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Résumé – Les récents progrès dans le domaine des autoencodeurs variationnels (VAEs) ont permis l’apprentissage de variétés latentes sur des
groupes de Lie compacts, tels que SO(d). Une telle approche supposant l’espace des données homéomorphe au groupe de Lie, nous étudions
ici la validité de cette hypothèse dans le contexte d’images générées par projection d’un volume de dimension d, dont la pose dans SO(d) est
inconnue. Après examen de différents candidats définissant l’espace des images et groupe, on montre que l’on ne peut de manière générale obtenir
une action de groupe, sans une contrainte supplémentaire sur le volume. En appliquant des VAEs géométriques, nos expériences confirment que
ces contraintes géométriques sont essentielles pour l’inférence de la pose associée au volume projeté, et nous discutons pour conclure des
applications potentielles de ces résultats.

Abstract – Recent advances in variational autoencoders (VAEs) have enabled learning latent manifolds as compact Lie groups, such as SO(d).
Since this approach assumes that data lies on a subspace that is homeomorphic to the Lie group itself, we here investigate how this assumption
holds in the context of images that are generated by projecting a d-dimensional volume with unknown pose in SO(d). Upon examining different
theoretical candidates for the group and image space, we show that the attempt to define a group action on the data space generally fails, as it
requires more specific geometric constraints on the volume. Using geometric VAEs, our experiments confirm that this constraint is key to proper
pose inference, and we discuss the potential of these results for applications and future work.

1 Introduction

Variational Autoencoders (VAEs) are deep generative mo-
dels that have been successfully applied across fields to infer la-
tent variables associated with raw data [3]. While the traditional
VAE architecture was introduced for latent spaces that are ho-
meomorphic to RL, more recent developments have extended
this architecture to latent spaces homeomorphic to Lie groups,
with proper reparametrization trick and decoder that respect the
group structure [2]. These geometric VAEs hold promises for
problems where the data is generated from Lie groups, such
as the special orthogonal group of rotations in d dimensions
SO(d). For example, in the context of structural biology and
cryogenic electron microscopy (cryo-EM), 2D images of bio-
molecules get collected through a generative process that in-
volves the action of the 3D rotations SO(3) (or poses) on a
volume. The overarching goal of cryo-EM studies is to recons-
truct this 3D volume from a set of 2D images with unknown

pose [4, 1]. While geometric VAEs offer a natural framework
for inferring the pose parameters as elements of SO(3), and
accurately reconstructing the 3D volume, the method propo-
sed by Falorsi et al. also relies on the key assumption that the
data lies on a subspace that is homeomorphic to the Lie group
SO(3) itself [2].

In this paper, we focus on investigating if this key assump-
tion holds, when the data is generated by the action of SO(d)
on a volume, followed by its projection along a fixed axis —
a model akin to the cryo-EM setting. We introduce the image
formation model, and find that upon considering various can-
didates to define the image space, the projection generally pre-
vents a group action from being well defined, requiring some
geometric constraints on the volume. We specify these constraints
and show a practical construction for such volumes in SO(d).
Using geometric VAEs, our experiments confirm that these constraints
are key to perform proper pose inference. We discuss the po-
tential of these results for applications and future work.



2 Group action on image space

2.1 Oriented volume and image formation
We introduce the mathematical background related to the re-

construction of volumes from their projections. Given a dimen-
sion d > 0, we consider a compact domain Ωd ⊂ Rd, and de-
fine a volume of reference V as an element of V , the set of po-
sitive distributions on Ωd. For a rotation given by R ∈ SO(d),
the oriented volume R ·V , is a positive distribution on Ωd such
that for all x = (x1, . . . , xd) ∈ Ωd

R · V (x) = V (R−1(x)). (1)

The orientation R defines the pose of the oriented volume.
We define the image associated with the oriented volume

R · V as the projection Pxd
of the oriented volume on the hy-

perplane (xd = 0), given for all (x, . . . , xd−1) ∈ Ωd−1 by :

Pxd
[R · V ] (x, . . . , xd−1) =

∫
Ω

R · V (x)dxd. (2)

Pxd
[R · V ] is the d-dimensional Radon transform of the orien-

ted volume [5], notably used for d = 2 in CAT scan and com-
puterized tomography [5], and for d = 3 in cryo-EM where V
is a 3D biomolecule.

