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Résumé – L’analyse tensorielle suscite de l’intérêt depuis plusieurs décennies, tant d’un point de vue théorique qu’applicatif. Différentes
décompositions tensorielles permettent d’étendre la SVD matricielle aux tableaux d’ordre supérieur. Parmi elles, la décomposition polyadique
canonique (CPD en anglais) permet sous certaines conditions d’écrire de manière (essentiellement) unique un tenseur comme un nombre minimal
de tenseurs de rang1. En pratique, ce modèle est bruité et requière la mise en œuvre d’algorithmes d’approximation sous contraintes de rang faible.
Malheureusement le rang est rarement connu en pratique. Nous proposons une nouvelle méthode (AGS-CPD), capable d’estimer simultanément le
rang et les matrices de facteurs. Elle est basée sur l’exploitation de la parcimonie de groupe et montre une plus grande robustesse en présence de
bruit que les approches classiques. En effet, les résultats obtenus sur des données simulées et des données réelles non-négatives de spectroscopie
de fluorescence montrent que, sans tenir compte d’aucune contrainte de non-négativité, la méthode AGS-CPD est très compétitive à la fois pour
l’estimation du rang et des matrices de facteurs.

Abstract – This study addresses the problem of simultaneously estimating the Canonical Polyadic (CP) rank and factors of noisy third order
tensors. The presented algorithm, namely Alternating Group Sparse CP Decomposition (AGS-CPD), promotes group sparsity of the row-wise
concatenated loading matrices under the low-rank CP model, without any knowledge of the true rank. The good performance of this approach is
assessed on both simulated data and real fluorescence spectroscopy data which are non-negative. The simulated and real experiments show the
advantage of AGS-CPD both in rank and factor estimation without considering any non-negativity constraint.

1 Introduction
During the last decades, Canonical Polyadic Decomposition

(CPD) has been widely used in many applications such as che-
mometrics [1], neural imaging [2] and brain source imaging [3,
4]. Among classical approaches [1, 5], even if some of them
are more robust to the overfactoring problem such as the semi-
algebraic DIAG technique [6], knowing the true rank of a ten-
sor is essential to decompose it efficiently. Therefore, these algo-
rithms require a preprocessing step in order to estimate the rank.
In practice, the considered tensor is noisy. In order to address
this challenging issue, several approaches have been presented
in literature. For instance, in the n-mode Minimum Description
Length approach (ND-MDL) [7], MDL [8] is applied to the n-
mode unfolding matrices. In the Generalized ND-MDL (GND-
MDL) method [9], different sets of eigenvalues are calculated
and combined to estimate the rank accurately. Even if the results
of the aforementioned methods are promising, finding methods
robust with respect to low Signal-to-Noise Ratio (SNR) values,
which estimates jointly the rank and the factors, is still needed.
To tackle this problem, our previous work [10] considered the
low-rank assumption by promoting the group sparsity of each
over-estimated loading matrix. The resulting methods, namely
R-CPD1 and R-CPD2, allow us to solve the low-rank CPD pro-
blem without any knowledge of the true rank.

In chemometrics applications, the interest of CP decomposi-
tion coupled with 3D fluorescence spectroscopy to identify and
track chemical components has been well established. A com-
mon issue in fluorescence spectroscopy is the number of fluo-
rophores (i.e. the rank), which is usually unknown and must be

estimated correctly in order to obtain a good estimation of the
non-negative loading matrices. In BC-VMFB [11], authors suc-
cessfully combined sparsity and non-negativity constraints upon
the factors in order to deal with the problem of non-negative CPD
with a low unknown rank. Another constrained CPD approach,
namely AO-ADMM [12] , accommodates the non-negative
constraint on the loading matrices, but it requires to know the
true rank. In the case of non-negative data, AO-ADMM can be
used as a reference method to assess the performance of other
methods.

In this paper, we propose the Alternating Group Sparse CPD
(AGS-CPD), which promotes the group sparsity of the row-wise
concatenated loading matrices. It is robust to noise and allows
us to estimate simultaneously the rank and the factors efficiently
without considering any non-negativity constraint. In order to as-
sess the good performance of AGS-CPD, we simulate two sets of
data using the normal and folded normal distribution for different
SNR values. Note that the latter distribution generates random
non-negative data. Eventually, the proposed algorithm is applied
to a set of real non-negative fluorescence data.

