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Résumé – L’objectif principal de la recherche expérimentale en neurosciences est de comprendre les mécanismes bio-physiques qui sont à
l’origine de phénomènes neuronaux complexes. Lorsque le but est de reproduire informatiquement des signaux cérébraux réalistes, cela implique
généralement l’inférence des paramètres de modèles stochastiques non-linéaires. Cette tâche est d’autant plus difficile si le couplage de certains
paramètres conduit à des modèles intrinsèquement indéterminés. Nous présentons une méthode capable de lever une telle indétermination en
étendant les développements récents de l’inférence par simulation (SBI) aux modèles hiérarchiques bayésiens. L’idée est d’exploiter l’information
incluse dans un ensemble d’observations supplémentaires partageants les mêmes paramètres globaux, afin de fournir une estimation plus précise
des paramètres couplés. Nous appliquons cette méthode à un modèle neuronal connu, le Jansen & Rit Neural Mass Model pour étudier quelles
informations supplémentaires permettent d’obtenir les meilleures estimations de paramètres pour des signaux EEG.

Abstract – Understanding the bio-physical mechanisms underlying complex neuronal phenomena is the main focus of experimental research
in neuroscience. When trying to computationally replicate realistic brain signals, it typically involves inferring the parameters of stochastic non
linear models. This task becomes particularly challenging when the coupling of certain parameters leads to intrinsically indeterminate models.
We present a method that is capable of removing such indeterminacy by extending recent developments in simulation-based inference (SBI) to
hierarchical Bayesian models. The idea is to exploit additional information conveyed by an auxiliary set of observations sharing the same global
parameters, in order to provide more accurate estimates of the coupled parameters. We demonstrate this method on the well known Jansen & Rit
Neural Mass Model and use it to investigate what extra information best improves the parameter estimates on EEG signals.

1 Introduction

Sophisticated experimental technologies help us to observe
complex neuronal behavior at different scales. But understan-
ding the bio-physical mechanisms that drive such phenomena
remains a challenging task: computational neuroscientists usually
face the dilemma of either creating carefully designed, highly
interpretable mechanistic models but rely on ad-hoc parame-
ter tuning [1], or resort to purely data-driven models built for
statistical inference, but with limited mechanistic insight [2].

Simulation-Based Inference (SBI) allows to perform statisti-
cal Bayesian inference in cases where the likelihood of the data
is intractable (e.g. due to the non-linear or non-differentiable
behavior within the model). They only require access to a simu-
lator capable of generating samples from the underlying mathe-
matical model. Building on the recent advances in deep lear-
ning combined with active learning techniques and probabi-
listic programming [3], new algorithms have been developed.
Core elements are neural density estimators that learn different
quantities in the Bayes’ formula such as the likelihood function
[4], the likelihood-to-evidence ratio [5], or the posterior distri-
bution [6]. Methods based on neural posterior estimation [7, 8]
have shown to scale to complex mechanistic models in neuros-

cience where they outperform traditional methods [9] based on
Approximate Bayesian Computation (ABC). They also show
that resulting full posterior distribution allows to visualize in-
trinsic uncertainties in the parameter space, that are typical for
stochastic and non-linear dynamics of neuronal activity [7].

Stochasticity is not the only source of uncertainty when esti-
mating the parameters in a computational neuroscience model.
In a number of practical contexts, some parameters are stron-
gly coupled. Formally, this means that the likelihood function
p(x|θ) is non-injective w.r.t. θ: one can find θ ̸= θ′ such that
p(x|θ) = p(x|θ′). This can lead to highly structured posteriors
(e.g. ”banana shapes” in Fig. 4 of [7]). A particular case is when
certain global parameters β can be shared among observations
obtained for different local parameters α.

