschitz continuous gradient, and for (γk)k∈N ⊂
]0, 2/L[, then one can ensure that f(xk) − min(f) = O(1/t)
(in fact even o(1/t)). and the convergence of the iterates (xk)k∈N
to a point in argmin f . Moreover, if a Łojasiewicz Inequality
(see [16]) is satisfied, then we can ensure faster convergence
rates compared to just assuming convexity (see [1, 2])

Although (GD) is a classical algorithm, with the need to
handle large-scale problems (such as in various areas of data
science and machine learning), there has become necessary to
find ways to get around the high computational cost per itera-
tion that these problems entail. More precisely, considering the
empirical risk minimization problem

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x),

when n is large, it is prohibitive to compute the full gradient
of the objective, and SGD provides an alternative based on a
noisy gradient evaluated from a mini-batch M ⊂ {1, . . . , n}
(see [11]):

∇̃f(x)
def
=

1

|M |
∑
i∈M

∇fi(x) = ∇f(x) + ξ,

where M is sampled uniformly at random from {1, . . . , n},
thus ξ has mean-zero. Given an initial point x0 ∈ Rd, (SGD)
updates the iterates according to

xk+1 = xk − γk∇̃f(xk) = xk − γk(∇f(xk) + ξk), (SGD)

where ξk denotes the noise term at the k−th iteration.

The dynamic (SDE) is well-studied for MC sampling where
the volatility in the diffusion term is not allowed to vanish.
Here, we are interested in an optimization perspective. In this
respect, recent work (see [4, 5, 6, 9, 10, 13, 14]) has linked al-
gorithm (SGD) with dynamic (SDE), showing the context un-
der which (SDE) can be seen as an approximation (under a spe-
cific error) of (SGD) and vice-versa. However, many questions
are still open, including the global convergence behavior of the
trajectory, as well as global and local complexity bounds. It is
our aim here to settle these questions.

2 Preliminaries
Let f : Rd → R, then [f ≤ r] := {x ∈ Rd : f(x) ≤
r}. We denote Γ0(Rd) as the class of convex and lower semi-
continuous (l.s.c.) functions defined from Rd to R, moreover,
Γµ(Rd) is the class of µ−strongly convex functions. We also
denote C1,1

L (Rd) to the continuously differentiable functions
defined from Rd to R whose gradient is L−Lipschitz.

An event A ∈ F happens almost surely if P(A) = 1, and it
will be denoted as ”A, P− a.s.” or ”A, −a.s.”. Besides

1A(ω) =

{
1 if ω ∈ A,

0 else,

and E(1A) = P(A).

We define the quotient space S0
d [0, T ] as the space of pro-

gressively measurable continuous processes from Ω× [0, T ] to
Rd under the equivalence relation R. Where XRY if

X(t) = Y (t), ∀t ∈ [0, T ], P− a.s.

And S0
d :=

⋂
T≥0 S

0
d [0, T ]. Furthermore, for ν > 0, we define

Sν
d [0, T ] as the subset of the processes X(t) in S0

d [0, T ] such
that

Sν
d [0, T ] :=

{
X ∈ S0

d [0, T ]
∣∣∣E( sup

t∈[0,T ]

∥Xt∥ν
)

< +∞

}
And

Sν
d :=

⋂
T≥0

Sν
d [0, T ].

A useful theorem to show the convergence of the trajectory
is the following:



Theorem 2.1. [7, Ch. 1, Theorem 3.9] Let {At}t≥0 and {Ut}t≥0

be two continuous adapted increasing processes with A0 =
U0 = 0 a.s. Let {Mt}t≥0 be a real valued continuous local
martingale with M0 = 0 a.s. Let ξ be a nonnegative F0-
measurable random variable. Define

Xt = ξ +At − Ut +Mt for t ≥ 0.

If Xt is nonnegative and limt→∞ At < +∞ a.s., then limt→∞ Xt

exists and is finite a.s., and limt→∞ Ut < +∞ a.s..

Now we present the main key for the convergence rate re-
sults, a subtle variation of the Itô’s formula, valid for C1,1

L func-
tions and which can be proved using a mollification argument.

Proposition 2.2. Consider X a solution of (SDE), ϕ ∈ C1,1
L (Rd).

Then the process
Y (t) = ϕ(X(t)),

is an Itô Process, such that

Y (t) ≤ Y (0)−
∫ t

0

⟨∇ϕ(X(s)),∇f(X(s))⟩ds

+

∫ t

0

⟨σt(s,X(s))∇ϕ(X(s)), dB(s)⟩

+
L

2

∫ t

0

tr[σ(s,X(s))σt(s,X(s))]ds.

