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Résumé – Cet article présente une nouvelle méthode de décomposition des signaux à l’aide d’un modèle d’apprentissage non supervisée: la
Machine de Boltzmann Restreinte continue (cRBM) basée sur la structure des réseaux de diffusion. Une application pour la détection des pics
d’amplitude de tension enregistrée dans une région profonde du cerveau est également présentée.

Abstract – This article presents a new method of decomposition of signals with an unsupervised training model: the continuous Restricted
Boltzmann Machine (cRBM) based on the structure of the Diffusion Network. An application for the detection of High-Voltage Spindle (HVS)
in signals recorded in the brain is also presented.

Introduction

The Parkinson’s Disease (PD) is a progressive neurodege-
nerative disease. The depletion of the dopamine in the basal
ganglia network leads to several symptoms like rigidity, pos-
ture instability, slow motion or pain for example. Applying
an electronic periodic signal to the subthalamic nucleus in the
deep brain is an efficient treatment for advanced PD patient.
However open-loop Deep Brain Stimulation (DBS) leads to
side effects like psychiatric ones. Another consequence of ap-
plying permanently the DBS is the need to replace batteries
which requires surgery. Recent studies show that the arrival
of symptoms can be predicted by detecting the presence of
High-Voltage Spindles (HVS) (see Fig.1b) in Local Field Po-
tentials (LFPs) [3]. The HVS are synchronous spike-and-wave
patterns oscillating in the 5-13 Hz frequency band. Suppres-
sing HVS signals is found useful for delaying the progress of
PD and deleting symptoms.

The detection of the HVS is a challenging problem for two
reasons. First, symptoms of the PD appear some milliseconds
after the first HVS. Second, PD is a progressive disease : si-
gnals depend on the patient, on the location of recording probes
or on the advanced state of the disease. A fast and robust model
capable to learn automatically from the data on real time is then
required. A previous work on Gaussian Process leads to satis-
fying results [6]. However, the absence of ground truth for the
training step makes results highly variable among individuals
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due to major differences in signals recording between different
people. In this article, we focus on an unsupervised graphical
model, the Boltzmann Machine.

(a) PD rat with a neural prostheses (b) HVS : Temporal representation

FIGURE 1 – Signals recorded in LFPs. Fig.1a is a PD rat with
an implant for recording signals and apply DBS. Fig.1b plots
a brain signal. The HVS is located between 2.5 and 5 seconds.
it is characterized by a fundamental frequency between 5 and
13 Hz.

The seminal works of Hopfield [4] lead to the emergence of a
large family of models, in particular to the Boltzmann Machine
[9] and to the Diffusion Network (DN), a continuous stochas-
tic neural network, studied by Movellan [5]. Chen and Murray
[1, 2] first proposed a continuous Restricted Boltzmann Ma-
chine (cRBM) architecture based on the DN and its VLSI im-
plementation. The cRBM is used in this paper for the first time
for signal decomposition. The paper is organized as follows.
Section 1 presents the principles of the DN and the cRBM. The
convergence properties of the cRBM for the signal decomposi-



tion is detailed in section 2. Finally, we discuss about the ap-
plication of the detection of HVS using the cRBM.

1 Principles of the Diffusion Network

1.1 Diffusion Network
The DN is a continuous stochastic model described by a Sto-

chastic Differential Equation (SDE) [5]. The aim of the DN is
to model the dynamic dependencies between signals. We note
X(t) = (x1(t), . . . , xn(t))T the signal at instant t, where T is
the transpose operator. For all neurons j, the SDE is given by :

dxj(t) = µj(X(t))dt+ σdBj(t). (1)

The first term in the right member of Eq.1 is the drift term and
the second term is the diffusion term. dBj(t) is a Brownian
motion and σ is the noise standard deviation. Training the DN
consists to find the parameters of the drift µj(.). The formula-
tion of the drift term of neuron j is :

µj(X(t)) = κj

(
−ρjxj(t) + ξj +

n∑
i=1

Wijφi(xi(t))

)
(2)

(a) Neuron response. (b) Regularization of noise.

FIGURE 2 – Influences of the parameters ai. Fig.2a displays the
activation between -1 and 1 for three different values of ai. The
bigger/smaller ai is, the more the neuron will have a binary
behavior. In Fig.2b, the two schemes describe how the noise
influences the state of the neuron. At a time instant t, xi(t) is a
Gaussian random variable centered in µi(X(t)) with a variance
σ (see Eq.1). On the left figure, ai has a low value, the slope of
the function is almost horizontal. The dispersion of the noise is
"squeezed" and the state of the neuron is almost deterministic.
If ai is high like on the right scheme, the slope of the function
is almost vertical and the neuron state is stretched.

