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Résumé – Dans certains problèmes de traitement de données, il est nécessaire de calculer la trace de l’inverse d’une matrice, de la forme
Tr(qI + L)−1. Si la matrice est de dimension trop élevée, les méthodes directes deviennent trop coûteuses et il faut se contenter de méthodes
approchées, comme celles fondées sur l’estimateur de Girard (aussi connu sous le nom d’estimateur de Hutchinson). Dans cet article, nous
proposons une méthode alternative basée sur l’algorithme de Wilson, initialement développé pour tirer des arbres couvrants uniformes. Cette
méthode est applicable à de très grandes matrices, rapide, et facile à implémenter. En revanche, elle est uniquement adaptée aux matrices L qui
sont diagonalement dominantes.

Abstract – Some data analysis problems require the computation of (regularised) inverse traces, i.e. quantities of the form Tr(qI + L)−1. For
large matrices, direct methods are unfeasible and one must resort to approximations, for example using a conjugate gradient solver combined
with Girard’s trace estimator (also known as Hutchinson’s trace estimator). Here we describe an unbiased estimator of the regularized inverse
trace, based on Wilson’s algorithm, an algorithm that was initially designed to draw uniform spanning trees in graphs. Our method is fast, easy
to implement, and scales to very large matrices. Its main drawback is that it is limited to diagonally dominant matrices L.

1 Background
Monte Carlo methods are increasingly popular in large-scale linear

algebra problems [14]. Among the many different quantities one may
need to compute on large matrices, spectral summaries of the form∑n
i=1 f(λi(L)), where the λi’s are the eigenvalues of L and f is some

function, are often required. Here we focus on the following quantity :

s(q) = qTr((L + qI)−1) =

n∑
i=1

q

λi + q
(1)

which we seek to evaluate for real q > 0. We call the quantity s(q)
because it is equivalent (up to scaling) to the Stieltjes transform of the
eigenvalue density evaluated on the negative real axis [1].

In practice, the problem of estimating efficiently s(q) may arise
when looking for the optimal regularization parameter in a regularized
optimization problem. Say we measure a signal x = [x1, . . . , xn]

t

under white Gaussian noise ε. The measurements read yi = xi + εi
for i = 1 to n. Many estimation methods (smoothing splines, semi-
supervised learning, Gaussian process regression) define an estimator
of x as :

x̂ = argmin
z∈Rn

q ||y − z||2 + 1

2
ztLz (2)

where L is a semi-definite positive matrix defining the penalty (regu-
larisation) term, and q parametrizes the regularisation’s strength. The
solution to this optimisation problem equals :

x̂ = q(qI + L)−1y. (3)

In most cases the optimal value of q is unknown and must be esti-
mated, for instance using AIC (Akaike’s Information Criterion) or

Generalised-Cross Validation (GCV). AIC requires computing the
number of degrees of freedom of the estimator, which here can be
taken to equal s(q) (see [10], ch. 5, [9, 8]).

The simplest solution to compute eq. (1) is of course to compute the
eigenvalues of L, which comes atO(n3) cost if L is n×n. Moreover,
there is no particular gain to expect from the sparsity of L. In fact,
iterative methods for eigenvalues, that look to estimate the smallest or
largest eigenvalues of L, cannot be used directly here, as s(q) involves
the whole spectral density. An alternative is to consider Monte Carlo
methods. A famous estimator for the trace of a matrix was first sug-
gested by Girard in [9] : let r denote a length-n vector of independent,
standard Gaussian entries. Let M denote a n× n matrix. Then :

E(rtMr) = E
(
Tr(Mrrt)

)
= Tr

(
ME(rrt)

)
= TrM (4)

This leads immediately to estimating TrM using the empirical mean
TrM ≈ 1

k

∑k
l=1 rtlMrl. Note that eq. (4) is valid for any random

vector with diagonal covariance, so we may use other random vectors
[12]. Various options have been studied in the literature, see [5]. In
this work we use Gaussian vectors for simplicity (as we will see, it is
not the main factor here).

In our case, M = q(qI + L)−1, and Girard estimator of s(q) reads

ŝGk(q) =
q

k

k∑
l=1

rtl(qI + L)−1rl. (5)

In the Gaussian case, the variance of the estimation for k = 1 (see,
e.g., lemma 9 of [5]) is :

Var(ŝG1(q)) =
n∑
i=1

2q2

(q + λi)2
. (6)



We still need to figure out how to compute the quadratic forms
rt(qI + L)−1r in eq. (5). This involves solving a large linear sys-
tem, a task for which algorithms abound. If L is sparse, computing
a sparse Cholesky factor will give good results for many systems,
up to a certain size 1. Alternatively, for very large systems, iterative
solvers such as Conjugate Gradients may be used [6]. Another ap-
proach is to use an order p polynomial approximation 2 of the function
f(x) = q/(q + x) '

∑p
j=0 αjx

j . Estimating rt(qI + L)−1r then
boils down to computing rt

∑p
j=0 αjL

jr, that is : p matrix vector
multiplications and one scalar product. Iterative solvers and polyno-
mial methods only provide approximate solutions, but we expect the
error induced by these approximations to be small relative to the Gi-
rard variance of Eq. (6). A combination of Girard’s trace estimator and
iterative solvers has been used, e.g., in [18].

