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Résumé – Dans un contexte de télédétection radar active de la surface de la mer, on peut représenter le signal rétrodiffusé (clutter de mer) par un
processus aléatoire en raison de son imprédictabilité. Un modèle récemment développé et paramétré par trois constantes A, B et α, représente le
clutter de mer comme solution d’équations différentielles stochastiques. Nous expliquons comment la volatilité intégrée d’une série temporelle
observée peut être définie et utilisée pour l’estimation de paramètres. Nous proposons des estimateurs basés sur la volatilité intégrée pour A et
B. Des simulations sont menées pour évaluer la capacité des estimateurs à retrouver les vrais paramètres en comparaison avec l’estimateur du
maximum de vraisemblance. Leurs performances sont similaires, mais le gain de simplicité à utiliser l’estimateur basé sur la volatilité plutôt que
le maximum de vraisemblance est substantiel.

Abstract – In the context of radar remote sensing of the sea surface, one can represent the backscattered signal (sea clutter) by a random
process due to its unpredictable dynamics. A recently developed model with three parameters, A, B and α, represents the sea clutter as a solution
to stochastic differential equations. We explain how the volatility of observed time series can be defined and used for parameter estimation.
Estimators based on the observed integrated volatility are proposed for A and B. Numerical experiments are carried out to assess the ability
of the volatility-based estimators to retrieve the right values of the parameters, in comparison with maximum likelihood (ML) estimators. Both
have similar performance, but the gain in simplicity by using volatility-based estimation instead of ML is substantial.

1 Introduction
When radar waves are emitted toward the sea surface and scat-
tered back to the sensor, the return signal, called sea clutter,
is known to be highly dynamic and unpredictable if the illumi-
nated surface is large enough. Yet, it is important for maritime
surveillance concerns, or oceanography, to know how the sea
surface scatters radar waves. Statistical models have long be
proposed to enable inference about the sea clutter. The random
walk model [1], for example, expresses the sea clutter as a sum
of contributions over a population of scatterers and derives the
distributions (probability densities) of some observable quan-
tities (e.g. the K distribution for the intensity). Nevertheless,
the random walk model is static, in the sense that though the
distributions are valid for all t, the precise dynamics between
two times t1 and t2 are not solved and independence is usu-
ally assumed. Field’s model [2] solves this issue by general-
izing the random walk model and expressing the sea clutter
with stochastic differential equations (SDE). The sea clutter be-
comes a stochastic process with the Markov property. The three
parameters of the model, A, B and α, have been estimated in
[3]. We focus here on A and B since they are really character-
istic of Field’s model. In [3], analytical expressions for the es-
timators were obtained by using maximum likelihood (ML) es-
timation with Euler-Maruyama’s approximations for the tran-

sition probabilities. In this paper, we propose a much simpler
approach based on volatility to estimate A and B. Section 2
briefly introduces Field’s model of SDE. In section 3, volatility
estimation is briefly explained and applied to Field’s model to
derive estimators for A and B. Using numerical experiments,
the performances of our new volatility-based estimators are as-
sessed and compared to the ML estimators in section 4. Section
5 concludes.

2 Field’s model
Field’s model for the sea clutter is based on the random walk
model which represents the complex reflectivity (clutter) as a
sum of contributions over a population of independent scatter-
ers. It can be shown that under some assumptions (see [1] and
[4]), if Ψt is the complex reflectivity at time t, then the inten-
sity:

zt = |Ψt|2 (1)

follows the K-distribution. The main weakness of the random
walk model is the absence of dynamics: the relation between
two quantities at different times t1 and t2 is not solved. [2]
starts from the random walk model but adds additional hy-
potheses and derives SDEs for the clutter. The stationary dis-
tribution of the intensity zt is still the K-distribution, but in



addition the temporal structure of the processes is modeled.
Field’s model adds two hypotheses to the random walk model.

First the dynamics of the phase φ(n)
t of the complex reflectivity

of the n-th scatterer is modeled by the SDE:

dφ
(n)
t = B1/2dW

(n)
t (2)

where B is a positive constant and the W (n)
t are independent

brownian motions. Second, it is assumed that the number of
scatterers Nt is a linear Birth-Death-Immigration population
model. Under such hypotheses, [2] shows that the normalized
reflectivity Ψ

(cl)
t of the random medium (e.g. the sea surface)

can be expressed as the product:
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1/2
t γt = x
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where xt, γ
(R)
t and γ(I)

t solve the following stochastic differ-
ential equations ([2], chapter 8):
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W
(x)
t ,W

(R)
t ,W

(I)
t are 3 independent Brownian motions. xt is

called radar cross section (RCS) and in Field’s model, it rep-
resents the normalized continuous limit of Nt for large popu-
lation of scatterers. It is the local power of the signal. γt is
the complex-valued speckle expressed with its real and imag-
inary parts γ(R)

t and γ(I)
t . A and B are homogeneous to the

inverse of time (i.e. a frequency). A can be understood as the
inverse of a decorrelation time for the RCS, and B as the in-
verse of a decorrelation time for the speckle. From radar data,
we know that the speckle variation timescale is 10 ms while the
RCS variation timescale is about 1 s [5], [6]. Therefore, the
corresponding orders of magnitude of A and B are A = 1 Hz
and B = 100 Hz. α is dimensionless and its value typically
ranges from 0.1 to +∞ ([4] p 110-111). For a general random
medium, it always holds that:

A � B. (5)

We understand that two timescales are involved: the slow pro-
cess xt modulates the fast process γt (see figure 1).