Hierarchical Bayesian Models are the central tool to model
data with nested subpopulations as can be found in topic mo-
dels or population genetics [10]. They share statistical strength
across observations and result in sharper posteriors and more
reliable estimates for global and local parameters. In the situa-
tion where we have an observation of interest x0 and a set of
extra observations X = {x1, . . . ,xN} with xi ∼ p(x | αi,β),
the posterior distribution can be factorized as:

p(α0,β | x0,X ) = p(α0 | β,x0) p(β | x0,X ) . (1)



Approaches for SBI in hierarchical models exist, but are li-
mited. Ref. [10] extends Approximate Bayesian computation
(ABC) into a two-step procedure in which local and global va-
riables are estimated. Ref. [11] and [5] extend amortized li-
kelihood ratios to deal with global parameters, but cannot do
inference on local parameters.

In this work we present HNPE [12], an extension of neural
posterior estimation [6] that was published at the 2021 Neu-
rIPS conference. The authors validate this method, showing
that it converges to the true global and local parameter values
of complex hierarchical models in neuroscience. We propose a
follow-up with additional experimental results about how the
use of extra-observations can influence inference quality, with
an application to real electroencephalography (EEG) data.

2 Methods
Approximating the posterior distribution. Our goal is to ap-
proximate p(α0,β | x,X ) in a setting where the likelihood
function of the hierarchical Bayesiam model is intractable and
we only have access to samples from a simulator. MCMC me-
thods commonly used for posterior estimation are thus not ap-
plicable. To bypass such difficulty, we employ tools from si-
mulation based inference (SBI) to directly estimate an approxi-
mation to the posterior distribution using a conditional neural
density estimator trained over simulations of the model. More
specifically, we use Hierarchical Neural Posterior Estimation
(HNPE) [12] a neural posterior estimation procedure that relies
on normalizing flows, i.e. invertible neural networks capable
of transforming data points sampled from a simple base distri-
bution (e.g. Gaussian) to approximate any probability density
function [13].

In HNPE, we approximate the target posterior distribution
based on its factorization (1) as follows:

p(β | x0,X ) ≈ qϕ1
(β | x0, fϕ3

(X ))

p(α0 | β,x0) ≈ qϕ2(α0 | β,x0)
(2)

where qϕ1 and qϕ2
are normalizing flows. The function fϕ3

is a deepset neural network [14] used to aggregate the extra
observations via a learnable weighted average operation and is
crucial for imposing the invariance to permutation of the extra
observations in X .

The parameters ϕ = {ϕ1,ϕ2,ϕ3} are estimated by mini-
mizing the average Kullback-Leibler divergence between the
true posterior distribution p(α0,β|x0,X ) and our approxima-
tion qϕ(α0,β|x0,X ) over all possible values of x0 and X :

min.
ϕ

Ep(x0,X )

[
KL(p(α0,β | x0,X )∥qϕ(α0,β | x0,X ))

]
.

We may rewrite the optimization problem in terms of each of
its parameters to get

min.
ϕ1,ϕ2,ϕ3

Lα(ϕ2) + Lβ(ϕ1,ϕ3) (3)

with
Lα(ϕ2) = −Ep(x0,X ,α0,β) [log(qϕ2

(α0 | β,x0)] ,

Lβ(ϕ1,ϕ3) = −Ep(x0,X ,α0,β) [log(qϕ1
(β | x0, fϕ3

(X )))] .

In practice we minimize the Monte Carlo approximation of
our objective function (3) using a training set of n i.i.d. data
samples (xj

0,X j) generated from our hierarchical stochastic
simulator for a given prior p(α,β) = p(α|β)p(β) that des-
cribe our initial knowledge of the parameters (e.g. the range of
possible values):

1. Sample a set of parameters from the prior distribution
p(α,β) such that βj ∼ p(β) and αj

i ∼ p(α|βj) with
j = 1, . . . , n and i = 0, . . . , N .

2. For each (i, j)-pair, generate xj
i ∼ p(x|αj

i ,β
j) so that

each observation xj
0 is accompanied by its corresponding

N extra observations X j = {xj
1, . . . ,x

j
N}.

