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Résumé – Dans ce papier nous étudions la détection et la reconstruction des signaux d’arcs électriques reçus par un capteur de surveillance d’un
réseau de panneaux photovoltaı̈ques. Un des problèmes de ces capteurs est la perte éventuelle des données qui peut être due aux aléas de fabri-
cation mais aussi au niveau variable des perturbations entre les sources des arcs et le capteur acoustique. Pour compenser ces pertes de données,
nous proposons un algorithme simple basé sur le concept compressive sensing. Ce concept est appliqué dans le domaine de représentation
temps-fréquence. Pour la reconstruction nous utilisons la S-method pour améliorer la localisation de la source d’arcs électriques.

Abstract – In this paper, we analyze the detection and reconstruction of the electric arc received at a sensor while surveilling photovoltaic
power systems. We assume that an acoustic signal was transmitted, and, due to some failure in the system, it is received with some missing
measurements. The missing measurements can be for various reasons, like having malfunctions on the sensor or the distance between the
transmitter and receiver is large. A simple yet effective compressive sensing (CS) algorithm was used for the reconstruction of the missing
measurements for a better localization of the electric arc. The basic time-frequency representation, the short-time Fourier transform (STFT), will
be used as the analyzed transformation domain. After reconstruction, the S-method is applied on the obtained STFT for a better localization of
the source.

1 Introduction

The electrical power systems must be continuously supervi-
sed in order to be aware of the environment and analyze the
electrical faults. The energy demand is growing, so the need of
an increased production, together with an extended distribution
system, is a problem concerning the energetic field all over the
world. These demands make photovoltaic systems very useful.

One of the major problems are the arc faults that appear in
the photovoltaic systems. Over the years, the demand of pho-
tovoltaic power systems is growing. To be able to isolate the
electrical faults that appear in these systems, it is crucial to de-
tect and localize them correctly. These faults are very sensitive
problems and must be surveilled permanently to keep the sys-
tem safe [1–5]. Because the faults appear in the system very
often, the need for surveilling the system, as well as detecting,
localizing and limiting the faults, are of major concern for the
entire energetic system.

The signals could be located within much smaller regions
using appropriate time-frequency representations [6–8]. The ba-
sic representation in time-frequency analysis is the short-time
Fourier transform (STFT), which will be used in this paper. If
the time-frequency (TF) domain consists of only few compo-
nents which are nonzero, compared to the total number of co-
efficients, then the signal is said to be sparse in the TF domain.
Following compressive sensing (CS) framework, a signal that
is sparse in a certain domain can be reconstructed from a redu-

ced set of measurements (signal samples) than it is required by
the standard sampling theorem [9–13].

The reduced set of measurements occurs for various reasons.
It can be the desired sampling technique or it can also be a hard-
ware constraint, that will produce the signal with some highly
corrupted measurements, which are better omitted for the cal-
culations. Since the idea of CS considers the acquisition of the
signal, it can be used in many everyday areas. In this paper,
we will analyze the detection and reconstruction of the recei-
ved electric arc by using the CS theory. We assume a hardware
problem in the case of a malfunctioned sensor, which will pro-
duce a signal with missing measurements. Another reason for
the effect of missing measurements is in having a sensor that is
far away, so that the signal is not received accurately.

In the signal processing sense, the electric arcs are transient
signals (that occur as dielectrical breakdowns). It is well known
that the time-scale analysis is a very powerful tool in detec-
ting transient signals [2]. Also, the recurrence plot analysis was
shown as an interesting tool for partial discharge detection and
localization [3]. In this paper, we will focus on improving the
time-frequency analysis in the CS sense, which will improve
the overall performance in a non-ideal environment.

The paper is organized as follows. Section 2 briefly describes
the theory of compressive sensing, Section 3 presents the me-
thod used for recovery, and in Section 4 results are shown. Sec-
tion 5 concludes the paper.



2 Compressive Sensing Background
Consider a general form of a non-stationary multicomponent

signal x(n). We will assume that the signal is sparse in the
short-time Fourier transform (STFT) domain, as it is the mostly
used time-frequency representations domain. The STFT of a
discrete-time signal is

STFT (n, k) =

N/2−1∑
m=−N/2

x(n+m)w(m)e−j
2π
N mk (1)

at a time instant n and a frequency k. In the vector form, the
STFT of the signal is

SN (n) = [STFT (n, 0), STFT (n, 1), . . . , STFT (n,N−1)]T .

