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Résumé – Dans cet article, nous montrons que pour des distributions de probabilités isotropes dans un espace hyperbolique, la moyenne de
Fréchet et la moyenne extrinsèque définie à partir du modèle de l’hyperboloı̈de coı̈ncident. L’analyse des taux de convergences montre que
l’espérance de l’erreur quadratique de l’estimation de la moyenne extrinsèque, et de la moyenne de Fréchet, décroissent à la même vitesse. La
faible complexité algorithmique et la facilité d’implémentation de la moyenne extrinsèque en font une alternative intéressante à la moyenne de
Fréchet.

Abstract – In this paper, we show that for isotropic probability distributions on hyperbolic spaces, the Fréchet mean and the extrinsic mean
defined from the hyperboloid model coincide. The analysis of convergence rates shows that the expected squared error of the estimation of the
extrinsic mean, and of the Fréchet mean, decrease at the same speed. The low computational complexity and programming efforts required for
the computation of the extrinsic mean make it an interesting alternative to the Fréchet mean.

1 Introduction

Hyperbolic spaces appear in various data science problems,
such as graph embedding, [15, 2], radar signals, [1, 3, 7], and
color science [10, 16]. Several authors have proposed to use
isotropic probability distributions to model random phenome-
nons on the hyperbolic space, see for instance [17, 13, 9, 12, 5].
The notion of isotropy of a distribution is always defined with
respect to a point p of the space. Under an existence condi-
tion, the parameter p is the Fréchet mean of the distribution,
and can be estimated by the empirical Fréchet mean. Our main
contribution is to show that for isotropic distributions, the Fre-
chet mean coincides with the notion of ‘hyperbolic barycen-
ter’ proposed in [11]. Due to its geometric construction, we
call this ‘hyperbolic barycenter’ the extrinsic mean. Our result
is analogous to the Theorem 3.3 of [4], where authors proved
that for certain submanifolds of a Euclidean space, the extrinsic
mean and the Frechet mean of isotorpic distribution coincide.
Their result apply in particular to spheres and certain projec-
tive spaces. The extrinsic mean analysed here is based on an
embedding in a pseudo-Euclidean space, and the projection on
the embedded manifold differs from the one of [4]. Hence it
requires a separate treatment.

The paper is almost entirely self contained. In section 2, we
provide the necessary background on hyperbolic geometry and
on the hyperboloid model. Section 3 states the definition of iso-
tropic probability distribution. The section 4 contains the main
result. We start by basic facts about the Fréchet mean and then
we show that it coincides with the extrinsic mean when the
distribution is isotropic. In section 5, we show that the mean
squared errors of empirical estimators of both means decrease

in 1
N , with N the number of samples. We conclude the paper

in section 6 by indicating several possible generalizations.

2 Hyperbolic geometry

2.1 Riemannian manifolds
Hyperbolic spaces are a particular type of Riemannian ma-

nifolds. In terms of topological and differentiable manifolds,
their structures are similar to Rn. Note Hn a hyperbolic space
of dimension n. There exists a diffeomorphism φ : Hn → Rn.
As a Riemannian manifold, tangent spaces at each p ∈ Hn are
endowed with a local inner product

(TpHn, ⟨., .⟩p) ,

which enable to define length of differentiable path γ : [a, b] →
Hn as,

L(γ) =

∫ b

a

√
⟨γ′(t), γ′(t)⟩γ(t)dt

and distances between points as the length of the shortest curve
joining them,

d(p, q) = inf
γ

L(γ)

where the infimum is taken over all differentiable path joining p
and q. There exists several way to construct hyperbolic spaces
of dimension n, such as the hyperboloid model, the Klein mo-
del, the Poincaré ball model, or the Poincaré half space mo-
del. All these models of hyperbolic geometry are different as
sets but are all isometric Riemannian manifolds : between each
model, there is a bijection which preserves distances.



2.2 Hyperboloid models
Hyperbolic spaces can be seen as duals of spheres. A sphere

Sn is obtained as the set of unit norm vectors x of Rn+1. As
a Riemannian manifold, the local metric of Sn is given by the
canonical inner product of Rn+1 restricted to tangent spaces
TxSn. The hyperboloid model of hyperbolic geometry is obtai-
ned in a similar way but with a modified inner product. In the
rest of the paper, the inner product ⟨., .⟩ on Rn+1 is defined as
the following pseudo-Euclidean inner product,

∀x, y ∈ Rn+1, ⟨x, y⟩ = x0y0 −
n∑

i=1

xiyi.