We can now train our neural density estimators by minimizing
the empirical losses:

Ln
α = − 1

n

∑n
j=1 log(qϕ2(α

j
0 | βj ,xj

0))

Ln
β = − 1

n

∑n
j=1 log(qϕ1

(βj | xj
0, fϕ3

(X j))) .

This training proceedure can be used in a sequential manner
to further improve inference quality and simulation efficency
by using the running estimate of the posterior distribution to
guide further simulations toward regions of the parameter space
compatible with a specific choice of x0 and X . This is useful
when the observed data is scarce and/or difficult to obtain or
simulations of the model are costly. See [12] for more details
of the algorithm and its implementation.
The simulator model. Neural Mass Models are a class of non-
linear models from computational neuroscience that, based on
physiologically motivated stochasitc differential equations, are
able to replicate oscillatory electrical signals experimentally
observed with electroencephalography (EEG). These models
of cortical columns are used in large-scale simulators [15] and
serve as building blocks for several simulation studies in cogni-
tive and clinical neuroscience [16]. We consider the stochastic
version of the Jansen & Rit Neural Mass Model (JR-NMM) and
use the C++ implementation in the supporting code of [9]. The
output x of this generative model is a time series obtained by ta-
king as input a set of four parameters θ = (C, µ, σ, g). While C
influences the oscillatory behavior, (µ, σ) and g impact the am-
plitude of x: the gain factor g represents the amplifier (resp. at-
tenuator) for measurements of physiological signals with small
(resp. high) amplitude (characterized by (µ, σ)). The reader is
referred to [12] for the full description of the stochastic diffe-
rential equations and the bio-physical parameters defining the
neural mass model.

Here, the coupling-effect of parameters g and (µ, σ) on the
amplitude of the output signal is what leads to indeterminacy in
the posterior-estimation problem: the same observed signal x0

could be generated with larger (smaller) values of g and smaller
(larger) values of µ and σ. Fortunately, it is common to record
several chunks of signals within an experiment, giving us ac-
cess to auxiliary signals x1, . . . ,xN obtained with the same
instrument setup (i.e. the same gain g). We can therefore use
the above presented framework of hierachical modeling with
α = (C, µ, σ) and β = g.



Experimental data. In our numerical illustrations with real
data, we consider EEG recordings of brain signals taken from
a public dataset [17] in which subjects were asked to keep their
eyes open or closed during periods of 8 seconds. For each sub-
ject we have access to 10 epochs, five of which correspond to
open eyes, and the rest to closed eyes events. We refer to [12]
for more details on the dataset.

3 Results and discussion

All experiments used the sbi package [18] and the code at
https://github.com/plcrodrigues/HNPE. We use
the same experimental setup as in [12] to train HNPE with R =
2 rounds and n = 50 000 training samples of simulated data
from the JR-NMM.
Experiment 1. HNPE has already shown to provide a sharper
posterior when using multiple extra-observation [12]. We now
aim to answer the following question: is the indeterminacy pro-
blem solved by the quantity or the diversity of the extra obser-
vations? We therefore consider the following two cases for a
given observed signal x0 ∼ p(x|θ0) simulated using a given
set of ground-truth parameters θ0:

— Case 1 - No Diversity (BLUE): the extra observations
are generated with the same parameters, i.e. xi ∼ p(x|θi)
with θi = θ0 = (C0, µ0, σ0, g0). We use multiple rea-
lizations of the same generative model, exploiting quan-
tity, but without diversity.

— Case 2 - Diversity (ORANGE): the extra observations
are generated with different local parameters (but still
share the same global one), i.e. xi ∼ p(x|θi) with θi =
(Ci, µi, σi, g0). We here exploit access to both quantity
and diversity of the extra observations.

