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Abstract. In this paper, n-dimensional statistical manifolds related to exponential fam-
ilies and satisfying the Frobenius manifold axioms are considered. We prove that these
manifolds Vn are equipped with a structure of a Lie group G′. Since these manifolds can
be regarded as a realisation of a module over an algebra generated by a pair of orthogonal
idempotents, the submanifolds corresponding to the realisations of the modules over these
ideals are totally geodesic. This Lie group G′ splits into a product of Lie groups G ⊗ G,
where G acts on the respective submanifolds. Moreover, the learning process on Frobenius
statistical manifold is equipped with an additional algebraic structure, being the direct
product of a continuous transformation group and of a group of affine collineations.

1. Introduction

1.1. The topic of this article is to show important relations between Lie groups and n-
dimensional statistical manifolds related to exponential families and satisfying the Frobenius
manifold axioms (i.e. Frobenius statistical manifolds). From [7], one can consider Frobenius
statistical manifolds from the point of view of paracomplex geometry, i.e. defined as a
manifold over the algebra of paracomplex numbers.

The algebra of paracomplex numbers is a rank two (split) algebra generated by 1 and
ε such that ε2 = +1. This algebra is generated by a pair of (orthogonal) idempotents.
Naturally the geometry of the manifold is impacted: from [6] it follows that manifold comes
equipped with a pair of submanifolds, corresponding to the realisations of the modules over
those ideals.

Our aim here is to show that those Frobenius statistical manifolds are equipped with a
structure of a Lie group G′, and that this Lie group can be splitted itself into a product
of Lie groups G ⊗ G. Our method is to prove the following statement: if there exists a
continuous group of infinitesimal operations on a unital commutative associative algebra
then there exists a subgroup isomorphic to it being a Lie group acting on an affine manifold
over the above algebra. From the properties of the algebra follows the splitting of G′.

This furthermore has consequences for the learning process (relying on the Ackley–Hilton–
Sejnowski [2]). The learning for the Frobenius statistical manifold is equipped with an
additional algebraic structure, being the direct product of a continuous transformation
group and of a group of affine collineations.
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1.2. A statistical structure on a differentiable manifold M is a pair (g, C), where g is a
metric tensor and C a totally symmetric cubic (0,3)-tensor (i.e., 3-covariant tensor) called
the Amari–Chentsov tensor [1, 8]. Such a manifold M can be equipped of the Levi–Civita
connection ∇0 for g, which is the unique torsion free affine connection compatible with the
metric g that is satisfying for any triple (X,Y, Z) of vector fields the following equation:

X(g(Y, Z)) = g(∇0
X
Y,Z) + g(Y,∇0

X
Z).

Given the Levi–Civita connection ∇0 for g on M we have a pencil {∇α} of α-connections
depending on a parameter α defined as:

(1) g(∇α
X

(Y ), Z) := g(∇0
X

(Y ), Z)− α

2
C(X,Y, Z),

where X,Y, Z are vector fields in the tangent sheaf TM . These α-connections being affine
and torsion free allow to derive the notion of covariant derivative, parallel transport and
geodesics.

Any pair (∇α,∇−α) defines a pair of conjugate connections (∇,∇?) with respect to the
metric g, that is

(2) X(g(Y, Z)) = g(∇XY,Z) + g(Y,∇?
X
Z),

where ∇ = ∇α and ∇? = ∇−α.
The curvature tensor Rα of an α-connection ∇α is an (1, 3)-tensor given by:

(3) g(Rα(X,Y )Z,W ) = g([∇α
X
,∇α

Y
]Z,W )− g(∇α

[X,Y ]
Z,W ),

where X,Y, Z,W are vector fields on M . In the pencil we have Rα = R−α, hence if an
α-connection is flat (or locally flat) then, the −α-connection is flat as well. For example
in the important case of exponential families the α-connections are flat if α = ±1. This
construction provides the possibility of a generalization. Namely, from this construction
emerges directly the (pre-)Frobenius manifold structure (i.e. one needs a complete atlas
whose transition functions are affine linear, a compatible metric g, an even symmetric rank
three tensor and a multiplication operation on the tangent sheaf. Moreover the metric is
invariant under the multiplication). The Frobenius structure occurs whenever the associa-
tivity and potentiality axioms are given. These axioms imply that the multiplication is
associative and that the rank three tensor everywhere, locally admits a potential.