In what follows, we consider a volume of dimension d ≥ 2,
and explore if one can define a faithful action of a compact Lie
group such as SO(d) on the space of projected images. Such
an action indeed allows us to show that the space of generated
images is homeomorphic to SO(d) and hence apply the frame-
work of geometric VAEs [2].

2.2 Failures to define a group action
We first show how two natural attempts to define a (left)

group action of SO(d) on images generated by the model in
Eq. (2) fail due to the projection operator P . Generally, any
SO(d)-action on an image space M is defined by a map ρ :
SO(d)×M → M written as ρ(R, I) = R · I that verifies the
defining axioms :

• Identity : ∀I ∈ M, and Id the identity element of SO(d) :

Id · I = I.

• Compatibility : ∀R1, R2 ∈ SO(d)2, ∀I ∈ M , with ◦ de-
noting the group law of SO(d).

R1 · (R2 · I) = (R1 ◦R2) · I.

First, we note that SO(d) naturally defines a group action on
the space M = V of d-dimensional volumes via their rotations
defined in Eq. (1). Yet, SO(d) does not define a group action
on images seen as singular distributions on Ωd and thus as ele-
ments of M = V . The projection in Eq. (2) makes the identity
axiom fail, as the projection of the volume is different from the
volume itself. Second, we can attempt to define a SO(d) group
action on the space M = IV of images defined by Eq. (2) for
a given volume V as :

IV =
{
I ∈ L2(Ω

(d−1))|∃RI ∈ SO(d), I = P [RI · V ]
}
,

through the map : ρ : SO(d) × IV → IV given by ρ(R, I) =
P ((R◦RI)·V ) with RI one rotation provided thanks to the de-
finition of IV . In this attempt, the projection leads to the issue
illustrated in Figure 1. If we have two rotations R1, R2 such
that P [R1 · V ] = P [R2 · V ], then the action of an additional
rotation R can be ill-defined on I = P [R1 · V ] = P [R2 · V ]
in the sense that it becomes multi-valued. In the next sections,
we explain and illustrate this issue, by showing a necessary and
sufficient condition on the volume, to define a group action over
the image space.

P(V) = P(V’) 

P
V

V’

R · V

R · V’

FIGURE 1 – Schematic representation of the main obstacle
upon defining a group action on the space of cryo-EM images.
For 2 elements V and V ′ representing two different orienta-
tions (represented here as SO(2)) of a same volume with iden-
tical projections (with the projection operator P represented by
a dashed arrow), the action of an additional rotation R is ill-
defined on I = P [R · V ] = P [R · V ′], as it is multi-valued.

2.3 Conditions on the volume
We propose a necessary and sufficient condition on V to de-

fine a proper group action of SO(d) on the image space IV .

Lemma 1. Let V be a volume of L2(Ω
(d)). Consider the map

ρ : SO(d)× IV → IV
(R, I) 7→ P [(R ◦RI) · V ],

(3)

where RI is a rotation such that I = P [RI ·V ]. Then, ρ defines
a group action of SO(d) on IV if and only if V is such that for
all R1, R2 ∈ SO(d) :

P [R1 · V ] = P [R2 · V ] (*)
⇒ ∀R ∈ SO(d), P [(R ◦R1) · V ] = P [(R ◦R2) · V ].

Note that RI in Eq. (3) exists by definition of IV but is not
necessarily unique.

Proof : (Necessary condition) Assume ρ to be a group ac-
tion, and let R1, R2, R ∈ SO(d), such that P [R1 ·V ] = P [R2 ·
V ] = I . By definition of ρ as a map (i.e. single-valued), P [(R◦
R1).V ] = ρ(R, I) = P [(R ◦R2).V ]. Thus, V satisfies (*).
(Sufficient condition) Assume V satisfies (*). We first verify



that ρ is well defined. If there exists R1, R2 ∈ SO(d) such that
P [R1.V ] = P [R2.V ] = I ∈ IV , then ρ(R, I) is uniquely defi-
ned regardless of using R1 or R2, by definition of the condition
(*). It remains to verify the identity and compatibility axioms :

• Identity : ρ(Id, I) = P [Id.RI · V ] = P [RI · V ] = I .
• Compatibility : Let R1, R2 ∈ SO(d).

