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Résumé – Dans de nombreux domaines tels que l’imagerie médicale, la vision par ordinateur et le traitement du signal radar, on est conduit à
étudier des distributions de mélange dans l’espace symétrique Riemannien. Cet article propose un algorithme récursive permettant d’estimer les
paramètres et de sélectionner simultanément le nombre de composantes d’un modèle de mélange dans un espace symétrique Riemannien. L’idée
génératrice est d’initialiser le processus d’estimation à partir d’un grand nombre de composantes K0, et d’introduire une distribution a priori du
poids des composantes pour exprimer notre préférence pour des modèles compacts. En utilisant le gradient d’information de Rao-Fisher pour
mettre à jour les paramètres, dans chaque itération, la distribution a priori conduit à l’extinction des composantes non pertinentes. Cet algorithme
pourrait être appliqué pour estimer les modèles sur l’espace symétrique. Cet algorithme est simple à utiliser, en effet il est robust par rapport
au choix des valeurs initiales, il peut en outre sélectionner le nombre de composantes automatiquement. Nous illustrons cet article par quelques
expérimentations.

Abstract – In many fields such as medical imaging, computer vision and radar signal processing, we are lead to study mixtures of distributions
in the Riemannian symmetric space. This paper proposes a recursive algorithm for estimating parameters and simultaneously selecting the
number of components of a mixture model on Riemannian symmetric space. The idea is to initialize the estimation process from a large number
of components K0 and introduce a prior distribution of the membership weights to express our preference for compact models. Using the Rao-
Fisher information gradient to update the parameters, in each iteration the prior drives the irrelevant components to extinction. This algorithm
could be applied to estimate the models on symmetric space. This algorithm is simple to use. Indeed, it is robust with respect to the choice of
initial values. Moreover, it can select the number of components automatically. We illustrate this paper by some experiments.

1 Introduction
Consider a Riemannian symmertric space denoted M . For

example,M may be a space of constant curvature [15], a Grass-
mann manifold [7], or a space of structured covariance ma-
trices [4]. Assume that we are given X = {x(1), . . . , x(T )}, a
set of data points generated from an unknown probability den-
sity p∗ on M .

The present work describes an original recursive algorithm,
which computes an approximation of the unknown density p∗ ,
with the assumption that it is a finite mixture density such as :

p∗ (x|θ) =

K∑
k=1

wk · f(x|θk) (1a)

Here θ = {wk, θk; k = 1, · · · ,K}, where θk is an unknown
parameter, and wk are strictly positive membership weights.
These weights satisfy the following constraint :

K∑
k=1

wk = 1 (1b)

Moreover, each mixture component has density f(x|θk) chosen
from a given parametric statistical model on M ,

f(x|θk) = f(x|x̄k, σk) x̄k ∈M , σk > 0 (1c)

where θk = (x̄k, σk), with x̄k a location parameter, and σk a
scale parameter.

Here, since the density p∗ is unknown, the order K of the
mixture density p∗ in (1a) is also considered to be unknown.
Therefore, to compute this mixture density, one needs to solve
two problems : an order selection step, to determine the or-
der K, and a parameter estimation step, to calculate the set of
weights wk and parameters θk .

These two problems are studied in Sections 2 and 3, respec-
tively. In the present work, they are solved simultaneously, and
using only recursive processing. These are typical requirements
when dealing with big data.



2 Order selection
As previously mentioned, the orderK of the mixture density

p∗ is considered here to be unknown. The problem of order
selection is to choose K based on the data X . The goal here
is to adapt the order K to the complexity of the available data.
For example, it should not be allowed to choose a rather large
value for K, if the data set X is essentially unimodal.

Mathematically, this is reflected by a penalty term, subtrac-
ted from the log-likelihood function L(θ(K)|X ), in order to re-
ject excessive values of K. The number of parameters depends
on the number of components K and the notation θ(K) will be
used to stress this when needed. The aim in the following will
be to maximise a penalised likelihood function C given as

C(θ(K)) = L(θ|X )− P (θ(K)) (2a)

A popular choice for the penalty term P (θ(K)) arises from in-
formation criteria, such as Akaike’s information criterion (AIC) [1]
or the Bayesian inference criterion (BIC) [13]. However, in the
present work, a different choice is made. Precisely, P (θ(K))
will be derived from an non-informative Dirichlet prior on the
mixture weights wk, which reads

P (θ(K)) = log

(
K∏
k=1

wc̃k

)
(2b)

with c̃ = −N/2 is equal to half the number N of real parame-
ters θk involved in each mixture component. In [16], this choice
of the penalty term P (θ(K)) was derived as an approximation
of the minimum-message-length order selection criterion.