2 Methods
2.1 Low rank-R CPD

The rank-R CPD of any tensor T ∈ RI1,I2,I3 is given by :

T = [[A,B,C]]R =

R∑
r=1

ar ◦ br ◦ cr (1)



where ar, br and cr are the r-th columns of the loading ma-
trices A, B and C, respectively. In order to estimate the rank, we
assume R << min(I1, I2, I3). According to [13, Theorem 4.a,
p. 123] this assumption not only helps to estimate the rank but
also guarantees the generic and deterministic uniqueness of the
rank-R CPD. In practice, the recorded tensor data is corrupted
by some noise :

X = T +N (2)

where N is a (I1 × I2 × I3) noise tensor.

2.2 Existing (group) sparse CPD methods
To deal with different applications, we can impose other

constraints to the CPD problem such as non-negativity and low-
rank constraints. Thus, equation (2) can be written as :

min
A,B,C

λR(A,B,C) s.t. X = [[A,B,C]]R (3)

where R is a function of the three loading matrices which ac-
commodates the considered constraints and where λ is a penalty
parameter. The R-CPD approach [10], which led to the R-CPD1

and R-CPD2 methods, imposes the low-rank constraint by pro-
moting group sparsity on each loading matrix. This allows us to
solve the low-rank CPD problem without any knowledge of the
true rank. For R-CPD1, we have :

R(A,B,C) = ∥A∥1,2 + ∥B∥1,2 + ∥C∥1,2 (4)

while for R-CPD2, we get :

R(A,B,C) = ∥A∥2,1 + ∥B∥2,1 + ∥C∥2,1 (5)

where ∥.∥2,1 and ∥.∥1,2 are the mixed-norms ℓ2,1 and ℓ1,2. The
mixed-norm is a good convex envelope of the matrix rank. For
a given matrix X (I × J), the mixed norms ∥.∥2,1 and ∥.∥1,2
are computed as the traces, Tr[XTΦX] and Tr[XΨXT ], respec-
tively, where Φ and Ψ are diagonal matrices given by Φii =

1/
√∑J

j=1 X
2
ij and Ψjj = 1/

√∑I
i=1 Xij

2. Problem (3) was
solved by R-CPD1 and R-CPD2 using Alternating Direction Me-
thod of Multipliers (ADMM) [14]. The Block-coordinate Me-
tric Variable Forward-Backward (BC-VMFB) algorithm [11], a
block alternating proximal method which can be seen as a special
case of majorize-minimize approaches, was designed to solve the
following minimization problem :

min
A,B,C

1

2
∥X − [[A,B,C]]R∥2F +R(A,B,C) (6)

where the penalization term R(A,B,C) promotes sparsity and
non-negativity constraint of each overestimated loading matrix.
For instance, sparsity can be enforced for A and B while non-
negativity of C is promoted.

2.3 The proposed method : AGS-CPD
In order to estimate the rank and the functions simultaneously,

we propose an Alternating Group Sparse CPD (AGS-CPD) pro-
cedure. First, we define the matrix G which is the row-wise conca-
tenation of the three loading matrices. To estimate the rank of a
tensor using the loading matrices, we impose the mixed-norm
∥.∥1,2 on G. Moreover, we add the CPD constraint to accurately
estimate each loading matrix at the same time. Here, the objective
function is similar to problem (6), where R(A,B,C) = λ∥G∥1,2

and G =
[
AT ,BT ,CT

]
. The minimization problem can be sol-

ved by minimizing the following function :

K(G) = λTr
[
GΨGG

T
]
+ ∥X − T ∥2F = λ

{
Tr
[
AΨGA

T
]

+ Tr
[
BΨGB

T
]
+ Tr

[
CΨGC

T
]}

+ ∥X − T ∥2F (7)

where λ is a penalty parameter that should be tuned. Here, it is
noted that the matrix Ψ is computed using G and it is common in
the traces of equation (7). To compute the update functions of the
loading matrices, the derivatives of K with respect to each loa-
ding matrix are vanished. The loading matrices are then updated
as follows :

A = X(1)(C ⊙ B){λΨG + (C ⊙ B)T(C ⊙ B)}−1 (8)

B = X(2)(C ⊙ A){λΨG + (C ⊙ A)T(C ⊙ A)}−1 (9)

C = X(3)(B ⊙ A){λΨG + (B ⊙ A)T(B ⊙ A)}−1 (10)

where X(i) denotes the i-th unfolding matrix of the tensor X .