In Eq.2 κj , ρj , ξj and φi(xj) are resp. the inverse capaci-
tance, the inverse resistor, the bias and the state of the neuron
j. Wij is the weight between input i and neuron j. φj is a sig-
moïd function (see Fig.2a).

sj = φj(xj) = θL + (θH − θL)
1

1 + exp(−ajxj)
(3)

θL and θH are respectively the lower and the upper bounds
of the function and aj is the slope parameter of the activation
function. The influences of the parameter aj are double as illus-
trated in Fig.2.

1.2 Continuous Restricted Boltzmann Machine
In a cRBM [1] using the structure of neurons of a DN, we

suppose we have the following equality for all the neurons
ρiκi∆t = 1. Links in a cRBM are symmetric and there are
no connection between neurons in the same layer. The struc-
ture of the neuron j is given in Fig.3. Each input is weighted
and summed with a bias. The added noise in the neuron struc-
ture explains the stochastic behavior of the model and helps the
cRBM to not fall in a local minimum during the training step.

FIGURE 3 – Structure of the neuron j of a cRBM. The ex-
pression of the activation function φj(xj) is given in Eq.3.
W = {Wij} is the transfer matrix and ξ = {ξi} is the bias
vector.

The energy function of the cRBM is the same as the energy
function of the Hopfield Network [4], i.e.

EcRBM (s = {v,h}) = −hTWv − vT ξv − hT ξh

+
∑

i

∫ si

0

φ−1i (s′)ds′
(4)

where h, v are resp. the hidden and the visible unit values.
The continuous integration term φ−1i between 0 and si in Eq.
4 makes sense only if 0 is in the range of variation of the
neurons. The lower bound 0 in the integral term ensures that
EcRBM (0) = 0. Note that the bounds θL and θH can be dif-
ferent between layers. We choose specific bounds for visible
units to force neurons to cover the range of variation. Lear-
ning the cRBM consists to estimate the set of parameters λ =
{Wij , ξi, ai} which maximize the log-likelihood :

L(λ) =
∑
v,h

logPcRBM (v,h) =
∑
v,h

−EcRBM (v,h)+c (5)

c being a constant. Contrastive Divergence rule proposed by
Hinton [9] is used to train the cRBM. The update law for the
transfer matrix and the bias remains the same as the RBM. The
update rules for the weights and the activation function para-
meters are :

∆Wij ∼< sisj >0 − < sisj >1

∆ξi ∼< si >0 − < si >1

∆ai ∼
1

ai

∫ <si>0

<si>1

φ−1i (s′)ds′
(6)

with< . >0 the expected value over the training set and< . >1

the expected value after one step of Gibbs Sampling.



2 Unsupervised signal decomposition
Suppose a short time window v = (v(t1), . . . , v(tm))T .

In a cRBM composed of n hidden neurons bounded between
θH = +θ and θL = −θ, we note hi, the i−th component of
the hidden layer defined as hi = φi(xi) where xi ∼ N (zi, σ))
with :

zi = ξhi +

m∑
j=1

Wijv(tj) (7)

Let Wi the i−th line vector of the transfer matrix W . Wi

can be seen as a temporal vector Wij = Wi(tj). For a signal
without offset the hidden bias vector ξh tends to zeros during
the training and zi becomes :

zi =

m∑
j=1

Wi(tj)v(tj) = ΓWiv(0) (8)

The sum over i of the correlation function ΓWiv is also present
in the energy function :

−hTWv = −
n∑

i=1

hizi = −
n∑

i=1

hiΓWiv(0) (9)

The hidden units hi are bounded. Then the log-likelihood L
(Eq.5) requires to maximize all the zi. zi is a scalar product,
the Cauchy–Schwartz inequality tell us :

zi = Wiv ≤ ‖Wi‖ × ‖v‖ (10)

The equality between the visible units and the line vector of
transfer matrix are co-linear, i.e. WT

i = αv. Intuitively, we
could think the components of W will continuously augment
during the learning because the bigger α is, the more the cross-
correlation increases and the energy decreases. But forα→∞,
hidden and visible unit values become binary which makes the
model unable to reconstruct data.