Below, we describe an alternative method that is very natural and
intrinsic when L is actually a graph Laplacian, a particular class of
matrices associated with graphs. At the end of section 2 we extend the
technique to diagonally dominant matrice, i.e. the set of matrices that
verify ∀i Lii ≥

∑
j 6=i |Lij |.

2 Uniform spanning trees, random forests, and
inverse traces

In this section we recall some facts on graphs and spanning trees
that should help understand our method. Mathematical details can be
found in [2] and [3].

Consider a weighted graph G = (V, E) of n = |V| nodes and |E|
edges. We restrict ourselves to undirected graphs in this paper, even
though the results may be extended to strongly connected 3 directed
graphs. We denote by A ∈ Rn×n the graph’s adjacency matrix, where
Aij = Aji ≥ 0 is the weight of the connection between nodes i and
j. The graph Laplacian of G equals L = D− A ∈ Rn×n, where D =
diag(d1, . . . , dn) ∈ Rn×n is the diagonal degree matrix with di =∑
j Aij the degree of node i. The graph Laplacian is a fascinating

object with many applications in machine learning and graph signal
processing, see eg. [7].

A tree is a cycle-free graph, and a spanning tree T of G is a cycle-
free connected subgraph of G that spans all n nodes of G. A typical
graph has more than one spanning tree. For instance, the complete
graph of size n contains nn−2 different spanning trees. A tree sampled
uniformly from the set of all spanning trees of G is called a uniform
spanning tree (UST).

A fast algorithm for sampling USTs, now known as ”Wilson’s al-
gorithm” was developed in [19] . In a nutshell, the algorithm runs as
follows : pick a node at random, and call it the root of the tree. Now
pick another node, and run a random walk until it hits the root. The tra-
jectory of the random walk may include loops : we simply erase them
as they come. The resulting “loop-erased” random walk will form the
first branch of the spanning tree. Next, pick a node that is not yet in
the tree, run a random walk until it hits the tree, erase the possible
loops, add this new branch to the tree, etc. Wilson’s algorithm runs in
time proportional to O(τ) where τ is the average “commute time” :
the time it takes a random walk to reach node j starting from node i
for two nodes picked uniformly on the graph.

1. In fact, if the Cholesky factor is available, the Takahashi equations may
also be used to obtain the trace, see [16]

2. Using Chebychev polynomials for instance if one wants to ensure the
smallest infinite-norm error : supx∈[0,λmax]

|f(x)−
∑p
j=0 αjx

j |
3. Given any pair of nodes (i, j), there is a directed path to go from i to j,

and from j to i.

Algorithm 1 A variant of Wilson’s algorithm
Input : A graph G = (V, E) of size n and q > 0
R ← ∅,W ← ∅
Add a node, called ∆, to G and connect it to all n nodes in V
with edges of weight q. Call this augmented graph G′.
whileW 6= V do :
· Do a random walk on G′ starting from any node i ∈

V \W until it reaches either ∆, or a node inW .
· Erase all the loops of the trajectory, in the order of ap-

pearance.
· Add all the nodes of this loop-erased trajectory to the set

of visited nodesW .
if the last node of the trajectory is ∆ do :
· Denote by l the last visited node before ∆
·R ← R∪ {l}

Output :R, the root set of the sampled forest spanning G.

Wilson in [19] noted that his algorithm could be used to generate
random spanning forests, and not just USTs. A forest is a set of trees,
and a spanning forest is a set of disjoint trees that, taken together, span
the whole graph. The algorithm 4 is given as alg. 1 : it uses loop-erased
random walks (LERW), but these LERWs may be interrupted early. At
each node, the random walk is interrupted with probability q

q+di
. Of

course, the larger q, the shorter the walks, the larger the number of
roots, the faster the algorithm. In the implementation given in alg. 1,
the average runtime is 5 O(|E|/q).

