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Résumé – Dans cet article, nous proposons une approche pour la reconstruction d’images à haute résolution par fusion d’images hyperspectrales
et multispectrales prenant en compte la variabilité entre les images. L’image haute résolution et la variabilité inter-images sont représentées
sous forme de tenseurs et sont supposées admettre une décomposition de Tucker. Deux algorithmes sont proposés, et des conditions pour
une reconstruction exacte de l’image à haute résolution sont fournies. Les résultats expérimentaux illustrent les performances des méthodes
proposées.

Abstract – In this paper we propose a hyperspectral and multispectral image fusion framework accounting for inter-image variability. The
images are represented as three dimensional tensors, and both the high-resolution image and inter-image variations are assumed to admit a
Tucker decomposition. Two algorithms are proposed, one purely algebraic and computationally fast and another based on an optimization
procedure. Exact recovery conditions are provided. Experimental results illustrate the performance of the proposed methods.

1 Introduction
Combining hyperspectral images (HIs) and multispectral im-
ages (MIs) of the same scene to generate high-resolution im-
ages (HRIs) has become a popular approach to overcome phys-
ical limitations of the image acquisition process [1]. Many
different approaches have been proposed to address this prob-
lem, including multiresolution analysis, which attempts to fuse
high-frequency of the MI with the HI [1], and different subspace-
based formulations, which consider the HRI pixels to be a lin-
ear combination of a small set of basis vectors [2, 3].

Recently, various works proposed image fusion methods that
leverage the representation of the HI, MI and HRI as 3-dimensi-
onal tensors [4, 5]. This led to algorithms that allied good ex-
perimental performance with strong theoretical guarantees for
the recovery of the HRI. Following this framework, several
works have formulated image fusion as a coupled tensor ap-
proximation problem. In [4], a low-rank canonical polyadic
decomposition was assumed for the HRI, which was recovered
using an alternating optimization strategy. The algorithm was
shown to recover the correct HRI when the MSI was identifi-
able. This was extended to consider a block-term decomposi-
tion (BTD) in order to improve the interpretability of the re-
sults in [6]. The Tucker decomposition was considered in [5],
leading to low-cost closed-form algorithms based on the SVD.
Exact recovery results were also obtained.

Most existing methods assume that the HI and MI are sub-
ject to the same acquisition conditions. Thus, their perfor-
mance can degrade considerably when fusing images acquired

by different sensors or at distinct time instants since the HI and
MI may differ due to variations in, e.g., illumination and sea-
sonal conditions [7]. This problem was recently addressed in
a subspace-based formulation in [8], where the spectral basis
vectors corresponding to the HI and to the MI were allowed
to vary according to smooth elementwise multiplicative scal-
ings [9]. However, the computational cost of the algorithm was
high, and no theoretical guarantees were provided. Both of
these issues were later addressed in [10], which used an LL1
BTD to jointly perform image fusion and unmixing of the HRI
under inter-image variability. Theoretical recovery guarantees
and two efficient algorithms were presented. However, these
works did not consider spatially localized inter-image changes.

We propose two image fusion algorithms accounting for spa-
tially and spectrally localized inter-image variability. Both the
HRI and the inter-image variations are represented using a Tucker
tensor decomposition. Two algorithms are derived, one alge-
braic and another based on an optimization procedure, and the-
oretical exact recovery results are obtained for both of them.
Experiments show that the proposed methods can achieve state
of the art performance in the presence of inter-image variabil-
ity. Proofs of the theorems and more details can be found in the
extended version of this work in [11].

Notation: We denote scalars by pxq or pXq, vectors by pxq,
matrices by pXq and tensors by pX q or pΘq. Operator ˆk

denotes the mode-k product between a tensor and a matrix,
vA;B1,B2,B3w “ A ˆ1 B1 ˆ2 B2 ˆ3 B3 the full multi-
linear product, and Xpiq the mode-i matricization of tensor X .



2 Tensor-based imaging model
We denote an HI and an MI by Yh P RN1ˆN2ˆLh and Ym P

RM1ˆM2ˆLm , respectively, where M1 ą N1 and M2 ą N2 are
the number of pixels in the vertical and horizontal dimensions,
and Lm ă Lh is the number of bands. The HI and MI are
considered to be spatially and spectrally degraded versions of
two HRIs Zh,Zm P RM1ˆM2ˆLh , and are modeled as [4, 5]:

Yh “ Zh ˆ1 P 1 ˆ2 P 2 ` Eh , (1)
Ym “ Zm ˆ3 P 3 ` Em , (2)

where Em and Eh denote additive noise. Matrices P 1 P RN1ˆM1

and P 2 P RN2ˆM2 model blurring and downsampling dur-
ing the HI acquisition (assumed to be separable), while P 3 P

RLmˆLh model the spectral response of the multispectral in-
strument [4, 5].