In this paper, the window function w(m) of length N is assu-
med to be a Hamming window described by

w(m) =
1 + cos (2πm/N))

2
. (2)

With a proper window overlapping, the recovery of the whole
signal, based on the STFT is straightforwardly done [6–8]. A
K-sparse windowed signal x(n,m) = x(n +m)w(m) has K
non-zero components in the STFT domain, i.e.

x(n,m) =

K∑
i=1

Ai(n)e
j2πmki/N . (3)

According to the compressive sensing theory, if a signal is
said to beK-sparse in a transformation domain (in our case the
STFT domain), it can be reconstructed by a reduced set of NA
measurements [9–12], where K � NA < N . For a given n,
the available signal samples are at the positions n +m ∈ NA,
where NA = {n+m1, n+m2, ..., n+mNA}.

The available samples of the windowed signal are

yn = [x(n+m1)w(m1), ..., x(n+mNA)w(mNA)]
T (4)

or in a matrix form

yn = ASN (n), (5)

where A is the partial inverse DFT matrix which corresponds
to the positions of the available samples

A =


ψ0(m1) ψ1(m1) · · · ψN−1(m1)
ψ0(m2) ψ1(m2) · · · ψN−1(m2)

...
...

. . .
...

ψ0(mNA) ψ1(mNA) · · · ψN−1(mNA)

 (6)

with coefficients

ψk(m) =
1

N
ej2πmk/N . (7)

The main goal of compressive sensing is to reconstruct the
missing samples of the received sparse signal from the avai-
lable samples, by minimizing its sparsity

min ‖SN (n)‖0 subject to yn = ASN (n). (8)

The problem (8) is more theoretical because it is very sensi-
tive to noise and computationally not feasible. That is why, in
practice, the closest convex form is used as the general expres-
sion for the CS formulation as

min ‖SN (n)‖1 subject to yn = ASN (n). (9)

In most practical cases, according to [11], the solutions from
(8) and (9) are the same. In recent years, many solutions to
this problem were derived. In this paper, we will use a simple
and effective method, based on estimation of the positions of
nonzero components and calculating the unknown signal am-
plitudes based on the known samples.

3 Reconstruction Algorithm
The initial step of the reconstruction is in calculating the

STFT using the available samples

SN0(n, k) =

NA∑
i=1

x(n+mi)w(mi)e
−j 2π

N mik (10)

SN0(n) = NAHyn (11)

where H is the Hermitian transpose.
From the initial estimate, we can find the position of the lar-

gest component as

k1 = argmax{SN0}. (12)

Then, matrix A1 is formed from matrix A from (6) by omit-
ting all rows except the row corresponding to the found position
k1. The first STFT reconstruction estimate is found as

SN1(n) = (AH
1 A1)

−1AH
1 yn. (13)

The signal is reconstructed and subtracted from the original si-
gnal at that position

yn1 = yn − yr1 (14)

where yr1 is the reconstructed signal from (13).
The reconstruction is implemented in an iterative way, repea-

ting the previous steps [13, 14]. The STFT is calculated again
with the signal (14) and its maximum position is found at k2.
A new set of positions of components K = {k1, k2} is formed
with the corresponding matrix A2. The new estimate SN2(n)
is calculated and the signal yr2 is reconstructed and subtracted.
The procedure is repeated K times with the last iteration being

SNR(n) = (AH
KAK)−1AH

Kyn. (15)

where AK is now a K ×NA matrix, with columns correspon-
ding to the found positions, i.e.

A =


ψk1(m1) ψk2(m1) · · · ψkK (m1)
ψk1(m2) ψk2(m2) · · · ψkK (m2)

...
...

. . .
...

ψk1(mNA) ψk2(mNA) · · · ψkK (mNA)

 . (16)

The reconstructed signal STFT is SNR(n).



FIGURE 1 – Set-up configuration : experimental (a) ; imple-
mentation (b)

TABLE 1 – PSNR results for various sparsity levels

K 1 3 5 7 9 11

PSNR [dB] 21.33 26.11 31.30 33.02 33.40 33.71

This method is then applied this reconstruction of the signal
with missing samples, for an easier localization of the electric
arcs, presented in the next section.

