
Easily Interpretable, Non-parametric Sample Transformation for
Classification

Cédric DUBOIS1, Jean-Olivier IRISSON2, Éric DEBREUVE1

1Université Côte d’Azur, CNRS, Inria, Equipe Morpheme, Laboratoire I3S, Sophia Antipolis, France.
2Sorbonne Université, Equipe COMPLEx, Laboratoire LOV, Institut IMEV, Villefranche-sur-mer, France.

cedric.dubois@univ-cotedazur.fr, jean-olivier.irisson@imev-mer.fr,
eric.debreuve@univ-cotedazur.fr

Résumé – Les CNNs (Réseaux de Neurones Convolutionnels) sont largement utilisés pour la classification supervisée. Bien que les réseaux
eux-mêmes soient généralement vus comme des classifieurs, ce sont en fait des régresseurs optimisés pour approximer la relation entre les
données brutes et p vecteurs prédéfinis de Rp jouant le rôle de représentants de classe, où p est le nombre de classes. La véritable classification
est faite par un classifieur par plus proche voisin appliqué aux sorties du réseau.

Malgré des performances de classification généralement très bonnes, les ANNs (Réseaux de Neurones Artificiels) ne sont pas toujours aussi
simples à utiliser que les classifieurs classiques car ils nécessitent souvent de grandes quantités de données, une charge de calcul importante, et
parfois une solide expérience pour être entraînés. Pourtant, le principe des ANNs (transformation des données d’entrée vers Rp, puis classification
par plus proche voisin) est intéressant. Dans ce travail, nous proposons une alternative simple, facilement interprétable et nécessitant une
charge de calcul modérée, et qui suit ce même principe. Elle repose sur une combinaison pondérée de translations idéales des échantillons
d’apprentissage vers des vecteurs cibles prédéfinis. En raison de sa simplicité, elle ne peut pas traiter directement les données brutes comme le
font les ANNs. Elle s’applique plutôt à des caractéristiques extraites. Expérimentalement, nous avons obtenu des performances de classification
comparables à celles de classifieurs classiques, y compris sur une base de données réelle d’images de plancton.

Abstract – CNNs (Convolutional Neural Networks) are widely used for supervised classification. Although the networks themselves are
designated as classifiers, they are in fact regressors trained to approximate the relationship between raw data and p predefined vectors of Rp

playing the role of class representatives, where p is the number of classes. The actual classification decisions are taken by a nearest-neighbor
classifier applied to the network outputs.

Despite their usually impressive classification accuracies, ANNs (Artificial Neural Networks) are not always as straightforward to use as
classical classifiers since they typically require large amounts of data, a high computational effort, and sometimes a solid experience to be
trained. Yet, the principle of ANNs (input transformation into Rp, then basic nearest-neighbor classification) is interesting. In this work, we
propose a simple, easily interpretable, and low on computational requirements alternative following the same principle. It relies on a weighted
combination of ideal translations from the learning samples to some predefined targets. Because of its simplicity, it cannot directly deal with raw
data as the ANNs do. Instead, it works with extracted features. Our experimental results, including on a realworld database of Plankton images,
show classification accuracies on par with some classical classifiers.

1 Introduction
ANNs, and in particular CNNs, are widely used for supervised
classification [6, 7].1 Despite designating the networks them-
selves as classifiers, they are in fact multi-valued regressors
where the independent variables are defined by the data space,
and the dependent variables are defined in Rp, where p is the
number of classes. During the learning phase, the “observed”
value (i.e., the desired network output) for a given input is typi-
cally set to one of the vectors of the canonical basis of Rp which
play the role of class representatives. Let these vectors be de-
noted as targets. Since the networks generally have a so-called
softmax layer as their last layer, their outputs are restricted to

1The literature is so huge on this topic that it is impossible to select a rea-
sonable number of even “essential” references. Instead, we decided to provide
only two fairly recent references, one application and one book.

the probability simplex in Rp. When correctly trained, the net-
works transform inputs into vectors that concentrate close to
the targets. During the prediction phase, the actual classifica-
tion decision is then taken by a NN (Nearest Neighbor) classi-
fier applied to the network output. Let us call t-NN this classi-
fier. In practice, this decision is rather described as an argmax
operation, but the equivalence with NN classification is trivial
to establish.

While ANNs often reach impressive classification accura-
cies, they are not always as straightforward to train and inter-
pret as classical classifiers. Here are some issues:
• They typically require large amounts of training data.Their

collection and annotation can be very time consuming.
• Their training demands a high computational effort, which,

with the democratization of Deep Learning, questions the
ecological impact of such approaches [4].

• Their training sometimes requires a solid experience: archi-
tecture selection/design, learning parameter tuning, what to
change when the training fails?