While most methods assume that Zh “ Zm, HIs and MIs are
often acquired by instruments on-board of different satellites,
or at different dates. This introduces inter-image variability be-
tween the HI Yh and the MI Ym originating from, e.g., atmo-
spheric or illumination variations, or scene changes [7]. Spa-
tially uniform inter-image variations have been recently consid-
ered in [8]. However, more flexible models must be introduced
to account for more complex types of changes. We propose to
model the inter-image variability as follows:

Zm “ Zh ` Ψ , (3)

where the variability tensor Ψ P RM1ˆM2ˆLh represents changes
occurring between the HRIs Zh and Zm (and thus between the
HI and MI). This allows the acquisition process to be repre-
sented as:

Yh “ Zh ˆ1 P 1 ˆ2 P 2 ` Eh , (4)
Ym “ pZh ` Ψq ˆ3 P 3 ` Em . (5)

We are interested in recovering the HRI Zh and variability
tensor Ψ from the HI and MI:

find Zh P ΩZ , Ψ P ΩΨ that satisfy (4)–(5). (6)

in which sets ΩZ Ď RM1ˆM2ˆLh and ΩΨ Ď RM1ˆM2ˆLh en-
code prior knowledge about Zh and Ψ, which is very important
due to the ill-posedness of the problem. In this paper, we con-
sider a low-rank Tucker tensor model to constrain both Zh and
Ψ [5]:

Zh “
0

GZ ;BZ,1,BZ,2,BZ,3

8

, (7)

Ψ “
0

GΨ;BΨ,1,BΨ,2,BΨ,3

8

, (8)

in which Bπ,i P RMiˆKπ,i , i P t1, 2u, Bπ,3 P RLhˆKπ,3

and Gπ P RKπ,1ˆKπ,2ˆKπ,3 are factor matrices and the core
tensors of the model, for π P tZ,Ψu. This reduces the amount
of variables to estimate and allows recovery guarantees to be
derived.

Ignoring the additive noise, combining (7)–(8) and (4)–(5)
and using the properties of the mode-k product leads to [5]:

Yh “
0

GZ ;P 1BZ,1,P 2BZ,2,BZ,3

8

, (9)

Ym “
ÿ

πPtZ,Ψu

0

Gπ;Bπ,1,Bπ,2,P 3Bπ,3

8

(10)

“
0

Cm;Cm,1,Cm,2,P 3Cm,3

8

, (11)

where Cm,i “ rBZ,i BΨ,is, i P t1, 2, 3u, and Cm is a block-
diagonal tensor with diagonal blocks GZ and GΨ. Note that
although the MI admits a standard Tucker model, the block
diagonal structure of its core tensor Cm plays an important role
in obtaining recoverability results of the second algorithm.

3 Proposed algorithm

3.1 Algebraic solution
Since the variability tensor is only present in the MSI in (5),
only a low spectral resolution Ψˆ3P 3 can be recovered. Thus,
it suffices to consider the recovery of the HRI Zh from Yh and
Ym. Under model (9) and (11), for sufficiently low tensor ranks
this consists in solving the following system of equations:
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%

Yh “
0

GZ ;Ch,1,Ch,2,BZ,3

8

Ym “
0

Cm;Cm,1,Cm,2,P 3Cm,3

8

Ch,i “ P iBZ,i, i P t1, 2u

Cm,i “
“

BZ,i,BΨ,i

‰

, i P t1, 2, 3u

, (12)

in which Ch,i, i P t1, 2u are the mode-1 and mode-2 factor ma-
trices of Yh. The solution pZh is then computed using (7). An
important aspect of (12) is that the block diagonal structure Cm
is not considered. This simplifies the problem but introduces
the need for more stringent assumptions to obtain a solution.

If KZ,i ` KΨ,i ď Ni, i P t1, 2u, (12) can be solved alge-
braically using Alg. 1, named CT-STAR. It consists in esti-
mating the HRI factor matrices using the relationship between
mode-1 and mode-2 matricizations of Yh and Ym, and recov-
ering the core tensor separately. Theorem 1 provides exact re-
covery conditions for CT-STAR.