The learning step of the cRBM in Eq.6 captures success-
fully the frequencies of the signal. Unfortunately, the phase ψ
of the visible layer with vector Wi changes when we shift the
visible layer in time : Wi and v can be correlated (ψ = 0),
non-correlated (|ψ| = π/2) or anti-correlated (|ψ| = π). Eq.11
gives the interpretation of the variation of hi in function of ψ : hi → +θ if ψ → 0

hi → −θ if |ψ| → π
hi → 0 if |ψ| → π/2

(11)

For a given short time window v, each hidden units hi gives
an expected image of the correlation between the visible layer
and the i−th line of the transfer matrix ΓWiv(0). The product
hiΓWiv(0) tends to stay positive and to decrease the energy ac-
cording to Eq.9. In the non-correlated case (ΓWiv(0) = 0), the
energy component of the i−th hidden unit is set back to zero.
Fig.4 gives the evolution in time of the energy term hTWv for
a cRBM trained with a sinusoidal signal. The upper plot is the
original signal, the three last ones are the hTWv terms with,
resp. 1 ≤ n ≤ 3 hidden units. We note for a cRBM with two

or three hidden units, all hidden neurons capture the same fre-
quency but with a delay of π/2 and π/3 for the cRBM with
resp. two and then three hidden units. The introduced delay
between hidden units allows the cRBM to keep the energy as
stable as possible.

FIGURE 4 – Variation of the term hTWv in function of the
time for a 50Hz signal. Results for three cRBMs with respecti-
vely 1,2 and 3 hidden unit(s).

Once the cRBM is trained, weights of the transfer matrix
capture the principle components of signals. Multiple hidden
units allow to reconstruct learned frequencies with the corres-
ponding phase and intensity.

3 Experiment
In this section, we use the cRBM model to detect the HVS

in LFPs. The process of data extraction is described in Vigne-
ron et al. [8]. The LFPs were recorded from 4 or 8 different
brain regions. Several sessions of 60s with 1 kHz sampling rate
were recorded on PD rats. The data were then standardized by
subtracting the mean and dividing by the standard deviation of
each channel.

We defined a ground truth only for the result evaluation.
The presence of HVS is characterized by a burst of spike-and-
wave patterns with a fundamental frequency between 5 and
13 Hz. The cosine wavelet transform (CWT) is computed for
each channel. HVS is detected from the sum of the CWT co-
efficients between 5 and 13 Hz (see Fig.5a) and it is simulta-
neously present on at least ¾ of all channels.

The first stage consists to train the cRBM with 6 hidden
units : at each iteration, a short time window is randomly selec-
ted to update the parameters. Choosing a 200 ms windows with
20 ms between each observation as visible units of the cRBM is
sufficient to capture the fundamental frequency and first’s har-
monics of the HVS. The non-stationary offsets are removed by
centering each visible neurons. Once the model is trained, we



(a) Ground truth. (b) cRBM classification.

FIGURE 5 – HVS detection (zoom 20s-40s). Top) First channel
signal is represented in blue on the top figures. Bottom) The
sum over 5-13 Hz band of the cosine wavelet transform coeffi-
cients is plotted in blue on the bottom left while the evolution
term hTWv in time is given on the bottom right in blue. The
red horizontal lines are thresholds for the detection of HVS de-
fined by Otsu’s method.

compute the hTWv term (Fig.5b) and apply Otsu’s method to
define a threshold. On the testing set, we use a hysteresis filter
to cancel the noise during the transition between the two states
of the signal (±50% of the threshold). This method is applied
to all PD rats and provides the results given in Tab.1.

4 Discussion

The cRBM successfully learns a representation of deep cor-
tical signals. For most rats the sensitivity of the detection is
close to 1, i.e. we (almost) never miss the HVS pattern. For
some patient, cRBM model successfully detects HVS before
the ground truth ; the decrease of the specificity means a faster
detection of the HVS. The quality of data can be very different
from a rat to an other due to the signal-to-noise ratio per chan-
nel or the presence of HVS. Our ground truth definition may be
too simple to evaluate properly the models. A comparison with
more robust methods like in [7] may be fruitful. Properties of
the cRBM provide various advantages and possible approaches
of improvement are currently available. The cRBM is an unsu-
pervised generative model capable to learn optimal frequencies
to be detected and can be used as a predictor. The cRBM can
extract non-correlated components but the separability depends
on the data. A study of the architecture of the model is required
to help hidden units to extract different components. To remove
the time lag introduced by the use of an observation window,
working directly on the Diffusion Network is another possible
path of improvement.
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