The set of vectors x ∈ Rn+1 with ⟨x, x⟩ = 1 is a hyperboloid
with 2 sheets. Note Hn the sheet defined by

Hn = {x ∈ Rn+1 : ⟨x, x⟩ = 1 and x0 > 0}.
Hn is a hypersurface of Rn+1 parametrized freely by the n
coordinates x1, ..., xn : it is diffeomorphic to Rn. Let p ∈ Hn.
The tangent space of Hn at p can be characterized by

TpHn = {u ∈ Rn+1|⟨p, u⟩ = 0}.
For arbitrary u, v ∈ TpHn, define

⟨u, v⟩p = −⟨u, v⟩.
The bilinear form ⟨., .⟩p is positive definite on TpHn because
an orthogonal basis u1, . . . , un of TpHn completed by p is an
orthogonal basis of Rn+1 and the signature of the bilinear form
⟨., .⟩ is (1, n) so that ⟨u1, u1⟩, . . . , ⟨un, un⟩ must be negative.
Hn endowed with the local inner products ⟨., .⟩p is a Rie-

mannian manifold and a model of hyperbolic geometry. As for
spheres, it can be shown that the distance d between points has
an explicit form, for p, q ∈ Hn,

d(p, q) = arcosh(⟨p, q⟩).
The trigonometric functions of the spherical geometry are

simply replaced by hyperbolic functions.

2.3 The isometries of the hyperboloid model
Note SO(1, n) the group of (n+ 1)× (n+ 1) real matrices

with determinant 1 which preserve the pseudo-inner product
⟨., .⟩. The action of SO(1, n) preserves the hyperboloid of two
sheets of unit norm. Call SO+(1, n) ⊂ SO(1, n) the group of
matrices that also preserve each sheet. By construction of the
metric on Hn, matrices of SO+(1, n) preserve the hyperbolic
distance on Hn,

∀x, y ∈ Hn,∀M ∈ SO+(1, n), d(x, y) = d(Mx,My).

Homogeneity : If x ∈ Hn then there exists an orthogonal basis
e1, . . . , en of the orthogonal of x with respect to ⟨., .⟩. Since
the signature of ⟨., .⟩ is (1, n), we can suppose that ⟨ei, ei⟩ =
−1. It follows that the linear map that maps the canonical basis
of Rn+1 to x, e1, . . . , en, is in SO+(1, n). It follows that the
group SO+(1, n) acts transitively on Hn,

∀x, y ∈ Hn,∃M ∈ SO+(1, n),Mx = y, (1)

hence Hn is a homogeneous Riemannian manifold.
Isotropy : Since any Euclidean rotation that fixes the vector

1 = (1, 0, ..., 0)T ∈ Hn is in SO+(1, n), for each pair of unit
norm tangent vectors u, v in the tangent space T1Hn, ∃M ∈
SO+(1, n),M1 = 1 and Mu = v. Since Hn is homogeneous,
it follows that Hn is an isotropic Riemannian manifold : ∀p ∈
Hn,∀u, v ∈ TpHn, ⟨u, u⟩ = ⟨v, v⟩,

∃M ∈ SO+(1, n),Mp = p and Mu = v. (2)

3 Isotropic probability distribution
Let P be a probability distribution on Hn. P is said isotropic

with respect to x ∈ Hn when all the isometries which fix x
preserve P . In particular, for all M ∈ SO+(1, n) with Mx =
x, and for all measurable A ⊂ Hn,

P (A) = P (M−1A),

where M−1A = {x ∈ Hn|Mx ∈ A}.

4 Means

4.1 Frechet mean
For a probability distribution P on Hn, let F : Hn → R be

the function defined by

F (x) =

∫
y∈Hn

d(x, y)2dP. (3)

A global minimum of F is called a Fréchet mean. We will
check that if F takes a finite value for some x ∈ Hn, F has
a unique Fréchet mean. Since F (x) goes to infinity in every
direction in the hyperbolic space, there exists a Fréchet mean.
By the median inequality, for all x, x′, y ∈ Hn,

d(m, y)2 ≤ 1

2
(d(y, x)2 + d(y, x′)2)− 1

4
d(x, x′)2

where m is the midpoint of the geodesic segment joining x to
x′ (see [6]). Integrating both side of the inequality with respect
to P , we obtain F (m) ≤ 1

2 (F (x)+F (x′))− 1
4d(x, x

′)2 which
in turn implies the uniqueness of the minimum. Note

F(P ) = argminx∈Hn
(F (x)),

the Fréchet mean.

Theorem 1 Assume that P has a Fréchet mean. If P is isotro-
pic with respect to x, then

F(P ) = x,

x is the Fréchet mean of P .

Proof 1 Let q1 and let q2 = M(q1) where M is a isometry that
fixes x. Since P is M -invariant,

F (q1) =

∫
d(q1, y)

2dP (y) =

∫
d(M(q1),M(y))2dP (y)

=

∫
d(q2,M(y))2dP (y) =

∫
d(q2, y)dP (y) = F (q2).

Therefore, if γ : [−a, a] → Hn is any geodesic such that
γ(0) = x, then F (γ(a)) = F (γ(−a)). Now, F (x) ≤ 1

2 (F (γ(a))+
γ(−a))− 1

4d(γ(a), γ(−a))2, hence F (x) ≤ F (γ(a)).



4.2 Extrinsic mean
We will now provide an alternative definition of the mean,

and see that for isotropic distributions it coincides with the
Fréchet mean, when they exist.

We define the extrinsic mean of a probability distribution P
on Hn as the traditional vector mean of P , rescaled by the ap-
propriate factor to lie on Hn. When it exists, let V (P ) be the
vector mean,

V (P ) =

∫
x∈Hn

xdP.