The maximum of the penalised log-likelihood function must
be a stationary point. In particular, this means its derivative
with respect to the weights wk should be 0. Introducing the La-
grange multiplier λ, to ensure the sum of the weights is always
equal to 1, leads to

∂

∂θk

(
L(θ|X ) + P (θ(K)) + λ(

K∑
k=1

wk − 1)

)
= 0 (2c)

For t data samples, we get from (2c)

w
(t)
k =

1

1−Kc/t

(
N

(t)
k − c
t

)
(2d)

where c = −c̃ and N (t)
k is the expected number of samples in

class k, defined in terms of the ’ownerships’ o(t)
k

N
(t)
k =

∑t
i=1 o

(i)
k

o
(t)
k = w

(t)
k

f(x|θk)
p(x|θ) , t ∈ {1, 2, · · · , T}

Here, a bias from the prior is introduced through c/t, this bias
decreases for larger data sets (larger t). However, if a small bias
is acceptable we can keep it constant by fixing c/t to cT = c/T
with a large T . This means that the bias will always be the same
as if it would have been for a data set with T samples.

The interest is to look for an recursive algorithm, so every
iteration the parameter updating uses only one sample. If we

assume that the parameter estimate do not change much when
a new sample is added, then, o(t+1)

k can be approximated by
o

(t)
k . In this way, we can find out an update formula

w
(t+1)
k = w

(t)
k + γ(t+1)

(
o

(t)
k − cT

1−KcT
− w(t)

k

)
(2e)

The size of data set T should be large enough to ensure that
KcT < 1. The update begins with w(0)

k = 1/K and discard the
components whose weight becomes negative w(t)

k < 0, until a
balance could be achieved.

3 Parameter estimation
After discussing the problem of order selection in the pre-

vious section, this section will expand the problem of parame-
ter estimation. The main parameters to estimate are the loca-
tion parameter x̄k defined on the Riemannian symmetric space
M equipped by metric Q, and the scaling parameter σk ∈
(0,+∞) [10]. This kind of location-scale model has the den-
sity as follows (for each component)

f(x|x̄k, σk) = exp [ηk(σk)D(x, x̄k)− ψ (ηk(σk))] (3a)

where ηk = η(σk) is a certain parameter, to be called the na-
tural parameter, ψ is the cumulant-generating function (log-
moment generating function). For example

ψ′(η) = Eθ [D(x, x̄)]
ψ′′(η) = V arθ [D(x, x̄)]

And D : M ×M → R is an application which verifies the
following invariance condition

D(g · x, g · x̄k) = D(x, x̄k) (3b)

for any g ∈ G where G is the group of isometries of M .
The estimation of the parameters can be realised by maximi-

sing the penalized log-likelihood (2a). The Fisher-information
gradient will be used to do the optimisation on Riemmanian
symmetric space. The Rao-Fisher information gradient is in-
troduced by the Rao-Fisher information metric. This metric is a
Riemannian metric on the parameter spaceM = M×(0,+∞)
of the model (3a). It is defined as follows, for component k,
θk = (x̄k, σk) and U ∈ TθkM

Iθk(U,U) = Eθk
[
(dL(θk)U)

2
]

(3c)

where Eθk denotes expectation with respect to the probabi-
lity density f(x|θk), and dL(θk) is the differential of the log-
likelihood function, given by L(θk) = log f(x|θk).

It is difficult to directly calculate the information metric by
the definition (3c). So, here we need to use another metric to
express the exact form of the information metric. This metric
is called warped Riemannian metric as explained in [10]. A
warped Riemannian metric I on M is given in the following
way [2, 3, 9]. Let α and β be positive functions, defined on



(0,+∞). Then, for θk ∈ M, let the scalar product Iθ on the
tangent space TθkM be defined by

Iθk(U,U) = α2(σk)u2
σk

+ β2(σk)Qx(u, u) (3d)

where U = uσk
∂σk

+ u ∈ TθkM with uσk
∈ R and u ∈

Tx̄k
M . Recall that the Q here is the metric on the space M .

Theorem 1 in [10] gives the relation between information me-
tric and warped Riemannian metric. If the model (3a) verifies
the condition (3b), the Rao-Fisher information metric I of (3c)
is a warped Riemannian metric given by (3c). The Proposition
1 in [10] gives the exact expression of function α and β

α2(ηk) = ψ′′(ηk)
β2(ηk) = η2

kEθk [Q (∇x̄k
D,∇x̄k

D) / dimM ]
(3e)

where ηk = η(σk). With respect to (3d) the information gra-
dients for model (3a) could be determined [10]{

∇infx̄k
Lk(x̄k, ηk) = 1

β2(ηk)ηk∇x̄k
Q(x̄k, x)

∇infηk Lk(x̄k, ηk) = 1
ψ′′(ηk) (D(x̄k, x)− ψ′(ηk))

(3f)
With the exact expression of Rao-Fisher information gradient,
an algorithm is given :

Algorithm 1 Recursive algorithm for estimating mixture
models on Riemannian symmetric space

Input: data set {x(1), · · · , x(T )}, initial values,K(0), w(0), x̄(0),
σ(0).

