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Résumé – Analyser les actions humaines dans des séquences vidéo implique la compréhension du contexte spatial et temporel de la scène.
Les réseaux de neurones convolutifs (CNNs) montrent des performances impressionnantes dans ce domaine. Cependant, la plupart des méthodes
existantes fonctionnent hors ligne, non en temps réel et ne sont pas adaptées aux scénarios réalistes comme la conduite autonome et la surveillance
publique. De plus, elles sont souvent trop gourmandes en consommation d’énergie pour être implémentées sur des systèmes embarqués. Dans
ce papier, nous traçons d’abord un état de l’art des méthodes de détection des actions basées sur les CNNs. Puis nous proposons une chaîne de
traitement rapide grâce à la propagation des caractéristiques d’apparence en utilisant les flux optiques. Notre approche est testée sur la base de
données publique UCF-101-24. Les résultats expérimentaux obtenus valident son utilisation pour la détection d’actions en temps réel (40 fps).

Abstract – Analyzing videos of human actions involves understanding the spatial and temporal context of the scenes. State-of-the-art ap-
proaches have demonstrated impressive results using Convolution Neural Networks (CNNs). However, most of them operate in a non-real-time,
offline fashion and are not well-equipped for many emerging real-world scenarios, such as autonomous driving and public surveillance. In
addition, they are computationally demanding to be deployed on devices with limited power resources (e.g., embedded systems). This paper
reviews state-of-the-art methods based on CNN for human action detection and related topics. Following that, we propose an initial framework
to efficiently address action detection using flow-guided appearance features. We validate its performance on the UCF-101-24 dataset, and show
that the method can achieve real-time action detection with a processing speed of 40 fps.

1 Introduction

Human action detection is a key element to video unders-
tanding. It has been an active research topic driven by many
applications, such as assisted or autonomous driving, unman-
ned surveillance, and robot vision. These real-world scenarios
often mandate not only on-site and real-time interpretation of
scenes, but also robust recognition of events under restricted
power budgets.

Moreover, applications such as surveillance in large envi-
ronments and abnormal behavior detection in public, further
demand having a network of cameras and exchange of infor-
mation among local/central devices. The need to transmit and
store redundant video streams imposes bottlenecks for effec-
tive analytic tasks. To manage such enormous data from mul-
tiple cameras without network overloads, efficient processing
and extraction of relevant metadata at local devices become a
fundamental system requirement. Instead of raw video streams,
transmitting processed metadata between system components
not only can minimize the content to be streamed, but also
creates a smarter and cooperative framework.

With the recently rising Convolution Neural Network (CNN),
object detection has progressed significantly with remarkable
results. This motivates researchers to adopt CNN object detec-
tors to action detection. To achieve spatio-temporal detection
for action instances, existing approaches often link frame-level
detections over time to create spatio-temporal tubes [1][2][3][4].

Handling every video frame independently is however non-
optimal as the temporal continuity of videos is not fully ex-
ploited. On the one hand, distinguishing actions from a single
frame can be ambiguous. On the other hand, neglecting the
content similarity between successive frames imposes high pro-
cessing cost and redundancy.

Our work focuses on computationally inexpensive human
action detection potentially for embedded vision systems. In
this paper, we first review state-of-the-art methods on action de-
tection and related topics. We then describe our method which
exploits video frames’ continuity to save computation, and de-
monstrate its validity in the experiments.

2 Related work
Thanks to their remarkable results on object detection in

images, CNN object detectors have been increasingly adopted
for video action detection. This section briefly reviews recent
works on both object and action detection.