Vectors x ∈ Rn+1 with x0 > 0 and ⟨x, x⟩ > 0 form a
convex cone C+. Hence ⟨V (P ), V (P )⟩ > 0. Let π : C+ →
Hn be the projection defined by

π(x) =
x√
⟨x, x⟩

,

and define the extrinsic mean as

E(P ) = π(V (P )) =
V (P )√

⟨V (P ), V (P )⟩
.

As for the Fréchet means, we will now prove that if the vec-
tor mean of a distribution isotropic with respect to a point x
exists, then x is the extrinsic mean.

Let M ∈ SO+(1, n). For an arbitrary distribution P , note
MP the probability defined by MP (A) = P (M−1A), for
A ⊂ Hn. We have

V (MP ) =

∫
x∈Hn

xdMP

=

∫
x∈Hn

MxdP

= M

∫
x∈Hn

xdP

= MV (P ),

without surprises, the vector mean commutes with M .
Let 1 = (1, 0, ..., 0)T ∈ Hn. Show now the desired result

for a distribution P1 isotropic with respect to 1. Call G1 ⊂
SO+(1, n) the set of (n+ 1)× (n+ 1) matrices of the form

M =

(
1 0
0 R

)
,

with R ∈ SO(n). Elements of G1 are hyperbolic isometries
fixing 1. Since P1 is isotropic with respect to 1, for all M ∈ G1

we have MP1 = P1. Hence

V (MP1) = V (P1) = MV (P1),

V (P1) is an eigenvector of M . Since there are no eigenvec-
tor u ∈ Rn common to all the elements of SO(n), R.1 are the
only eigenvectors common to all the elements of G1. We have
then that

∃α ∈ R, V (P1) = α1.

which enable to conclude that 1 is the extrinsic mean,

E(P1) = π(V (P1)) =
α1√

⟨α1, α1⟩
= 1.

Consider now an arbitrary x ∈ Hn, and a distribution Px

isotropic with respect to x. As seen in section 2.3, there is a
matrix M ∈ SO+(1, n) such that Mx = 1. It can be checked
that MPx is isotorpic with respect to 1. Hence

V (MPx) = MV (Px) ∈ R.1

and

V (Px) ∈ R.M−11 = R.x.

We can then conclude that

E(Px) = π(V (Px)) = x,

and state the following theorem.

Theorem 2 Let P be a probability distribution on Hn isotro-
pic with respect to x and such that the vector mean exists. Then

E(P ) = x.

5 Convergence
Under some finiteness assumptions of second order quanti-

ties detailed in Theorem 2.1 of [4], we get from the same refe-
rence that the expected square error of the empirical estimation
of the Fréchet mean decreases in 1

N .
In order to show the practical interest of the extrinsic mean,

we also establish that, unsurprisingly, the expected square error
of the empirical estimation is bounded above by an equivalent
of 1

N . The error is actually equivalent to 1
N but the proof is

slightly more technical.
Let (Xi) be independent random variables Ω → Hn of dis-

tribution P . Note VN the vector mean

VN =
X1 + . . .+XN

N

and EN the extrinsic mean of the empirical distribution 1
N

∑
i δXi .

Assume that the P have a finite second order Euclidean mo-
ment. We known that

E(∥VN − V (P )∥2) ∼ 1

N
,

where ∥.∥ is the Euclidean norm of Rn+1. Assume now that
P has a compact support. This assumption can be relaxed, but
it enables to obtain the desired result in a straightforward way.
Choose m ∈ R such that the support of P is contained in

U = {x = (x0, . . . , xn) : 1 ≤ x0 ≤ m, ⟨x, x⟩ ≥ 1}.

By convexity, U contains the vector means V (P ) and VN . The
projection π is continuously differentiable in the cone C+, hence
its restriction to the compact set U is a Lipshitz map, i.e., there
exists a positive constant L such that for all x, x′ ∈ E,



d(π(x), π(x′)) ≤ L∥x − x′∥ where d(., .) is the hyperbolic
distance. It follows that

d(EN , E(P )) = d(π(VN ), π(V (P ))) ≤ L∥VN − V (P )∥

which implies,

E(d(EN , E(P ))2) ≤ L2E(∥EN − E(P )∥2) ∼ 1

N
.

6 Conclusion
In this paper, we have shown that for isotropic distributions

on hyperbolic spaces, the extrinsic mean is a legitimate alter-
native to the the Fréchet mean. The mean points coincide, and
the analysis of empirical errors shows similar rates. However,
the extrinsic mean has an explicit expression while the com-
putation of the Fréchet mean requires to minimize the function
F (x) of Eq.3. The result presented in this paper can be gene-
ralized in two direction. On the one hand, it can be generalized
to manifolds with fewer symmetries than the hyperbolic space
such as symmetric positive definite matrices. On the other hand
on hyperbolic spaces, the isotropy condition can be relaxed to
a weaker symmetry condition, allowing the anisotropic distri-
butions proposed in [8, 14, 13].
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