Output: the estimates, K̂, ŵ, ˆ̄x, σ̂.
η(0) ← η(σ(0)).
for t = {1, · · · , T} do

for k = {1, · · · ,K(t)} do
o

(t)
k ← w

(t)
k f(x(t)|x̄(t)

k , σ
(t)
k )/p(x(t)|x̄(t), σ(t)).

w
(t+1)
k ← w

(t)
k + γ

(
o
(t)
k −cT

1−K(t)cT
− w(t)

k

)
.

end for

if w(t+1)
k < 0, ∀k ∈ {1, · · · ,K(t)} then
K(t+1) ← K(t) − 1.
Discard the component k.
w

(t+1)
k ← (1/K(t+1), · · · , 1/K(t+1)).

end if

for k = {1, · · · ,K(t+1)} do
x̄

(t+1)
k ← Exp

x̄
(t)
k

(γ∇inf
x̄
(t)
k

Lk).

η
(t+1)
k ← Exp

η
(t)
k

(γ∇inf
η
(t)
k

Lk).

end for
end for
{K̂, ŵ, ˆ̄x, η̂} ← {K(T ), w(T ), x̄(T ), η(T )}.

In this algorithm T denotes the number of samples, γ denotes
the step size. Generaly, we use a decreasing sequence γt+1 =
1/(t + 1) as the step size for stochastic gradient method, but
in practice the performance of a constant step size is better.
The constant coefficient cT mentioned above equals to N

2T . In

addition, Exp denotes the Riemannian exponential map. The
exact definition of Exp : TM 7→ M depends on the associa-
ted manifold M . Finally, the ∇infLk denotes the Rao-Fisher
information gradient, or natural gradient.

4 Experiments
In order to verify the performance of the algorithm above,

some experiments have been carried out on two models, the von
Mises-Fisher distribution [6, 8] and the Riemannian Gaussian
distribution [5, 11]. For lack of space, here we only present the
result of Riemannian Gaussian mixture model.

For Riemannian gaussian model,M corresponds to the space
of symmetric positive defined metrices with dimension d × d,
and the related functions in section 3 are

D(x̄k, x) = d2(x̄k, x), η(σk) = − 1

2σ2
k

where d2(·, ·) denotes the Riemannian distance in M . The as-
sociated function ψ(ηk) and β(ηk) are precised in [10] and
[12]. For dimension 2, the sample set X can be projected on
the Poincaré half-plane using linear fractional transformations.

FIGURE 1 – 2 × 2 dimensional mixture Gaussian Riemannian
distribution projected on the Poincaré half-plane

The aim is to do a simulation of estimation for this kind of
mixture model. To do this simulation, the input values should
be declared at first. The initial number of components K(0) is
10. The location parameter x̄ is initialised by some randomly
chosen data points, and the scale parameter σ is initialised by a
strict random real number. The step size γ = 0.01, this constant
step size brings a fluctuation at the end of the descent process.
So we introduce the averaged gradient method to reduce this
fluctuation [14]

θ̂
(t+1)
k = Exp

θ̂
(t)
k

(
1

t
Log

θ̂
(t)
k

(θ
(t+1)
k )

)
(4)

where Log : M 7→ TM is the inverse of Exp mentioned
above. It provides a descent process which is smoother and ea-
sier to be observed in Figure 2.

In Figure 2, the global error is |L(θ∗) − L(θ̂(t))|, where θ∗

denotes the true parameters, and θ̂ denotes the estimated para-
meters. The following Figure 3 presents the variation of K(t)

with the number of samples, and the distribution of the final
components K(T ).



FIGURE 2 – The variation of |L(θ∗)− L(θ(t))|.

From these two figures, we can observe that the errors ap-
proache to zero as the sample size increases. We have expe-
rimented 1000 simulations, 98% of the them converge to the
correct number of components. This validates that the theories
above are feasible in practical experiments.

FIGURE 3 – The variation of K(t) and the distribution of the
final K(T )

5 Conclusion
Based on the work of [10] and [16], we have implemented

an recursive algorithm. Compared with the traditional EM al-
gorithm, this algorithm does not require complicated research
on the initial values, and it can select the correct number of
components automatically and estimate the parameters simul-
taneously. In this way, it is simple and quick to apply this algo-
rithm to big data. In the future, the introduction of a decreasing
step size may improve the accuracy of this algorithm.
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