2. Methods

Relying on the fact that the Frobenius manifold is related to an affine manifold over an
algebra, it can be seen that the (Lie) group of infinitesimal operators on the given algebra
is isomorphic to the subgroup of continuous transformations defined on an affine space over
this algebra.

Consider a rank n algebra An = {e1, · · · , en} over the real numbers, where the multipli-
cation is given by ei · ej = ckijek. It is a unital algebra equipped with the commutativity
and associativity conditions, given respectively by the formulas:

(4) ckij = ckji, csikc
r
sk = csikc

r
sj .
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Any element A of the algebra An is given by the linear combination

A = Aiei,

where Ai is a (real) number and ei are generators of An and the principal unit ε is given by
εiei.

In order to show the structure of continuous transformation groups exists on a Frobenius
statistical manifold it is sufficient to show the existence of a set of infinitesimal operators
on this (unital, commutative, associative, rank n) algebra. In order to do this we need to:

(1) show the existence of parallel transport of vectors on these algebras.
(2) Show the existence of invariant affine connection on the algebra, implying that we

can obtain a family of infinitesimal operators of a group of continuous transforma-
tions on the algebra.

Concerning (1), we show that the Riemann curvature of the space depends on the type
of algebra An. From this statement it follows that the connection depends entirely on the
algebra (i.e. on the structure constants of the algebra). Finally, we prove that the affine
connection given by the parallel transport of V will be locally Euclidean if and only if the
connection Γ is an analytical function of an algebraic function of the variable X.

Furthermore, we prove that the connection Γ—being some geometrical object on the
algebra An—is an invariant. To do so, we consider introduce a Killing-like formula for the
algebra An.

Let ξ = ξ(x) = (ξ1(x), · · · , ξn(x)) be an analytic functions in the sense of Scheffer. The
Killing-like equation for the connection on an algebra An is given by the following relation:

(5) csijc
p
ks∂jξ

k + cbjmc
m
kb∂iξ

k = 0, i, j, · · · ∈ {1, · · · , n}

where ∂iξ
k is a component of a vector field and the ckij are structure constants of An.

Finally, we prove that

Theorem 1. The group of automorphisms of the space Xn associated to the algebra An is
given by the equation (5).

Concerning the learning process we refer to the Ackley–Hilton–Sejnowski method, con-
sisting in minimising the Kullback–Leibler divergence. We also use the statistical Gromov–
Witten invariants [5] which, similarly to its original version—the (GWS), concern the inter-
section of (para-)holomorphic curves on the symplectic manifold. This plays an important
role in the learning process. In particular we can prove that the (GWS) depend on the
structure of the algebra An.

To prove the second result that the learning process on Frobenius statistical manifold is
equipped with an additional algebraic structure being the direct product of a continuous
transformation group and of a group of affine collineations, we use the following construc-
tion.

This is proved using web theory and the construction of Ackley–Hilton–Sejnowski [2].
A d-web of codimension r is given in an open domain D of a differentiable manifold Xnr

of dimension nr by a set of d foliations of codimension r which are in general position.
In fact the geodesics on These geodesics on the submanifolds Vp (resp. Vn−p) allow the
construction of the so-called three-webs. Using the first result it implies that the web is
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a group-web. In fine, using the construction of Ackley–Hilton–Sejnowski, we deduce that
the learning process depends on two things: the Lie group acting on Vn and the projection
collineation group Gpc for paracomplex numbers.

3. Results

Theorem A

The n-dimensional statistical manifold Vn is equipped with a structure of continuous
transformations group G′(Vn). The group G′(Vn) is a direct product of continuous trans-
formations groups acting on two sub-manifolds Vp and Vn−p of the statistical manifold Vn.

Theorem B

The learning process on Frobenius statistical manifold is equipped with an additional
algebraic structure being the direct product of continuous transformations groups and a
group of affine collineations.

4. Conclusion

We firstly can show the existence of a Lie group on the Frobenius statistical manifolds Vn.
We outline the hidden structure of this Lie group on the Frobenius statistical manifold. It
can be identified to the direct product of two copies of a given Lie group, each of which act
on the totally geodesic submanifolds of Vn, corresponding respectively to the realisations
of modules over the orthogonal idempotents of the algebra. The second result is that
the learning process for the Frobenius statistical manifold is equipped with an additional
algebraic structure being the direct product of the continuous transformation group and of
the group of affine collineations.
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