(2.1)

3 Main results
Subsection 3.1 shows almost sure convergence of the trajectory
generated by (SDE) to a minimizer of f , as well as global con-
vergence rates under convexity and strong convexity. In sub-
section 3.2, we will provide convergence rates under the local
Polyak-Łojasiewicz (PL) inequality.

3.1 Global convergence guarantees
Consider f ∈ C1,1

L (Rd)∩Γ0(Rd) (called the potential) and the
dynamic (SDE) under hypotheses (H0) and (H).

Remark 3.1. (H) implies the existence of σ∗ > 0 such that:

∥σ(t, x)∥2F = tr[σ(t, x)σt(t, x)] ≤ σ2
∗, ∀t ≥ 0, x ∈ Rd

Throughout the rest of the paper, we denote

σ∞(t)
def
= sup

x∈Rd

∥σ(t, x)∥F S
def
= argmin(f).

Theorem 3.2. Consider f ∈ C1,1
L (Rd) ∩ Γ0(Rd) and the dy-

namic (SDE) under the hypotheses (H0) and (H). Then, there
exists a unique solution X ∈ Sν

d , for every ν ≥ 2. Moreover, if
σ∞ ∈ L2(R+), then:

(i) supt≥0 E[∥X(t)∥2] < +∞.
(ii) ∀x⋆ ∈ S, limt→∞ ∥X(t)− x⋆∥ exists a.s. and

supt≥0 ∥X(t)∥ < +∞ a.s.
(iii) limt→∞ ∥∇f(X(t))∥ = 0 a.s., in consequence,

limt→∞ f(X(t)) = min f a.s.

(iv) In addition to (iii), there exists an S−valued random
variable x⋆ such that limt→∞ X(t) = x⋆ a.s.

Sketch of proof. The existence and uniqueness of solution comes
from [7, Theorem 2.4.1] and [15, Theorem 5.2.1]. The rest of
the proof will consist of three steps. The first one is to use
Itô’s formula to conclude the first point, then Theorem 2.1 with
Xt = ∥X(t)−x⋆∥

2 (x⋆ ∈ S) and Itô’s formula to conclude that
for every x⋆ ∈ S, limt→∞ ∥X(t) − x⋆∥ exists a.s., then a
separability argument to conclude that almost surely, for every
x⋆ ∈ S, limt→∞ ∥X(t)− x⋆∥ exists. The second step consists
in using another conclusion of Theorem 2.1 to conclude that
∥∇f(X(·))∥2 ∈ L1(R+) a.s., then proving that this function
is eventually uniformly continuous, we proceed as Barbalat’s
Lemma says (see [3]) to conclude that limt→∞ ∥∇f(X(t))∥ =
0 a.s. and by consequence of the convexity of f that
limt→∞ f(X(t)) = min f a.s. Finally, the third step is to use
Opial’s Lemma to conclude that there exists an S−valued ran-
dom variable x⋆ such that limt→∞ X(t) = x⋆ a.s.

Theorem 3.3. Let f ∈ C1,1
L (Rd) ∩ Γ0(Rd), if we consider X

the solution of the dynamic (SDE) under the hypotheses (H0)
and (H), then the following statements holds:

(i) Let X(t) := t−1
∫ t

0
X(s)ds. Since f ∈ Γ0(Rd), then

E
[
f(X(t))−min(f)

]
≤ dist(X0, S)

2

2t
+

σ2
∗
2
, ∀t > 0.

(3.1)
Besides, if σ∞ is L2(R+), then

E
[
f(X(t))−min(f)

]
= O

(
1

t

)
, ∀t > 0. (3.2)

(ii) If f ∈ Γµ(Rd), then S = {x⋆} and

E
(
∥X(t)− x⋆∥2

2

)
≤ ∥X0 − x⋆∥2

2
e−2µt+

σ2
∗

4µ
, ∀t ≥ 0.

(3.3)
Besides, if σ∞ is decreasing and vanishes at infinity,
then:

E
(
∥X(t)− x⋆∥2

2

)
≤ ∥X0 − x⋆∥2

2
e−2µt +

σ2
∗
2
e−µt

(3.4)

+
σ2
∞
(
t
2

)
2

, ∀t ≥ 0.

3.2 Local convergence rates under PL Inequal-
ity

Let us start with the definition.