ρ(R2, ρ(R1, I)) = ρ(R2, P [(R1 ◦RI) · V ])

= P [(R2 ◦R1) ·RI · V ] = ρ(R2 ◦R1, I). □

In practice, it can be hard to determine if a volume satisfies
(∗). Thus, we state a sufficient condition (∗∗), that allows us to
find such volumes in practice. This will also show that the set
of volumes satisfying (*) is not empty :

Lemma 2. Consider a volume V such that for all R1, R2 ∈
SO(d)

P [R1 · V ] = P [R2 · V ] ⇒ R1 = R2. (**)

Then, V satisfies the geometric constraint (∗) from Lemma 1.

The proof is straightforward. This condition also implies that
ρ is injective as a function of SO(d). Thus, the image space IV
can be reduced to

IV =
{
I ∈ L2(Ω

(d−1))|∃!RI ∈ SO(d), I = P (RI · V )
}
.

Note that volumes verifying (**) form a strict subset of vo-
lumes verifying (*) : for instance, the hypersphere Sd satisfies
(*), but not (**). Interestingly, volumes verifying (**) allow
us to define a group action where the stabilizer is equal to the
identity element (i.e. a faithful action) and therefore, where the
image space defined by Eq. (2) forms an orbit that is homeo-
morphic to SO(d) by virtue of the orbit-stabilizer theorem of
group theory [4].

3 Applications

3.1 Constructing compatible volumes
We construct “compatible” volumes V , i.e. volumes which

guarantee a group action on the image space IV , by verifying
the condition (**). To find such a volume V in L2(Rd), we
model V as a sum of n Dirac functions at X1, . . . , Xn ∈ Rd.
As a consequence, condition (**) can be expressed in matrix
form. More precisely, (X1, . . . , Xn) should verify that there is
no distinct rotation matrices R1, R2 and permutation σ of the
symmetric group Sn such that

PR1 (X1 X2 . . . Xn) = PR2

(
Xσ(1) Xσ(2) . . . Xσ(n)

)
, (4)

where P is the matrix associated with the projection operator

(e.g.
(
1 0
0 0

)
in dimension 2), and (X1 X2 . . . Xn) is a d× n

matrix which i-th column takes the coordinates of. Upon pa-
rameterizing the rotations R1 and R2 (e.g. take θi (i = 1, 2)

to define Ri =

(
cos θi − sin θi
sin θi cos θi

)
in dimension 2), one can

formally solve the system of equations given by (4) (for all per-
mutations of Sn), and conclude that a volume V =

∑n
i=1 δXi

satisfies (**) when no solution is found. In practice, covering
all permutations is manually intractable. Thus, we resort in the
next subsection to using solvers such as Mathematica, to show
that volumes verify the injectivity condition (**).

3.2 Implementing geometric VAEs
We illustrate the importance of our previous results in the

context of the geometric VAEs introduced by Falorsi et al. [2],
by discussing the impact of having a volume V that guarantees
a group action of SO(d). The VAE architecture of Falorsi et
al. contains an encoder that infers a rotation RI ∈ SO(d), and
a variance σ2

I from an image I . The tuple (RI , σ
2
I ) is used to

sample a rotation R using the reparametrization trick [3] that
is here adapted to the Lie group structure of SO(d) [2]. The
sampled rotation R is transformed into a matrix T (R) through
an irreducible representation T of SO(d). The decoder then
combines a latent variable representing the oriented volume by
matrix multiplication with T (R), to reconstruct an image. The
network is trained to minimize a loss function that combines
two terms of reconstruction (via the binary cross entropy) and
regularization (via the Kullback Leibler divergence) between
the input and output images [3]. For visualization purpose, we
adapt this architecture – originally introduced for SO(3) [2] –
to SO(2) e.g. adapting the reparametrization trick, matrix re-
presentation and loss function. We also note that this architec-
ture was not proof-tested in the context of the projection of a
Lie group action, which is the goal of the experiments here.