• Even though some studies are conducted to understand the
behavior of ANNs and interpret their outputs [10], the pro-
posed tools still do not provide simple ways to know how to
modify a network architecture or the training process when
the accuracy is not good enough.

Yet, the principle of ANNs (input transformation, then basic
NN classification) is interesting. It can also be found in classi-
fication using logistic regression [5] for example. The aim of
this work is to propose a simple and easily interpretable solu-
tion with low computational requirements following the same
principle. Because of the simplicity of the proposed solution,
we cannot directly deal with raw data as the ANNs do. Instead,
we take extracted features as input (either hand-crafted or au-
tomatically computed).

2 Proposed Method
As described in section 1, the classification approach of ANNs
is: (i) during learning, a sample transformation is optimized
so that samples are condensed into compact, per-class clusters,
and (ii) during prediction, a simple decision is made to assign a
class to a transformed sample. Our goal is to propose a classifi-
cation method following the same approach, but with an analyt-
ical sample transformation definition (i.e., not being the result
of an optimization).

2.1 Definitions
Let D = {X ,Y} be a dataset of m distinct n-dimensional sam-
ples {x1, . . .xm} = X with their associated labels (or classes)
{y1, . . . , ym} = Y where the labels yi∈[1..m] are integers be-
tween 1 and p, the number of classes. Let T = {t1, . . . , tp} be
a set of distinct n-dimensional target vectors, or simply targets.
They will play the role of the canonical basis vectors used by
ANNs. Let us call tyi

− xi the target translation of xi.

2.2 Sample Transformation
The purpose is to define a transformation mapping a given sam-
ple to a vector as close as possible to the target corresponding
to its class. For the samples of the learning dataset D, the ideal
transformation is to apply the corresponding target translation.
For a sample in general, the transformation could combine the
target translations, using a typical weighted sum. It is therefore
defined as follows

φγ(u) = u+ ϕγ(u) = u+

m∑
j=1

αγ(u− xj)(tyj
− xj) (1)

where the weight function αγ is defined such that

αγ(u− xi) =
κ0Kγ(u− xi)∑m
j=1 κ0Kγ(u− xj)

(2)

where Kγ is a symmetric kernel monotonically decreasing with
the L2 norm of its argument and fulfilling the usual properties
(real-valued, non-negative, and integrable with a unit integral).
This form of function is called normalized RBF (Radial Basis
Function). The parameter γ controls the decreasing rate of the
kernel. For convenience, it is defined such that higher values
correspond to higher decreasing rates. Thus, if the kernel is
a Gaussian, γ is proportional to the inverse of the variance.
Finally, the constant κ0 is equal to 1/Kγ(0). Its purpose is to
anchor the kernel to a fixed value (a value of 1 at the origin) to
avoid technical difficulties when γ tends toward zero or infinity.
Let us call γ the kernel width and let φγ(X) denotes the set of
the samples of X transformed by φγ .

This transformation definition does provide a sound solution
to our problem. However, it can be noted that the “price to pay”
for extending in this way the transformation from the learn-
ing dataset to any sample is that ϕγ(xi) will generally not be
equal to the target translation of xi. The proposed classifica-
tion procedure is then to transform a sample with eq. (1), and
(similarly to ANNs) to take the classification decision using a
t-NN classifier on the transformed sample with the targets T as
class representatives (see section 2.3.1 for the effective choice
of targets). In addition to the assigned class, a form of con-
fidence vector can be obtained by applying a softmax-based
function to the components of a vector of Rp composed of the
Euclidean distances between the transformed sample and each
of the targets

C(xi) = 1− softmax{||φγ(xi)− tl||2, l ∈ [1..p]}, (3)

which is exactly the kind of information provided by the output
layer of classification ANNs.

Note that ϕγ is a multi-valued version of the Nadaraya–Wat-
son kernel regression estimator [9] where each value is a com-
ponent of the translation to apply to a sample u.

As a reminder, the class assigned to a sample is the one of
the target nearest to its transformed version.

2.3 Influence of the Kernel Width γ

2.3.1 Limit Cases and Choice of Targets

It can be verified that the weight function αγ take the following
expressions when γ tends toward zero or infinity2

αγ→0(u− xi) =
1

m
∀i, (4)

αγ→∞(u− xi) =

{
1 if u = xi

0 if u = xj , j ̸= i
. (5)

Consequently,

φγ→0(u) = u+
1

m

m∑
j=1

(tyj
− xj), (6)

φγ→∞(xi) = xi + (tyi
− xi) = tyi

, (7)

2The study of αγ→∞(u− xi) for u ̸∈ X is left for further works.

which means that when γ tends toward zero, samples are trans-
lated by a constant vector, while when it goes to infinity, the
samples of X are perfectly mapped to their corresponding tar-
gets. The choice of an optimal γ is discussed in section 2.3.2.