Theorem 1. Suppose that Zh and Ψ have multilinear ranks
pKZ,1,KZ,2,KZ,3q and pKΨ,1,KΨ,2,KΨ,3q, respectively, that
Yh and Ym admit Tucker decompositions as in (12), that the
observation noise is zero (i.e., Eh “ 0, Em “ 0), and that

rankpP iBZ,iq “ KZ,i , i P t1, 2u (13)
rankpP iBΨ,iq ď KΨ,i , i P t1, 2u (14)
rankpYhpiqq “ KZ,i , i P t1, 2, 3u (15)

rankpYmpiqq “ KZ,i ` KΨ,i ď Ni , i P t1, 2u (16)

Then, if all columns in P iBZ,i are linearly independent from
those in P iBΨ,i, for i P t1, 2u, CT-STAR exactly recovers Zh.

Since CT-STAR only requires simple algebraic operations, it
is computationally very efficient. However, requiring KZ,i `

KΨ,i ď Ni, i P t1, 2u limits the capability of the method to
represent spatially complex HRIs, which require larger rank
values. One important element which is not exploited by CT-STAR
is the block-diagonal structure of the core tensor Cm conferred
by the model (10).



Algorithm 1: CT-STAR
Input : HSI Yh, MSI Ym ranks KZ,i, KΨ,i, i P t1, 2, 3u

Output: HRI pZh, spectrally degraded variability factors
1 Check if KZ,i ` KΨ,i ď Ni, i P t1, 2u ;
2 pCh,3 “ tSVDKZ,3

pYhp3qq ;

3 pCm,i “ tSVDKZ,i`KΨ,i
pYmpiqq, for i P t1, 2u ;

4 rQi “
`

P i
pCm,i

˘:
tSVDKZ,i

pYhpiqq, for i P t1, 2u;

5 rCm,i “ pCm,i
rQi, for i P t1, 2u ;

6 Compute pGZ by solving
p pCh,3 b P 2

rCm,2 b P 1
rCm,1q vecpGZq “ vecpYhq;

7 pZh “ v pGZ ; rCm,1, rCm,2, pCh,3w ;
8 Compute degraded variability factors as Ym ´ pZh ˆ3 P 3 ;

3.2 Optimization-based solution
Model (10) shows that when Em “ 0 the MI admits a BTD [12].
This can be explored to provide recovery guarantees for the
HRI under less restrictive conditions (see [11, Theorem 3] for
the complete result). To this end, we formulate image fusion as
the solution to the following problem:

min
Θ

JpΘq fi

›

›

›
Yh ´

0

GZ ;P 1BZ,1,P 2BZ,2,BZ,3

8

›

›

›

2

F

`

›

›

›

›

Ym ´
ÿ

πPtZ,Ψu

0

Gπ;Bπ,1,Bπ,2,P 3Bπ,3

8

›

›

›

›

2

F

, (17)

in which Θ “ tGπ,Bπ,i : π P tZ,Ψu, i P t1, 2, 3uu. We
solve (17) using block coordinate descent (BCD), in which J
is successively minimized w.r.t. GZ and BZ,i, i P t1, 2, 3u, and
w.r.t. BΨ,i, i P t1, 2, 3u, while keeping the remaining variables
fixed during each iteration. We describe this procedure in the
following, and call the algorithm CB-STAR.

The optimization of J w.r.t. Zh can be written as:

min
GZ ,BZ,i

›

›

›
Yh ´

0

GZ ;P 1BZ,1,P 2BZ,2,BZ,3

8

›

›

›

2

F

`

›

›

›
Y0 ´

0

GZ ;BZ,1,BZ,2,P 3BZ,3

8

›

›

›

2

F
, (18)

where Y0 “ Ym ´
0

GΨ;BΨ,1,BΨ,2,P 3BΨ,3

8

. This is a
Tucker-based image fusion problem without inter-image vari-
ability, which we solve using BCD w.r.t. GZ and BZ,i.

The optimization of J w.r.t. Ψ can be written as:

min
GΨ,BΨ,i,X2

›

›

›
Y1 ´

0

GΨ;BΨ,1,BΨ,2,X2

8

›

›

›

2

F
, (19)

where Y1 “ Ym ´ vGZ ;BZ,1,BZ,2,P 3BZ,3w and X2 “

P 3BΨ,3. This problem is solved by computing the high-order
SVD of Y1 [13], with rank pKΨ,1,KΨ,2,KΨ,3q.

4 Experimental results
The proposed methods are compared to HySure [3], CNMF [2],
GLPHS [14], LTMR [15], STEREO [4], SCOTT [5] and FuVar
[8] using two pairs of MIs Ym and HRIs Zh with real inter-
image variability, denominated Lake Tahoe and Lockwood (de-

Figure 1: Visible (top) and infrared (bottom) representation of
the true Lockwood HRI and its reconstructed version.