Modern CNN object detectors can be grouped into two fa-
milies. The first one uses a two-stage approach, first proposing
object regions from images, and then performing classification
and bounding box regression for each region [5]. Alternatively,
YOLO [6] and SSD [7] directly classify and regress on a set of
pre-defined boxes in a single pass. In exchange for minor drops
in accuracy, these single-shot methods can achieve real-time



detection.
Extended from the image domain, video object detection has

also been explored. Many existing methods link frame-level
object boxes of consecutive frames into tubelets as a post pro-
cessing operation [8][9]. Such an approach typically does not
concern efficient processing. On the other hand, recently Zhu
et al. [10] incorporate FlowNet [11] to propagate deep fea-
ture maps from sparse key frames to nearby non-key frames
via flow fields. This accelerates video object detection as only
a small number of key frames needs to go through the time-
consuming deep feature extractor. In a similar spirit, Liu et
al. [13] propagate frame-level information across frames using
a recurrent convolutional architecture to enable near-real-time
video object detection on low-powered mobile devices.

Concerning video action detection, many recent approaches
rely on object detectors trained on action data. Furthermore,
a popular way to capture actions’ temporal information is the
adoption of the two-stream framework [14], which performs
detection on the appearance and motion stream separately fol-
lowed by fusion and offline tubelet generation [1][4]. Others
have also explored the use of multi-stream frameworks which
take into account additional modalities such as human poses or
semantics (e.g., objects) [15][16].

Targeting more realistic user scenarios, Singh et al. [4] achieve
action detection in a real-time, online manner by combining the
two-stream framework, SSD detectors, a fast optical flow esti-
mator and their proposed online linking algorithm. Instead of
making detection at the frame level, Kalogeiton et al. [2] pro-
pose an action tubelet detector, which learns to directly output
sequences of action bounding boxes and scores.

3 Methodology

Typically in videos, image content varies slowly over conse-
cutive frames. This phenomenon is also reflected in the corres-
ponding CNN feature maps which encode high level semantics.
This observation suggests that applying the complete CNN fea-
ture extraction for every video frame could be costly and redun-
dant. As a starting point toward efficient action detection, we
exploit neighboring frames’ coherence to reduce computation.
Different from the popular two-stream approach which expli-
citly uses motions as a separate stream, we make use of mo-
tions to efficiently guide the appearance features of key frames
to their neighboring frames. This technique was applied by Zhu
et al. [10] for video object detection, from which we hypothe-
size that action detection can also benefit.

Fig. 1 illustrates the proposed framework. During inference
the deep and more expensive feature extraction network only
runs on sparse key frames. Instead of being extracted from
the feature network again, the feature maps of successive non-
key frames are propagated from those of their preceding key
frames. This is achieved by spatial warping for all locations
and channels in the feature maps using optical flows. The flow
fields are estimated by the corresponding pair of key and non-

FIGURE 1 – Illustration of the flow-guided action detection fra-
mework based on [10].

key frame.
Most existing two-stream approaches prepare motion streams

pre-computed by traditional optical flow estimation methods.
This incurs high consumption of time and storage, prohibiting
online operations. We therefore adopt the framework of Zhu
et al. [10] which integrates fine-tuning of flow estimation by
a CNN network jointly with the feature extraction and detec-
tion networks. Computation reduction can be achieved as CNN
flow estimation and feature map propagation are fast and in-
expensive compared to CNN deep feature extraction, which in
our framework is only used on a sparse set of key frames.

4 Experiments
We evaluate the proposed action detection framework on the

UCF-101-24 [17] dataset. It is a subset of UCF-101 which is
composed of realistic action videos across 101 action classes
from YouTube. The UCF-101-24 consists of 24 classes in 3207
videos with frame-level localization annotations. We follow the
work of Singh et al. [4], using 2290 of these videos for training
and the remaining ones for testing.

We employ ResNet-101 [12], R-FCN [5] and FlowNet mo-
dels for CNN feature extraction, action detection and flow esti-
mation respectively. The entire system consisting of these sub-
networks is trained end-to-end. During training, from each mini-
batch a pair of nearby (a maximum offset of 9 frames) video
frames, Ir and Ii, is randomly sampled, one being the refe-
rence frame. The appearance feature map fr is first obtained
from the reference frame, while both frames are fed to Flow-
Net to estimate the flow field. The estimated flow is then used to



FIGURE 2 – Detection results (mAP) of individual action
classes.