2.4 Rank estimation
In order to estimate the rank of a tensor in R-CPD and AGS-

CPD methods, we initialize the loading matrices by an over-
estimated value using HOSVD [15]. Thus, by applying MDL
on Ĉ (I3 × R̂) in R-CPDi and on Ĝ ((I1 + I2 + I3) × R̂) in
AGS-CPD, the rank of the tensor X can be estimated. First, the
singular values σi of the matrix (I × R̂) are sorted in descending
order, i.e σ1 ≥ σ2 ≥ ... ≥ σR̂. Then, the Rest can be calculated
as follows :

Rest = argmin
n

−2log

(∏I
i=1+n σi

1/(I−n)

1

I − n

∑I
i=1+n σi

)R̂(I−n)

+r(2I − n)log(R̂) (11)

where σi represents the i-th highest singular value and R̂ denotes
the over-estimated rank. Using this method, Rest is computed by
finding the breakpoint in the singular value curve.

3 Simulations and Results
To evaluate the efficiency of the methods both in rank estima-

tion and decomposition, we consider two scenarios : construc-
ting the tensor using the loading matrices generated randomly
by a normal distribution and folded normal ones to have a non-
negative tensor and loading matrices. The simulated tensor T
with rank R is built from loading matrices of size (50×R). Here,
the true rank is three. The noise tensor N is also sampled from
the same distribution. Hence, the noisy tensor X is obtained as
follows :

X = T + σ
∥T ∥F
∥N ∥F

N (12)

where the parameter σ controls the SNR (Signal to Noise Ratio)
value defined by SNR = −20log10(σ). We consider different
SNR values (-15 dB to 15 dB with a 5 dB step size) and run 100
independent Monte Carlo (MC) trials for each SNR value.
Performance criteria We propose two criteria to evaluate the
rank estimation and decomposition results. The first criterion cal-
culates the percentage of good estimation, which is called Accu-
racy Rate (AR) and defined by : AR : Times of R = Rest. The
other one is the Relative Factor Error (RFE) which shows the ac-
curacy of each loading matrix estimation. It measures the sum of



errors between the set of the true loading matrices {A,B,C},
and the set of the estimated ones {Aest,Best,Cest}(see [16] for
details).
Rank estimation performance For both scenarios the behavior
of AGS-CPD method is evaluated and compared to the recent
classical methods. In terms of rank estimation, AGS-CPD is com-
pared to RCPD1 and RCPD2. Figure 1 shows the AR criterion on
100 MC runs as a function of SNR in the case of normal distri-
bution. Clearly the performance of the three methods are quasi-
equivalent, whatever the SNR level. In addition, the AR results
demonstrate that all the methods succeed in the estimation of
the rank. Indeed, even for the very bad SNR=-15dB, the AR va-
lues are greater than 91%. The AR results of the non-negative
case are depicted in figure 2. For SNR values ranging from 5dB
to 15dB the three methods always succeeded in the estimation
of the rank. In the cases of SNR equal to -5dB and 0dB, AGS-
CPD seems to be very efficient (AR about 85% for SNR=-5dB
and 95% for SNR = 0dB, respectively). For RCPD1 and RCPD2,
even if their behavior remain very satisfying (AR about 71% for
SNR=-5dB, and 90% and 87% for SNR=0dB), they are less ef-
ficient than AGS-CPD. Finally, all methods cannot guarantee a
favorable performance when the SNR=-10dB and -15dB.
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FIGURE 1 – AR values in different SNR values of the tensor
constructed using normal distribution.
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FIGURE 2 – AR values in different SNR values of the tensor
constructed using Folded normal distribution (non-negative).

Decomposition Performance Since the methods DIAG [6]
and AO-ADMM are not able to estimate the rank, the true rank
is given to them directly. Besides, the original versions of AO-
ADMM and BC-VMFB are not used and we modified the ini-
tialization part as for AGS-CPD and R-CPD. After these modifi-
cations, we discovered a significant improvement in their perfor-
mances. In this study, RFE is just computed in the cases that the
estimated rank equal to three (true rank) is given to the decom-
position algorithms. Figure 3 shows the RFE values as a func-
tion of SNR in the case of normal distribution. As can be seen,
RCPD1 and RCPD2 do not show a stable behavior as a function
of SNR. The AGS-CPD and DIAG algorithms provide decrea-
sing performances as SNR increases. Moreover, for SNR values