Figure 2: Visible (top) and infrared (bottom) representation of
the true Lake Tahoe HRI and its reconstructed version.

scribed in detail in [8]). The HRIs Zh were used both to gen-
erate HIs Yh according to (1) and as ground truth for the com-
parisons. P 1 “ P 2 consisted in a Gaussian filter with unit
variance and decimation by a factor of two [5], and Eh was a
white Gaussian noise with an SNR of 30dB. P 3 was obtained
from calibration measurements of the Sentinel 2 instrument [8].
The reconstructed HRIs were compared to Zh using four met-
rics: the PSNR and UIQI (for which larger values imply bet-
ter reconstructions), and the SAM and ERGAS (smaller values
imply better reconstructions). The metrics are defined in detail
in [8]. An implementation of the proposed methods is available
at https://github.com/ricardoborsoi/CB_STAR_release.

The results can be seen in Tables 1 and 2 and Figs. 1 and 2.

Table 1: Quantitative results for the Lockwood image
Algorithm SAM ERGAS PSNR UIQI time

HySure 3.38 7.79 23.65 0.88 4.63

CNMF 2.57 5.64 27.6 0.89 8.83

GLPHS 2.57 5.32 28.39 0.91 4.74

FuVar 2.37 4.29 30.59 0.95 218

LTMR 3.47 5.01 29.16 0.94 26.22

STEREO 3.49 5.51 28.72 0.93 1.14

SCOTT 2.52 4.91 29.93 0.95 0.18

CT-STAR 2.96 5.25 28.36 0.92 1.82

CB-STAR 2.19 4.35 31.47 0.96 18.8

Table 2: Quantitative results for the Lake Tahoe image
Algorithm SAM ERGAS PSNR UIQI time

HySure 11.3 13.99 17.37 0.71 4.5

CNMF 8.79 14.59 18.37 0.71 12.1

GLPHS 5.65 7.45 24.08 0.91 4.65

FuVar 3.91 4.73 27.98 0.97 270.91

LTMR 34.45 1,357.42 13.8 0.52 24.94

STEREO 27.07 1,540 20.19 0.68 0.92

SCOTT 33.17 43,100 11.21 0.39 1.47

CT-STAR 5.41 5.25 27.25 0.96 2.88

CB-STAR 4.25 3.78 30.1 0.98 63.71

https://github.com/ricardoborsoi/CB_STAR_release


CB-STAR achieved the best quantitative results in all but two
cases (ERGAS in Lockwood and SAM in Lake Tahoe, in which
the results were similar to FuVar). Due to the limitation sin the
selection of rank values, CT-STAR performed slightly worse
than FuVar and CB-STAR. The methods that did not consider
variability (HySure, CNMF, GLPHS, LTMR, STEREO and
SCOTT) performed considerably worse, particularly in the Lake
Tahoe dataset, which has a larger inter-image variability. The
visual results (only shown for FuVar, LTMR, STEREO, SCOTT,
CT-STAR and CB-STAR) indicate that CB-STAR achieved the
closest reconstruction of the HRIs, which can be observed in
the crop circles in Fig. 2, which are closer to the true HRI com-
pared to those reconstructed by FuVar. Nevertheless, the re-
construction of the Lake Tahoe HRI by CB-STAR is smoother
when compared to FuVar’s. This occurs since FuVar constrains
both HRIs to have the same spatial distribution of materials
(which preserves sharp details from the MI), while CB-STAR
allows for arbitrary spatial changes. Thus, in CB-STAR the
HRI corresponding to the HI does not incorporates spatial de-
tails from the HI as effectively when large inter-image vari-
ability between the HRIs is present. CT-STAR showed some
artifacts due to the limited spatial rank values, while HRIs re-
constructed by the remaining methods contained significant ar-
tifacts for the Lake Tahoe dataset. The execution times of the
proposed method were larger than those of SCOTT, but signif-
icantly smaller than those of FuVar.

5 Conclusions
This paper proposed an tensor-based image fusion framework
accounting for inter-image variability. The HRI and the tensor
representing the variability were assumed to admit a Tucker
decomposition. Two algorithms were then derived, one al-
gebraic and computationally efficient (CT-STAR) and another
more flexible and based on an optimization problem (CB-STAR).
Under suitable conditions, both algorithms exactly recover the
HRI. Experimental results indicate that CB-STAR achieves state
of the art performance in the presence of inter-image variability
with lower computation times.
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