
An assessment of Multi Object Tracking on low framerate conditions
Anis Yassine BEN MABROUK1, Gabriele FACCIOLO1, Rafael GROMPONE VON GIOI1, Axel DAVY1,2

1Université Paris-Saclay, CNRS, ENS Paris-Saclay, Centre Borelli, 91190 Gif-sur-Yvette, France
2HGH Systèmes Infrarouges, 10 rue Maryse Bastié 91430 Igny, France

{anis.ben_mabrouk1,gabriele.facciolo,grompone,axel.davy}@ens-paris-saclay.fr

Résumé – La performance des méthodes de l’état de l’art en suivi multi-objets est généralement montrée sur des vidéos à fréquence image
élevée, où les objets bougent très peu d’une image à l’autre. Il y a cependant des intérêts à travailler dans le cas plus difficile d’une fréquence
faible ou alternativement de mouvements forts. Cet article étudie à quel point la performance de suivi est affectée par une diminution de fréquence
image, et identifie les méthodes les plus adaptées à cet usage alternatif.

Abstract – The performance of state-of-the-art multiple object tracking methods is usually shown on high-framerate videos, for which objects
move very little between two consecutive frames. Nonetheless, there is an interest in working in the harder scenario of low framerate or similarly,
strong motion. This article studies how much tracking performance is affected by a decrease in image frequency, and identifies the methods that
are better suited for this alternative use-case.

1 Introduction

The aim of Multi Object Tracking (MOT) is to assign a unique
identifier for each target object in a video sequence, remaining
consistent throughout the sequence in spite of hurdles such as
occlusions or changes of scale. This problem recently gained
much attention from the computer vision community, in part
for its applications in self-driving cars, particle tracking in mi-
croscopy imaging and reliable camera surveillance.

Most methods are based on the detect to track paradigm, in
which the problem is divided into detection and tracking steps.
The detection step aims at detecting the target objects (for ex-
ample persons or cars) in individual frames. Then, the tracking
step tries to associate or pair the detections on one frame to
the detections on another frame. The pairing can be done ei-
ther using motion criteria such as Optical Flow or the Kalman
filter [1, 17, 12], by re-identification (ReID) using appearance
cues [14], or a mixture of both [15, 20, 18, 16]. Affinity scores
may be used to measure similarity between two targets.

Achieving real-time performance on standard video framer-
ate is an important challenge for MOT methods and the main
focus of the literature. Yet, there is an interest in being able to
track in low framerate videos [4] or, equivalently, when large
motion is present with pronounced changes from frame to frame.

This work makes a short review of the recent state-of-the-art
literature to assess the impact of the framerate on the perfor-
mance. For this, low framerate sequences were emulated by
frame sub-sampling and the different methods were compared
on normal and sub-sampled sequences with an appropriate met-
ric. The quality of the detection step has an impact as well as
the association step; in order to make a fair comparison of the
association steps, a second evaluation was performed using the

Figure 1: Multi object tracking accuracy (metric MOTA [11])
of different tracking methods on the MOT20-01 sequence [2]
with different framerates (logarithmic scale). As the framerate
is reduced, and thus the change between frames increases, all
methods suffer a significant drop in performance.

ground truth detections instead of the internal detections. Our
experiments show that most methods suffer a significant perfor-
mance drop on low framerates, while some, particularly those
that rely on visual cues, are more robust, see Figure 1.

This paper is organized as follows: Section 2 provides a de-
scription of the methods to be evaluated, while Section 3 ex-
plains the evaluation methodology. The results are presented
and discussed in Section 4. Section 5 concludes the paper.

2 Evaluated methods

2.1 Detection backbones
There are various detection backbones that can be used for the
detection step in each tracking method. For the deployed track-
ing methods, the detection backbones are:



CenterNet [21] This anchor-free detection network predicts
a dense detection heatmap and has a regression head for the
bounding box positions. The heatmap is learned to be max-
imal at the center of objects. According to [18], anchor-free
networks are more adequate for extracting re-identification fea-
tures.

YOLOX [3] is also an anchor free detector based on the same
backbone as YOLOv5 which is an advanced CSPNet [13] with
an additional PAN [6] head. On top of the backbone, there
are two decoupled heads, one for regression and the other for
classification. The regression head also has an intersection over
union (IOU) aware branch and directly predicts bounding box
details at each location of the heatmap.

Deformable DETR [22] is an object detector that uses trans-
formers on top of a convolutional backbone to learn positional
embeddings called objects queries. It employs multi-scale de-
formable attention to overcome limited resolution problems.

2.2 Tracking methods
SORT [1] has a simple and effective design: it retrieves the de-
tections from an object detector, originally FrRCNN[9], then
predicts the positions of the objects of the previous frame us-
ing a Kalman filter. Associations are conducted using the IOU
between the predicted bounding boxes and the newly detected
bounding boxes. Concretely, an optimal pairing that minimizes
the total cost is obtained through the Hungarian algorithm [5].