equal and higher than -10 dB, the RFE values are very small,
which means that the decomposed factors are really similar to the
ground truth. Regarding very low SNR of -15 dB, AGS-CPD ap-
proach outperforms DIAG with very well decomposition quality
(RFE value is 0.041). Figure 4 depicts the obtained RFE in the
case of non-negative data. As for the first scenario, RCPD1 and
RCPD2 are not able to estimate the loading matrices efficiently.
For SNR values greater than 0 dB, the four other methods, na-
mely AGS-CPD, AO-ADMM, BC-VMFB and DIAG work very
well, with RFE values close to zero. Interestingly, AGS-CPD and
AO-ADMM algorithms give the best results in comparison to
DIAG and BC-VMFB, for low SNR values ranging from -15 to
0 dB, with really reasonable decomposition results.
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FIGURE 3 – RFE values in different SNR values of the tensor
constructed using normal distribution.
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FIGURE 4 – RFE values in different SNR values of the tensor
constructed using Folded normal distribution (non-negative).

4 Fluorescence spectroscopy data
CPD is commonly used to decompose sets of 2D discrete fluo-

rescence signals in order to identify and track chemical compo-
nents [1]. Considering a set of liquid samples, we can measure
in laboratory the fluorescence intensity of each sample at se-
veral discrete couples of excitation and emission wavelengths.
Thus, we are able to build a fluorescence tensor by gathering
the measured signals. Each sample can be seen as a mixture of
R fluorescing components (fluorophores). Under some assump-
tions [17], it can be shown that the three estimated loading ma-
trices A, B and C, of the R-rank fluorescence tensor, are related
to the emission spectra, the excitation spectra of the R fluoro-
phores present in the sample set, and the concentration profiles of
the fluorophores throughout the sample set, respectively. A com-
mon issue with this approach is that the number of fluorophores
is usually unknown and must be estimated correctly in order to
obtain a good estimation of the factors. Moreover, the factors are
often correlated in one or several modes and can have very weak
contributions, making the decomposition difficult from an algo-
rithmic point of view. Here, all the factors are non-negative.

The obtained results using real data show that AGS-CPD
achieves the same performances as the non-negative based me-



thods without any non-negativity constraint and without giving
the true rank (see table 1 and figure 5). Indeed, we compare
the performances of AGS-CPD with those of BC-VMFB and
AO-ADMM for the decomposition of a fluorescence tensor ob-
tained from 11 real laboratory mixtures of three fluorophores
(tryptophan, quinine sulfate and fluorescein). 1 The tensor size is
(57, 57, 11). Note that for AGS-CPD and BC-VMFB, we overes-
timated the rank by taking R = 10. Regarding the AO-ADMM
algorithm, we give the true rank R = 3. After convergence, the
three algorithms AGS-CPD, R-CPD1 and R-CPD2 have success-
fully estimated the correct rank value (i.e. 3). Regarding the es-
timation quality of the factors, RFE values of each method and
loading matrix are reported in table 1. As can be seen, the RFE
values show that AGS-CPD gives quasi-similar results to those
of BC-VMFB and AO-ADMM algorithms with non-negativity
constraint. These results are confirmed in figure 5, which display
the estimated factors compared to those of the ground truth. We
can see that all methods clearly identify the excitation and emis-
sion spectra. Two concentration profiles out of three are perfectly
estimated. The same small error is observed on the last concen-
tration profile (for samples 6 to 11) for all algorithms. The real
experiment illustrates that our approach can reach the same le-
vel of performance than the reference non-negative algorithms,
without using this apriori information.

TABLE 1 – RFE values of different methods in real data.

AGS-CPD BC-VMFB AO-ADMM
A 0.0023 .0028 .0015
B 0.0095 .0092 .0090
C 0.0157 .0157 .0157

0.0091 .0092 .0087
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FIGURE 5 – Illustration of the estimated factors using different
methods, in real data, compared to the actual ones.

5 Conclusion
In this study, we introduce a novel algorithm called AGS-CPD

in order to estimate the rank and decompose the factors in one
step. Simulated and real experiments assess the good behavior
of the proposed method in comparison with other approaches to
overcome the joint problem of rank estimation and tensor fac-
torization even in the case of non-negative data. Moreover, the
obtained results show the robustness of the proposed algorithm

1. We thank Dr S. Mounier from the MIO lab. for providing us the data.

with respect to the presence of noise for different data distribu-
tions, without imposing any non-negative constraint.
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