3.3 Experiments : Pose inference
We considered three datasets, obtained by projection of three

different 2D “volumes” shown in Fig. 2 : one toy volume of
three points (with simple shapes built around) that satisfies the
injectivity condition (**) and thus (*) (Fig. 2 a), using the construc-
tion described in Section 3.1, which makes it compatible with
the group action ; a second volume of three points similar to the
first (Fig. 2 b), but not satisfying (*), and a third volume from
a real picture (Fig. 2 c), which shows some degree of (approxi-
mate) symmetry. The theoretical development of the previous
sections suggests that the pose inference to be properly perfor-
med in our first dataset, while encountering issues in the other
two. We generate 2000 1D “images” for each 2D “volume”. We
train the VAE by performing a hyperparameter search on the
depths of the encoder and the decoder. We study the poses in-
ferred from the run with the best validating loss in Fig. 2. Com-
paring the estimated pose in SO(2) of the VAE with the ground
truth confirms that the pose inference is correctly performed in
Fig. 2 a, up to a reflection of the original image (which is also
coherent with the definition of the projection). In contrast, the
comparison between the estimated pose and the ground truth in
both Fig. 2 b and c yield a “V-shaped” plot, which mixes up
the poses at 180 ± θ degrees and distributes them between 0
and 360 degrees. As a result, the reconstructed volume will be
significantly worse.
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FIGURE 2 – Pose estimation in SO(2). We apply the VAE des-
cribed in Section 3.2 to 1D lines, obtained by projecting 2D
“volumes”, as original images in (a-c) : (a) shows a “volume”
that derives from three points satisfying the injectivity condi-
tion (**) ; (b) a “volume” similar to the one in (a), but that does
not satisfy the condition (*) ; (c) a real picture. The middle pa-
nels show the latent space SO(2), where the polar angle repre-
sents the estimated pose and the color represents the true pose.
The right panels compare the true and estimated poses.

4 Conclusion and Future work

This paper investigated the conditions under which a group
action of SO(d) can be defined over a space of images defi-
ned by projection of oriented volumes. We showed that such
a group action is not valid in general, with a necessary and
sufficient condition on the volume required to ensure it. In the
context of VAEs with latent space homeomorphic to compact
Lie groups, we illustrated that this condition is critical for pro-
perly inferring the pose from projected images, and thus re-
constructing the original volume. As the present analysis and
experiments rely on using the Radon transform in the image
formation model, it could be interesting to generalize our study
to any mathematical projection (as a linear operator P verifying
that P ◦ P = P ).

These results provide important insights on the applicability
of VAEs with latent space homeomorphic to SO(d). For ins-
tance, in the context of cryo-EM [4, 1], biomolecules are prone
to symmetries. This would preclude the group action as in our
experiments, and justifies the need for more specific priors. In
principle, the Dirac functions that compose our toy models can
also serve as a model for atomic structures. However, using
the present approach to study if molecular volumes are com-
patible with condition (**) would be challenging in terms of

complexity, due to the number of atoms involved and the need
to cover all permutations in (4). It would also be interesting
to study the effect of the image resolution, and how a loss of
details at low resolution can lead the performance in pose infe-
rence to collapse, even for a volume that is theoretically com-
patible with the action of SO(d).

The choice of an alternative to SO(d) is also interesting to
study. For example, one could consider quotienting SO(d) by
some appropriate subgroup, with some proper linear represen-
tation and reparametrization trick. Another possible approach
to address the general case where the group action cannot be
defined is the following : As SO(d) acts on the space of vo-
lumes one can consider the corresponding orbit OV of V . De-
noting G0,V the stabilizer of V , the geometry of the space of
oriented volumes is given by the orbit-stabilizer theorem and
we have : OV ∼ SO(d)/G0,V . For simplicity, let us assume
G0,V = Id such that : OV ∼ SO(d). By definition, the space
of images produced via the projection is IV ∗ ∼ P (SO(d)) i.e.
obtained by the projection under P of the space homeomor-
phic to SO(d). Since the projection operator P is continuous,
we thus have a continuous immersion of the manifold SO(d)
into the space L2(Ω). Since the Hilbert space L2(Ω

(d−1)) is
naturally equipped with a Euclidean metric, we could investi-
gate the pullback of this metric on SO(d) via this immersion i
and use the associated Riemannian operators to generalize the
framework of Falorsi et al. [2]. As this case involves additional
technical developments, we leave it for future work.

Acknowledgments : This research was supported by a Mi-
tacs PIMS France-Canada fellowship. Computational resources
and services were provided by Advanced Research Computing
at the University of British Columbia.
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