Flow-guided Baseline
Runtime (s) / frame 0.022 0.057
Accuracy (mAP) 62.2 67.1

TABLE 1 – Performance comparison between flow-guided and
baseline method. The above runtime is reported as the mean
speed over 10 frames.

propagate fr to fi, which will be the final feature map inputted
in the detection network. The incurred localization and classi-
fication losses are then back-propagated to update all compo-
nents of all sub-networks. Here, we use ResNet with ImageNet
pre-training. FlowNet is pre-trained on the Flying Chair dataset
[11]. The choice of individual components and training hyper-
parameters are referred from the paper and released code of
Zhu et al. [10].

In our experiment, we sample every 10 frame as a key frame
during inference. In both training and inference, the size of an
image is re-scaled to 600 × 800. The mean Average Precision
(mAP) over Intersection over Union (IoU) at 0.5 is used as
the evaluation metric. Predicted actions are considered correct
only when the associated classes are correct and their bounding
boxes reach the specified IoU with groudtruths.

The trained model achieves an average of 62.2% mAP over
all action classes. Performances of individual classes are re-
ported in Fig. 2. In Fig. 3 we display some action localization
results at both key and non-key frames.

To assess the performance of the flow-guided approach, we
compare it with a baseline method without guided features. In
the baseline method, all frames are treated as key frames and
go through feature extraction independently. Table 1 summa-
rizes the comparison between the two in terms of accuracy and
runtime. Overall, the flow-guided version demonstrates an ave-
rage of 2.6 times speedup compared to the baseline with minor
drops in accuracy. All experiments are conducted on an Nvidia
GeForce GTX 1080 Ti GPU.

Finally, we conduct qualitative analysis on individual classes,

especially over the ones which perform significantly worse than
others. Poor performances may be associated with ambiguous
context when learning from the appearance stream. For example,
the action Basketball was often mis-classified as TennisSwing
possibly due to the similarity of the court (Fig. 4a). Likewise,
action RopeClimbing is initially classified as FloorGymnastics
until the emergence of a clear rope (Fig. 4b). On the other hand,
the action Fencing consistently performs well due to having
unique appearances (i.e., white gears) that would not be confu-
sed with other action classes.

5 Conclusions and future works
In this paper we propose to adapt a recent work in video

object detection to efficient video action detection. Our experi-
ments demonstrate that this flow-guided method could enhance
detection runtime by approximately three times, achieving real-
time performance (40 fps) without losing significant accuracy.
This validates our hypothesis that action detection could also
benefit from exploiting the continuity between video frames,
even though actions are conceptually more sensitive to tempo-
ral variations than objects.

As this work serves as our starting point for real-time ac-
tion detection, we lay out rigorous research plans to follow. A
key research direction is to incorporate the multi-stream fra-
mework into our existing work. We will explore using more
modalities and feature aggregation techniques across frames to
capture more temporal information. Our method, in terms of
computational efficiency, may further benefit from smarter re-
gion proposal algorithms that attend to human presence in early
frames. We believe incorporating the above tasks in hand will
lead to a robust and efficient action detection solution suitable
for embedded devices.

Acknowledgement
This work was supported by the H2020 Innovative Training

Network (ITN) project ACHIEVE (H2020-MSCA-ITN-2017 :
agreement no. 765866).

Références
[1] Saha, S., Singh, G., et al., Deep learning for detecting

multiple space-time action tubes in videos, BMCV, 2016.

[2] Kalogeiton, V., Weinzaepfel, P., et al., Action tubelet
detector for spatio-temporal action localization, IEEE
ICCV, 2017.

[3] Peng, X. and Schmid, C., Multi-region two-stream R-
CNN for action detection, ECCV, 2016.

[4] Singh, G., Saha, S., et al., Online real-time multiple
spatiotemporal action localisation and prediction, IEEE
ICCV, 2017.



k k+2 k+4 k+6 k+8

FIGURE 3 – Flow-guided action detection results on UCF-101-24 dataset. The first column corresponds to detection results on key
frames. The other four columns correspond to results of the following frames obtained with the propagated features.

(a) Incorrect detection

(b) Incorrect detection

(c) Correct detection
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rect classification of the left image is "Basketball". Likewise in
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