The resulting process has many fascinating aspects, some of which
have been investigated in [4]. For our purposes, we focus on the fact
that the number of roots is in fact an unbiased estimator of s(q) :

E(|R|) =
n∑
i=1

q

q + λi
= s(q). (7)

This suggests to define Wilson estimator of s as :

ŝWk(q) =
1

k

k∑
l=1

|Rl|. (8)

where the k sets of roots {Rl}l=1,...,k are obtained by running alg. 1
k times. A further property of alg. 1 is, in the case k = 1 (see [4]) :

Var(ŝW1(q)) = q

n∑
i=1

λi

(q + λi)
2 . (9)

This variance can be compared with Girard’s (eq. (6)) : we see that for
both very small and very large values of q, Girard’s estimator is less
effective per sample. Unfortunately, identifying exactly the interval of
q for which Wilson’s estimator is preferable (on a per-sample basis) is
heavily dependent on the eigenvalue distribution.

Since Var(ŝW1) ≤ E(ŝW1) and s(q) ≥ 1 the relative error verifies :

Var(ŝWk)
E(ŝWk)2

=
Var(ŝW1)
kE(ŝW1)2

≤ 1

ks(q)
≤ 1

k
. (10)

4. Alg. 1 is written in order to only output the set of roots of the sampled
forest, as this is the information we will use in this paper. Much more informa-
tion can in practice be extracted.

5. This figure assumes that, when at node i, picking a neighbour at random
is O(di). This can be marginally improved by some preprocessing tricks, for
example by using the alias method for sampling. In addition, in the case of
unweighted graphs there is no dependency on the degree (picking a random
neighbor isO(1))



Let us point out several advantages of the suggested algorithm. First,
no preprocessing is required. The graph does even not need to be pre-
computed : essentially, all we need is the ability to run a random walk
on the graph. Second, it is very easy to implement (our implementation
runs under 20 lines of Julia code). Third, it is is easy to parallelise, as
we can just generate several forests concurrently. Fourth, its memory
footprint is minimal, requiring a handful ofO(n) quantities. However,
the main disadvantage is that the algorithm can only estimate s(q) if
L is a graph Laplacian. The next section partly lifts that restriction to
allow the use of diagonally-dominant matrices.

Generalising to diagonally-dominant matrices. We borrow a trick
from the rich literature on Laplacian solvers (see for instance [13, 11]).
Let G be a diagonally dominant matrix, that we decompose as G =
D1 +D2 + Ap + An where :

— Ap contains the positive off-diagonal elements, An contains the
negative ones

— D1 is a diagonal matrix, with D1(i, i) =
∑
j 6=i |Gij | (sum of

off-diagonal elements)

— D2 is also diagonal, with entries D2(i, i) = Gii − D1(i, i).
Diagonal dominance of G implies that ∀i,D2(i, i) ≥ 0.

In the same way we restricted the previous discussion to undirected
graphs, we here restrict ourselves to symmetric diagonally dominant
matrices, implying that Ap and An are symmetric. We form the fol-
lowing two graph Laplacians, both representing undirected weighted
graphs, and of respective size n and 2n :

L1 = D1 + An − Ap (11)

L2 =

(
D1 +D2/2 + An −D2/2− Ap
−D2/2− Ap D1 +D2/2 + An

)
. (12)

It can be easily verified that an eigenvector basis for L2 can be

constructed as follows : n eigenvectors of the form
(
x
x

)
, where

x is an eigenvector of L1 ; and n other eigenvectors of the form(
y
−y

)
, where y is an eigenvector of G. This implies that λ(L2) =

λ(L1) ∪ λ(G) and consequently that :

sG(q) = sL2(q)− sL1(q). (13)

Given eq. (13), the extension to symmetric diagonally dominant ma-
trices is thus straightforward : form the two Laplacians L1 and L2, run
the algorithm on each graph, and subtract.

3 Empirical results
We implemented our algorithm in the Julia programming lan-

guage 6, and compared its performance on a number of graphs to alter-
natives based on Girard’s estimator. We ran all algorithms on a single
core on a desktop PC. Specifically, the alternative algorithms are as
follows. First generate k Gaussian vectors of size n, of zero mean and
variance 1, then compute ŝGk(q) = (q/k)

∑k
l=1 r

t
l(L + qI)−1rtl using

one of the following methods :

1. direct : use Julia’s backslash operator (which calls CHOL-
MOD internally)

2. amg : Algebraic Multigrid (AMG) with Ruge-Stüben coarse-
ning [17], implemented in the AlgebraicMultigrid package 7

6. julialang.org
7. https ://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl

3. cg : Conjugate Gradients : we used the implementation in the
IterativeSolvers.jl package 8, with diagonal preconditioning