4 Results
We will analyze the electric arc received at a detector compo-

sed of four acoustic sensors. The set-up of the sensors is shown
in Fig. 1. The nearest sensor (sensor 1) is taken as the refe-
rence, since it has the greatest signal-to-noise ratio (SNR). The
arc received at sensor 1 (the reference sensor) is shown in Fig.
2 (top). The original arc received at sensor 2 is shown in Fig. 2
(bottom).

When assumed that the sensor 2 is malfunctioning, the signal
received is shown in Fig. 3 (top). It is noticeable that the mis-
sing measurements destroy the time-frequency representation
and that the arc is hard to follow. Using the algorithm mentio-
ned in Section 3, the arc from Fig. 3 (top) is reconstructed. The
recovered arc is presented in Fig. 3 (bottom).

4.1 Error calculation
We use the peak signal-to-noise ratio (PSNR)

PSNRdB(Io, IR) = 10 log10

( 1

mean
(
|Io − IR|2

)) (17)

for a quantitative comparison between the signals. The values
Io and IR present normalized reference signal and normali-
zed considered signal, respectively. Assuming that half of the
samples are missing, we calculate the PSNR between the recei-
ved STFT and the reconstructed STFT at sensor 2. The results
for various sparsity levels are given in Table 1. We can see that
K = 7 is enough for a successful reconstruction, since the re-
construction performance does not change significantly.
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FIGURE 2 – STFTs of the received signals at : sensor 1 (top)
and sensor 2 (bottom)

4.2 S-method representation

For an improved concentration, time-frequency analysis using
the S-method representation domain will be used. For the S-
method, we need the short-time Fourier transform (STFT) of
signal. The S-method is calculated as [8]

SM(k, n) =

L∑
p=−L

STFT (n, k+ p)STFT ∗(n, k− p), (18)

where 2L+ 1 is the window width, which, in our case, is L =
15. For the comparison, the recovered STFT is presented in
Fig. 4 (top) and the S-method of the recovered signal is shown
in Fig. 4 (bottom).

5 Conclusions

In this paper, the reconstruction of a signal received at a mal-
functioned sensor is considered for an easier detection of the
electric arc. It is assumed that a transmitted acoustic signal is
received with some missing measurements. A simple and ef-
fective compressive sensing algorithm was used for the recons-
truction. The signal is analyzed using the time-frequency STFT
representation domain as the basic representation. Also, the re-
construction is smoothed with the S-method for improving the
localization of the source.
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FIGURE 3 – Malfunctioned (top) and reconstructed (bottom)
STFT at sensor 2

20 40 60 80 100 120

50

100

150

200

20 40 60 80 100 120

50

100

150

200

FIGURE 4 – Reconstructed STFT (top) and S-method (bottom)

In future work, some aspects of the localization and the clas-
sification of the source of electric arc failure will be analyzed.
The localization can be potentially improved by improving the
compressive sensing algorithms. Also, more robust compres-
sive sensing theory can be applied on these signals.
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[8] L. Stanković, M. Daković, and T. Thayaparan, Time-Frequency
Signal Analysis with Applications. Artech House, Boston, USA,
2013.

[9] E.J. Candès, and M.B. Wakin, “An introduction to compressive
sampling,” IEEE Sig. Proc. Magazine, vol. 21, no. 2, pp. 21–30,
March 2008.

[10] D.L. Donoho, “Compressed sensing,” IEEE Trans. on Inf.
Theory, vol. 52, no. 4, pp. 1289–1306, April 2006.

[11] E. J. Candes, J. Romberg, T. Tao, “Robust uncertainty prin-
ciples : exact signal reconstruction from highly incomplete fre-
quency information,” IEEE Trans. on Inf. Theory, vol. 52, no. 2,
pp. 489 ?509, February 2006.

[12] P. Flandrin, and P. Borgnat, “Time-frequency energy distribu-
tions meet compressed sensing,” IEEE Trans. on Sig. Proc., vol.
58, no. 6, pp. 2974–2982, June 2010.

[13] D. Needell, and J.A. Tropp, “CoSaMP : Iterative signal recovery
from incomplete and inaccurate samples,” Applied and Compu-
tational Harmonic Analysis, vol. 20, no. 3, pp. 301–321, May
2009.
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