As a consequence of eq. (6), if the targets are chosen equal to
the centroids of the samples in each class, then φγ→0 becomes
the identity. This is our motivation for defining the targets in
this manner

tl =
1

ml

∑
i | yi=l

xi (8)

where ml is the number of samples of class l, i.e. the cardinal-
ity of {i | yi = l}.

2.3.2 Optimal Kernel Width γ

In machine learning, a typical way of optimizing a parameter
is by cross-validation. Normally, this would be done based on
the classification accuracy. However, since the proposed sam-
ple transformation can be viewed as a solution to a regression
problem (see section 2.2), we can instead study the error be-
tween the transformed samples φγ(X) and their respective tar-
gets. Thus, we can rely on the following result in leave-one-out
cross-validation for regression. The total squared error on the
qth component of a transformed sample, defined as

J (q)(γ) =

m∑
i

(
t(q)yi

− φ{−i}
γ (xi)

(q)
)2

, (9)

can be computed as

J (q)(γ) =

m∑
i

(
t
(q)
yi − φγ(xi)

(q)

1− 1

κ0
∑m

j Kγ

(
xi−xj

)
)2

, (10)

which relies on the original transformation whereas the defini-
tion (9) involves φ

{−i}
γ , corresponding to a leave-on-out ver-

sion (the contribution of xi is not accounted for) (see [8], The-
orem 20.22, p. 320). This makes eq. (10) less computationally
intensive to apply because the weights αγ(xi − xj), j > i are
computed only once, as opposed to an order of m times with
eq. (9).

The value of γ minimizing J (q) depends on q. Instead, we
want a unique optimizer for all the sample vector components
in order to use eq. (1). This can be obtained by defining a
total error for all the components as a function of the J (q)’s,
q ∈ [1..n]

J(γ) = F(J (1)(γ), J (2)(γ), . . . , J (n)(γ)). (11)

Two obvious choices for F are the mean or the maximum of
its arguments. We chose to use the stricter maximum option.
Even though the minimization of this regression error does not
guaranty the minimization of the empirical classification risk,
we observed that it led to optimal values of γ very satisfying
for the classification task (see section 3).

3 Experimental Results

3.1 Numerical Implementation

For each sample u, the weights αγ(u − xi), i ∈ [1..m] must
be computed to apply the transformation (1). In practice, the
weights for the samples of X far enough from u are negligible.
Thus, to reduce the computation load (and time), we propose
to implement the sample transformation as

φ̃γ(u) = u+
∑

xj∈Nh(u)

αγ(u− xj)(tyj − xj), (12)

where Nh(u) is the set of the h NNs of u among the samples
of X .To efficiently select the NNs, we put the learning samples
into a k-D Tree (k-Dimensional Tree) structure [1]. Hence, the
search complexity becomes logarithmic in the cardinality of X ,
as opposed to linear for the brute-force search. The parameter
h has to be tuned for each experiment, but we found that the
method performances are not very sensitive to it in a fairly large
interval. Nevertheless, h could be adjusted by cross-validation.

All the experiments were conducted with a Gaussian kernel
so that γ = 1/(2σ2) where σ is the standard deviation. The
optimal value of γ is related to the density of the data. It was
obtained by a grid search optimization of the total error defined
in section 2.3.2.

3.2 Synthetic Dataset

To be able to check the results visually, we created a 2-dimensi-
onal synthetic dataset. It is composed of 4000 (learning) sam-
ples evenly split into 4 classes, two of which being more spread
(see fig. 1). The optimization of γ was done on a grid of 5 val-
ues distributed on a logarithmic-scale from 101 to 105. The
optimal value was γ = 103. We took h = 100 NNs for the
computation of the sample transformations. We then generated
4000 test samples in the same conditions to evaluate the classi-
fication accuracy of the proposed method and four other clas-
sifiers: the t-NN classifier applied to untransformed samples, a
k-nn (k-Nearest Neighbors) classifier, a kernel-SVM (Support
Vector Machine) with a Gaussian kernel, and a RF (Random
Forest) [7]. For the latter three, we ran 5-fold cross-validation
within a grid search to find optimal parameters. For the k-nn
classifier, the best parameter was k = 50. For the kernel-SVM,
the width of the kernel was 100 and the regularization param-
eter C was equal to 100. For the RF, the minimum samples
per leaf was 10, with no limit on the depth of the trees, and
100 trees. The accuracy of the t-NN classifier was 75%. The
accuracies of the other four classifiers were not significantly
different, and around 90%. To get a feeling of the sensitivity
of the proposed method to γ, we also applied it with γ = 102,
104, and 105. We obtained accuracies of 89%, 89%, and 86%,
respectively. So, on this coarse grid, the optimal γ indeed cor-
responds to a maximum of a concave (with this discretization)
function.