Figure 1 shows that quantity indeed sharpens the posterior: the
gray posterior where N = 0 is wider than the orange and blue
ones obtained for N = 9. However, diversity is needed to get
a correct estimate of the global parameter g, otherwise the re-
sult is biased. Indeed even a small offset in the gain-estimate
(bottom-right subplot) leads to poor estimates of (µ, σ): the
second and third diagonal subplots show a gap between the
orange and the blue peak locations. Other experiments allowed
us to confirm that over (resp. under) estimating the gain leads
to under (resp. over) estimating µ and σ.
Experiment 2. We now consider an observation x0 of EEG-
data with the goal of revealing what extra-information should
be considered to get the best possible estimates consistent with
the closed or open eyes-states. To do so, we consider the follo-
wing three cases of extra-information:

— Case 1 - No Diversity (BLUE): The extra-observations
are chosen amongst signals corresponding to the same
state as the one of the observed signal.

— Case 2 - Maximum Diversity (ORANGE): The extra-
observations are chosen amongst signals corresponding
to the state different from the one of the observed signal.

— Case 3 - Medium Diversity (PINK): An equal mix of
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FIGURE 1 – Posterior estimates for the parameters of the JR-
NMM obtained for an observation x0 simulated using the same
ground-truth parameters (represented with black dots) as the
ones used in Figure 3 of [12]. The different posteriors corres-
pond to the cases with (ORANGE) or without (BLUE) diver-
sity in the extra-observations (N = 9) and are compared to the
case where no extra-observations (GRAY) are used (N = 0).

both states are considered for the extra-observations.
We can see in Figure 2 that contrasting x0 with maximum di-
versity (ORANGE) leads to sharper marginal posteriors, than
for the other two cases (BLUE and PINK). Furthermore, we
observe that the different posteriors disagree in the estimation
of g and µ: the 2 bottom diagonal subplots show a gap bet-
ween the orange and blue marginals while the pink one ap-
pears as a weighted average covering the union of their value
ranges. They agree on the estimate for C (as expected), but also
on the parameter µ, which is not usually the case if the gain-
estimates differ (cf. Figure 1). However, this is probably due
to the small number of extra-observations, which was solely
chosen for comparison purposes.

If the state of the observed signal is known, the best posterior-
estimate seems to be the one that uses extra-observations cor-
responding to the different state, as diversity increases accu-
racy according to Experiment 1. However, if the observed state
is not known, one should rather consider the third case, where
equally mixing both states results in larger posteriors, but with
less risk for overconfident and false estimates. Note that in this
case we would even have access to more than N = 4 extra-
observations leading to sharper posterior-estimates as the one
shown in Figure 4 of [12].



200

400

µ

2000

4000

σ

100 200 300
C

20

0

20

g

200 400
µ

2000 4000
σ

20 0 20
g

Extra observations
Same event (N= 4)
Opposite event (N= 4)
Both events (N= 4)

FIGURE 2 – Posterior estimates for the parameters of the JR-
NMM obtained for a real human EEG signal recorded in an
open eyes-state. We compare the posteriors obtained for three
different sets of N = 4 extra-observations: in blue (resp.
orange) they are chosen to belong to the same (resp. opposite)
state as the observed signal, and in pink, we chose 2 of each.

Conclusion

The HNPE approach evaluated here considers some parame-
ters to be global in an SBI context. Doing so allows to alleviate
some indeterminacy in the posterior estimates of coupled para-
meters. Considering neural mass models, Experiment 1 showed
that diversity in the extra-observations is crucial to get a precise
and correct estimate of the gain, and thus of the correspon-
ding coupled parameters µ and σ, hence removing the indeter-
minacy without introducing any bias. Experiment 2 confirmed
on EEG-data that the sharpest posteriors are obtained by using
maximally contrasted information in the extra observations.

This work shows that HNPE with carefully chosen extra-
observations can be used for reliable fitting and inference of
complex models in neuroscience based on stochastic non-linear
differential equations, and therefore opens the door to new bio-
logically informed descriptions of brain dynamics.
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