Definition 3.4. Let f : Rd → R be convex such that
argmin(f) ̸= ∅. Then f satisfies locally the Polyak-Łojasiewicz
(PL) Inequality if there exists r > min f, µ > 0 such that:

2µ(f(x)−min(f)) ≤ ∥∇f(x)∥2, ∀x ∈ [f ≤ r], (3.5)

and it will be denoted f ∈ PLloc(Rd).



We will need the following lemma:

Lemma 3.5. Consider f ∈ C1,1
L (Rd)∩ Γ0(Rd) and X a solu-

tion of (SDE) under hypotheses (H0), (H) and such that σ∞ ∈
L2(R+). Let us also consider δ ∈ (0, 1), Ωδ ∈ F such that
P(Ωδ) ≥ 1− δ. Then, there exists Cd, Cf > 0:

E
[
dist(X(t), S)2

2
1Ω\Ωδ

]
≤ Cd

√
δ,

E
[
(f(X(t))−min f)1Ω\Ωδ

]
≤ Cf

√
δ.

Now we are ready to state the main result about the local
convergence rates.

Theorem 3.6. Let f ∈ C1,1
L (Rd)∩ Γ0(Rd)∩PLloc(Rd), con-

sider X the solution of the dynamic (SDE) under the hypothe-
ses (H0), (H), and such that σ∞ ∈ L2(R+) (C∞ := ∥σ∞∥L2 )
and decreasing. Consider also the positive constants C,C∗, Cf ,
µ, γ. Then, for all δ > 0, there exists t̂δ > 0 such that for all
t > t̂δ:

E (f(X(t))−min f) ≤ e−2µ(t−t̂δ)E(f(X(t̂δ))−min f)

+
LC2

∞
2

e−µ(t−t̂δ) +
L

4µ
σ2
∞

(
t+ t̂δ
2

)
(3.6)

+
√
δ

 C

4µ

σ2
∞( t+t̂δ

2 )√∫ t+t̂δ
2

t̂δ
σ2
∞(u)du

+ C∞Ce−µ(t−t̂δ) + Cf

 .

Moreover,

E
(
dist(X(t), S)2

2

)
≤ e−2γ(t−t̂δ)E

(
dist(X(t̂δ), S)

2

2

)
+ C2

∞e−γ(t−t̂δ) +
1

2γ
σ2
∞

(
t+ t̂δ
2

)
(3.7)

+
√
δ

C∗

4γ

σ2
∞

(
t+t̂δ
2

)
√∫ t+t̂δ

2

t̂δ
σ2
∞(u)du

+ C∗C∞e−γ(t−t̂δ) + Cd

 .

Sketch of proof. Consider that f ∈ C1,1
L (Rd) ∩ Γ0(Rd) and

r > min f such that f satisfies the PL Inequality with con-
stant µ on [f ≤ r], use that limt→∞ f(X(t)) = min f a.s.
in order to apply Egorov’s Theorem [12, Chapter 3, Exercise
16]. This guarantees uniform convergence on a set Ωδ ∈ F
with P(Ωδ) ≥ 1 − δ. Thus, there exists t̂δ > 0 such that,
after that time, we can localize the process on [f ≤ r] with
a probability of at least 1 − δ. We can use Proposition 2.2
for the function ϕ(x) = f(x) − min f and then multiply the
obtained equation by 1Ωδ

. After, we take expectation and we
can apply an adaptation of Comparison Lemma [8, Proposi-
tion 2.3] to our specific context but under slightly less stringent
assumptions, and then, the integrating factor method to obtain
a convergence rate on E ([f(X(t)−min f ]1Ωδ

) . Combining
this with Lemma 3.5 shows a convergence rate on
E ([f(X(t)−min f ]) . Moreover, since the local PL implies
an Error bound Inequality, i.e., there exists γ > 0 such that:

f(x)−min(f) ≥ γdist(x, S)2, ∀x ∈ [f ≤ r],

we proceed as before with the function ϕ̃(x) = dist(x, S)2.

If we have the global PL inequality, the statements of The-
orem 3.6 would hold if we replace σ∞ ∈ L2(R+) by σ∞ de-
creasing and vanishing at infinity, δ by 0 and t̂δ by 0. It is
of paramount importance to observe that a.s. convergence of
f(X(t)) is not sufficient to get the local bounds, since this
only gives that the time beyond which X is a.s. localized in
[f ≤ r] is a random variable that cannot be made uniform. Un-
fortunately, this is a flawed argument that usually appears in
the literature.
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