4. cg-amg : same as above, with AMG preconditioning

All methods defined here are based on Monte Carlo, and have an
asymptotic relative error of ε2 = Var(ŝ1)/k. In order to ensure a fair
comparison, we report effective runtimes as the time needed per ite-
ration multiplied by the number of iterations needed in order to reach
a fixed relative error ε. For each value of q, we run each method 100
times on each graph. This gives us an estimate ŝ100(q), along with
an estimated standard deviation σ̂s(q). The asymptotic relative error is
given by :

ε =
σ̂s(q)

ŝ(q)
√
k
. (14)

We solve for k given a relative error of ε = 0.02. The time per iteration
is then computed as the total time divided by 100. We note that this
tends to be unfavourable to our method, which has zero set-up time,
unlike the direct method (which needs to compute a decomposition)
or AMG (which needs to setup the preconditioner).

Recall that 1 ≤ s(q) ≤ n, where n is the number of nodes of
the graph, and that s(q) is the average number of roots alg. 1 outputs.
Generally, the higher s(q) is, the faster our algorithm. s(q) will of
course vary depending on the graph, and so in the comparisons we
pick a range that is appropriate for each graph. We set the range such
that s(q) would vary approximately between 1% and 50% of n, the
number of nodes. We picked 8 values on a logarithmic scale.

The graphs we tested are as follows :

— “circle” : a ring graph of size 27, 000

— “grid 2d” : a 2D lattice of size 164× 164 = 26, 896

— “grid 3d” : a 3D lattice of size 303 = 27, 000

— “barabasi albert” : A Barabasi-Albert random graph with n =
3000 and k = 30 (average degree)

— “noisy heart“ : a k-nearest neighbour graph obtained from
n = 4096 points sampled from the parametric surface x =
sin(θ) cos(φ), sin(θ)y = sin(φ)(1 + exp(−0.1θ)), z =
cos(θ)(0.1 + θ) for θ ∈ [0, π], φ ∈ [0, 2π]. We added a small
random Gaussian offset to each point, and the surface looks
heart-shaped when plotted, hence the name.

Results are shown in Fig. 1. We plot run-time as a function of s(q), to
ease comparison across graphs. Our method is competitive compared
to a direct solver for a range of values of q. Iterative methods make a
relatively poor showing here, but they are expected to scale better with
n. Also, we need to solve for several right-hand sides, and block CG
methods may be more appropriate [15]. Finally, we have also checked
that our algorithm scales to very large graphs. On a Barabasi-Albert
random graph of size n = 1, 000, 000 and 40 links per node, running
our algorithm even at low q = 6 ·10−3 (corresponding to s(q) ≈ 100)
takes a very reasonable 1/5 sec per realisation.

4 Discussion
Random forests on graphs lead to simple estimators for inverse

traces of diagonally dominant matrices, and we find good practical
performance. The small memory footprint is especially notable (all
quantities stored scale inO(n)). There are also several promising ave-
nues for improvement. In many scenarios, what is needed is to eva-
luate s(q) for a range of values of q, and the “coupled forests” algo-
rithm of [3] can be use to directly estimate s(q) over a range much

8. https ://juliamath.github.io/IterativeSolvers.jl/dev/

julialang.org
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FIGURE 1 – Runtime of the proposed method (“rf”) compared to alternatives, on 5 graphs. See text for details.

more cheaply than by running independent forests for a grid of va-
lues. The method can also be extended to estimate the values on the
diagonal of (L + qI)−1, a refinement we will describe in future work.
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report, 1987.

[10] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The
elements of statistical learning. Springer, 2009.

[11] Timothy Hunter, Ahmed El Alaoui, and Alexandre Bayen. Com-
puting the log-determinant of symmetric, diagonally dominant
matrices in near-linear time. arXiv preprint arXiv :1408.1693,
2014.

[12] Michael F Hutchinson. A stochastic estimator of the trace of the
influence matrix for laplacian smoothing splines. Communica-
tions in Statistics-Simulation and Computation, 19(2) :433–450,
1990.

[13] Jonathan A Kelner, Lorenzo Orecchia, Aaron Sidford, and
Zeyuan Allen Zhu. A simple, combinatorial algorithm for sol-
ving sdd systems in nearly-linear time. In Proceedings of the
forty-fifth annual ACM symposium on Theory of computing,
pages 911–920. ACM, 2013.

[14] Michael W Mahoney et al. Randomized algorithms for ma-
trices and data. Foundations and Trends R© in Machine Learning,
3(2) :123–224, 2011.

[15] Dianne P O’Leary. The block conjugate gradient algorithm and
related methods. Linear algebra and its applications, 29 :293–
322, 1980.

[16] Havard Rue and Leonhard Held. Gaussian Markov random
fields : theory and applications. Chapman and Hall/CRC, 2005.
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