DeepSORT [15] is an extension of SORT. It introduces a mod-
ification on the association step: its association cost is a linear
combination of two terms. The first term relates to motion and
is the Mahalanobis distance between the predicted position of
the previous detection and the new detection, where the pre-
diction is done using a Kalman filter. The second term, related
to the appearances, is the cosine distance between the previous
and the new detections on a separately learned ReID embed-
ding.

ByteTrack[17] tracks all targets using a Kalman filter, simi-
larly to SORT, but splits the association step into two incre-
mental phases depending on the detection score. High score
detections are paired in a first phase. Then, unmatched tracks
of the first phase are matched with low score detections if the
movement is well predicted by the Kalman filter. High confi-
dence detections are kept even if they cannot be associated with
previous tracks.

CenterTrack [20] supplements CenterNet [21] with a motion
prediction branch that predicts the movement of detected ob-
jects from the previous frame. To do so, in addition to the pre-
vious and the current frames, the network is fed with the centers
of the previous detections in the form of a heatmap. Tracking
is then performed by predicting the new object centers.

FairMOT [18] builds on top of CenterNet by adding a re-
identification branch. The re-identification branch consists of a
convolutional layer added on top of the backbone feature that
extracts Re-ID features for all locations. The Re-ID features

are learned through a classification task. Tracking is done sim-
ilarly to DeepSORT by computing the same association cost
based on both motion and visual cues. The Re-ID features of
the tracks are updated each time step.

TraDeS [16] is similar to FairMOT in the sense that it conducts
detection and re-identification in a joint manner. It uses a cost
volume association approach for the re-identification step. It
also follows the same approach as CenterTrack [20], learning
the object center displacements. The final tracking offset is
conditioned on the cost volume computed and can be calculated
as the dot product between the likelihoods obtained through
the cost volume and the actual offset values. The tracking is
performed by calculating this offset at object centers in each
frame similarly to CenterTrack.

GSDT [14] Graph neural networks for Simultaneous Detec-
tion and Tracking (GSDT) falls under the category of joint de-
tection and re-identification methods. It improves on previous
joint approaches by adding a graph neural network to model the
spatial-temporal relations between the detected objects, which
helps to perform the association step.

TransTrack [12] is built on a Transformer based encoder-decoder
framework. The method has one encoder to generate feature
maps or keys from two consecutive frames and two decoders,
one to infer object detections which outputs bounding boxes
and the other for object tracking which predicts the location of
previously seen objects. The association step is done by ap-
plying the Hungarian algorithm [5] to the IOU values between
detection boxes and tracking boxes.

3 Experimental setup
In our experiments FairMOT [18], CenterTrack [20], TraDeS [16]
and GSDT [16] use the DLA34 backbone from CenterNet, while
TransTrack [12] uses Resnet-50. YOLOX is used for SORT,
DeepSORT [15] and ByteTrack [17]. DeepSORT uses [7] for
the Re-ID model with market-1501 [19] pretrained weights.
All methods were trained on the MOT17 [8] training set, with
FairMOT, CenterTrack, GSDT, TraDeS and TransTrack also
being pretrained on the CrowdHuman dataset [10]. In all our
experiments we use pre-trained network weights made avail-
able along with the public implementations.

The methods were evaluated on the challenging MOT20 [2]
sequences, which present realistic scenarios with small targets
and heavy occlusions. The training set of MOT20 [2] was used
as it has available ground truth (unlike the test set), which was
required to perform our custom evaluation. This is not prob-
lematic because none of the methods were trained on it. We
also note that MOT20-03 and MOT20-05 sequences have more
challenging movement while MOT20-01 and MOT20-02 have
harder occlusion cases. We generated versions of each se-
quence at various framerates by sub-sampling: one frame out
of x was kept, where x = 1

sr and sr is the sampling rate. For
example, for a sampling rate of 0.5, one frame out of two was
selected, starting from the first frame, see Figure 2.



Table 1: Multi object tracking accuracy (MOTA) [11] of the different tracking methods on the MOT20 [2] training sequences
(original and undersampled).