FIG. 1: Classification frontiers plotted in black from predic-
tions on a fine, regular sample grid. The dots are the training
samples. Top left: proposed method, top right: k-nn classifier,
bottom left: kernel-SVM, bottom-right: RF.

3.3 Real world application: ZooScan dataset

The ZooScan dataset [3] is composed of m = 1.45 million
grayscale images of plankton divided into p = 136 classes,
which makes the learning of a classifier a challenging task. Ad-
ditionally, there is a huge unbalance between the classes, with
the smallest containing only 4 samples while the largest con-
tains almost 170000. In order to apply the proposed method,
we took the features output by the last layer before the fully
connected part of a CNN classifier.3 Then, we performed a
Principal Component Analysis, and we retained the 10 prin-
cipal components as the features for our tests (n = 10). We
partitioned the dataset into a learning set (70% of the samples;
used for parameter optimization and learning) and a test set. In
order to mitigate the effect of the class unbalance, we adopted
the usual strategy of weighting the sample-related terms pro-
portionally to the inverse of the class frequencies. The optimal
parameter γ was 102, and we set the parameter h to 30. We
obtained an accuracy of 73% and a balanced accuracy of 74%.
These scores are close to each other, meaning that the class
unbalance management was appropriate. For comparison, we
learned a RF with 100 trees and a minimum samples per leaf of
25, and obtained 77% and 72% of accuracy and balanced accu-
racy, respectively. We do not explain why this classifier did not
benefit more from the class unbalance management. Whether
balanced or not, the accuracies of both classifiers are compara-
ble, which illustrates on a real dataset that the proposed method
is competitive.

3See details at github.com/ecotaxa/ecotaxa_ML_template.

4 Conclusion and Discussion
Inspired by the ANNs principle, we proposed a classification
method based on an easily interpretable, low on computational
requirements, non-parametric sample transformation. If we
stick with the Gaussian kernel for αγ and ignore the param-
eter h (which is just an implementation trick), it has only one
parameter γ which can be optimized using a cross-validation
procedure based on an efficiently computable regression error.
It achieved very good results on a synthetic and a real dataset,
on par with some classical classifiers.

In future works, we will turn the global parameter γ into
per-sample parameters γi in order to adapt to datasets with in-
homogeneous spatial sample density, whether inter- or intra-
class. We can also note that, besides the already mentioned
interpretation of ϕγ in terms of Nadaraya–Watson kernel re-
gression [9], it can also be viewed as a normalized RBF Net-
work [2] with one hidden layer. We plan to exploit this analogy
to optimize the proposed sample transformation.

Experimentally, we will study the behavior of the method as
the number of features n increases.

References
[1] J. L. Bentley. “Multidimensional Binary Search Trees

Used for Associative Searching”. In: Commun. ACM 18.9
(1975), pp. 509–517.

[2] D. Broomhead and D. Lowe. “Radial basis functions,
multi-variable functional interpolation and adaptive net-
works”. In: Royal Signals and Radar Establishment Malvern
(United Kingdom) RSRE-MEMO-4148 (1988).

[3] G. Gorsky et al. “Digital zooplankton image analysis
using the ZooScan integrated system”. In: Journal of
Plankton Research 32.3 (Mar. 2010), pp. 285–303.

[4] P. Henderson et al. “Towards the Systematic Reporting
of the Energy and Carbon Footprints of Machine Learn-
ing”. In: Journal of Machine Learning Research 21.248
(2020), pp. 1–43.

[5] D.W. Hosmer, S. Lemeshow, and R.X. Sturdivant. Ap-
plied Logistic Regression. John Wiley & Sons, Ltd, 2000.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Ima-
geNet Classification with Deep Convolutional Neural Net-
works”. In: Commun. ACM 60.6 (2017), pp. 84–90.

[7] M. Kubat. An introduction to machine learning. Vol. 2.
Springer, 2017.

[8] L. Wasserman. All of Statistics. Ed. by Springer. New
York, NY: Springer, 2004.

[9] G. S. Watson. “Smooth Regression Analysis”. In: Sankhyā:
The Indian Journal of Statistics, Series A (1961-2002)
26.4 (1964), pp. 359–372.

[10] N. Xie et al. Explainable Deep Learning: A Field Guide
for the Uninitiated. arXiv, 2020. URL: https://arxiv.
org/abs/2004.14545.