Framerate Sequence id SORT[1] DeepSORT[15] ByteTrack[17] CenterTrack[20] FairMOT[18] TraDeS[16] GSDT[14] TransTrack[12]

25

01 60.7% 56.1% 61.6% 34.6% 55.5% 45.3% 46.6% 38.8%
02 58.3% 55.6% 58.4% 34.5% 52.1% 45.3% 40.6% 41.1%
03 66.3% 65.7% 67.7% 37.8% 56.4% 40.3% 50.6% 43.9 %
05 66.8% 64.4% 68.3% 24.4% 51.8% 31.4% 39.8% 43.2%

1

01 27.4% 27% 34.8% 31% 34.1% 32.4% 31.1% 30.7%
02 24.1% 30.4% 36.6% 33% 31.4% 31.8% 27.7% 32.9%
03 30.1% 38.3% 47.2% 35.4% 31.9% 31.4% 29.6% 39.3%
05 32.3% 41.5% 48.3% 22% 35.5% 21% 27.5 % 35.6%

Table 2: Multi object tracking accuracy (MOTA) [11] of the
different tracking methods on the MOT20 [2] training se-
quences (original and undersampled) using the ground truth
detections instead of the internal detections.
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25

01 95.1% 95% 98.1% 94.6% 94.5%
02 96.1% 96.2% 97.2% 95.7% 95.6%
03 96.5% 95.7% 99.2% 95.6% 95.4%
05 99.5% 98.5% 99% 98.4% 97.3%

1

01 60.4% 54.3% 70.3% 60.9% 63.8%
02 68.1% 63.1% 72.8% 58.9% 67.5%
03 76.8% 60.1% 70.2% 51.2% 57.1%
05 74.8% 67.2% 70.1% 60.7% 62.8%

Our quantitative comparison uses the Multi-Object Tracking
Accuracy (MOTA) metric [11] which is defined as

MOTA = 1−
∑

t(FNt + FPt + IDSWt)∑
t GTt

, (1)

where t is the frame index, GT is the number of ground truth
objects, FN/FP the number of false negatives/positives re-
spectively and IDSW the number of identity switches. For
a fair comparison, at a given sampling rate, the metric of the
original sequence is also calculated only on the frames of the
sub-sampled sequence.

The quality of the detection step plays a crucial role in the
performance of tracking methods. A second experiment was
added where the ground truth detections were used instead of
the ones produced by each method. This allows us to evaluate
the potential of the different association methods in the con-
text of low framerate where significant appearance changes are
observed.

4 Results and discussion
Figure 1 compares the performance of the selected methods on
the MOT20-01 sequence for several framerates. As the framer-
ate decreases, all the methods suffer a significant performance
drop. Table 1 illustrates this in detail. ByteTrack and SORT
achieve a good performance at high framerate. DeepSORT
and FairMOT come right after, DeepSORT being better than

t = 0 t = 1 t = 10

Figure 2: Example of changes between frames in the MOT20-
01 [2] sequence. In the original sequence, t = 0 and t = 1
would be two consecutive frames whereas, in the sub-sampled
sequence (with a sampling rate of 0.1) t = 0 and t = 10 would
be two consecutive frames.

the latter. The remaining methods have relatively close per-
formance except CenterTrack which performs the worst, espe-
cially on the MOT20-05 sequence. This low performance is
mostly due to the mediocre quality of the detections. At low
framerate, ByteTrack retains its position while SORT suffers a
drastic drop. CenterTrack on the other hand suffers the lowest
relative drop. TransTrack is the second-best method on average
at this framerate which might hint at transformers being better
at handling motion. DeepSORT and FairMOT behave similar-
ily on average with DeepSORT having an upperhand indicat-
ing that Re-ID features are helpful. The remaining methods are
close, not far behind. At both framerates, FairMOT is the most
consistent.

When replacing internal detections with the ground truth ones,
see Table 2, all the methods benefit from a major performance
uplift at the original sequence framerate, especially Center-
Track. This illustrates that the detection performance is a ma-
jor limitation to tracking methods. As we reduce the framerate
to 1, although a significant performance drop is still observed,
DeepSORT and CenterTrack obtain significantly better perfor-
mance than the other trackers and than in Table 1. The per-
formance of DeepSORT is significantly better than FairMOT,
showing that joint re-id and detection learning still has its short-
comings as expected. We also notice that both motion pre-
diction and re-identification seem to be promising, with each
working better in certain scenarios, i.e. sequences with irreg-
ular movements are better handled by re-identification while
sequences with heavy occlusions are better treated with motion
estimation.

Finally, even if a better detection helps tracking performance,
most current methods are still not effective enough to reliably
track targets subject to significant changes between frames.



As a limitation of these experiments, one must note that re-
identification methods are trained in a way that doesn’t favor
any framerate in particular, while motion trackers are condi-
tioned on previous frames. CenterTrack has some sort of ro-
bustness due to being trained on randomly spaced frames but
the performance hinges on the nature of the motion (the sim-
pler the better). Moreover, the Re-ID branch in DeepSORT was
trained using perfect detections which could translate to a bias
of them working better on ground truth detections.

5 Conclusion
In this article, we compared the performance of several state-
of-the-art object trackers under different framerates. We ob-
served that all methods suffer from a drop in performance, as
the framerate is reduced. Our results indicate that certain re-
identification based methods as well as some motion estima-
tion methods are the most robust to low framerate and to pro-
nounced changes in appearance, but performance is still lack-
luster. This indicates that much work remains to be done to
solve the problem of MOT for low-framerate videos.
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