The SDEs in (4) are 1D SDEs. For readers unfamiliar with
SDE, it is convenient to introduce Euler-Maruyama’s scheme
(EM scheme). An arbitrary 1D SDE reads:

dXt = µ(Xt)dt+ σ(Xt)dWt (6)

Where µ and σ are respectively called the drift and volatility.
The EM scheme applied between times t and t+ ∆t (∆t being
small) is:

Xt+∆t = Xt + µ(Xt)∆t+ σ(Xt)(Wt+∆t −Wt). (7)

The increment of X between t and t + ∆t is the sum of a
term proportional to ∆t (deterministic part) and a term pro-
portional to the increment of the Brownian motion ∆Wt =

FIG. 1: Illustration of the two timescales of the reflectivity
Ψt = x

1/2
t γt. xt evolves slowly due to its large decorrela-

tion time 1/A ≈ 1 s and γt evolves quickly due to its low
decorrelation time 1/B ≈ 10−2 s.

Wt+∆t −Wt. This increment is a Gaussian random variable
with lawN (0,∆t). A key property of Brownian motions is that
two Brownian increments over disjoint intervals, for example
Wt+∆t −Wt and Wt −Wt−∆t, are independent.

3 Estimation of A and B
3.1 Basics of volatility estimation
Let us consider an interval [0, T ] and its subdivision into n

pieces t(n)
i = iTn . We define the quadratic variation of a 1D

process Xt as:

〈X〉t = lim
n→+∞

n−1∑
k=0

(Xtk+1
−Xtk)2. (8)

where the limit is taken in probability. The quadratic variation
of a 1D Brownian motion Wt is 〈W 〉t = t. If Xt solves the
SDE (6) (taken as 1D), then it is known that (see for example
[7]):

〈X〉t = IVt =

∫ t

0

σ2(Xr)dr. (9)

This means that:

RV nt :=

n−1∑
k=0

(Xtk+1
−Xtk)2 n→+∞−−−−−→ IVt =

∫ t

0

σ2(Xr)dr.

(10)
RV nt is called realized volatility and the last line says it is a
consistent estimator of the integrated volatility IVt. We even
have a central limit theorem

(n/t)1/2(RV nt − IVt)
d−→N(0, AV ARt) (11)

with rate of convergence n1/2 and asymptotic variance

AV ARt = 2

∫ t

0

σ4(Xr)dr (12)



(Theorem 6.1 of [8]). This can be used to obtain a confidence
interval Int such that P(IVt /∈ Int ) = α for α > 0, i.e. Int
contains IVt with probability 1 − α (Equation (6.12) of [8]).
If zα is such that P(|N(0, 1)| > zα) = α, then this holds for
Int = [RVt − an, RVt + an], where

an = zα

√√√√2

3

n−1∑
k=0

(Xtk+1
−Xtk)4. (13)

In practice, if one observes a discrete time trajectory of Xt:
{Xti , t0 ≤ t1 ≤ · · · ≤ tn}, one can compute RV nt , state
that it is close to IVt, and use this for parameter estimation as
illustrated in section 3.

Equation (9) is often written first in differential notations,
i.e.:

d〈X〉t = σ2(Xt)dt, (14)

and is then written in integral form.

3.2 Estimation of A
We know from equation (4) that:

dxt = A(1− xt)dt+

(
2
A
α
xt

) 1
2

dW
(x)
t . (15)

The differential of the quadratic variation of xt is:

d〈x〉t = 2
A
α
xtdt, (16)

which implies

〈x〉t =

∫ t

0

2
A
α
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Since n∑
k=1

(xtk − xtk−1
)2

is an estimator of 〈x〉t and
n∑
k=1

2
A
α
xtk∆t

is an estimator of
∫ t

0
2Aα xrdr, we have the following estimator

for A:
Ã =

α
∑n
k=1(xtk − xtk−1

)2

2∆t
∑n
k=1 xtk

. (18)

3.3 Estimation of B
We know from equation (4) that:
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t dt+
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2
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t . (19)

The differential of the quadratic variation of γ(R)
t is:

d〈γ(R)〉t =
B
2

dt, (20)

which implies
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∫ t

0

B
2
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2

= Bn∆t

2
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Since
∑n
k=1(γ

(R)
tk
−γ(R)

tk−1
)2 is an estimator of 〈γ(R)〉t, we have

the following estimator for B:

B̃ =
2

n∆t

n∑
k=1

(γ
(R)
tk
− γ(R)

tk−1
)2. (22)

The same procedure can be applied independently to γ(I)
t .

4 Numerical experiments
To assess the performance of the volatility-based estimators for
A and B in realistic configurations, we conduct numerical ex-
periments. We set values for the parameters A and B, simulate
many trajectories of xt, γ

(R)
t , and γ(I)

t , and estimate A and B
for each trajectory. We set α = 1 in all the simulations.

For each value of A in the interval [0.1, 10] Hz (with a step
of 0.1 Hz), we generate N = 1000 trajectories of xt using
Milstein’s scheme (see [9]) with some timestep ∆̂t and a du-
ration of 1 s. The time series are then downsampled to some
‘observation’ timestep ∆t. A realistic observation timestep is
∆t = 10−3 s, which is the order of magnitude of the Pulse
Repetition Frequency of radars but 10−4 s is also achievable.
We systematically test these 2 values of ∆t to observe how the
estimation performance goes as ∆t is reduced.

We simulate N trajectories {x̃(i), i = 0, 1, . . . , N} of xt.
For all i, x̃(i) = {x̃(i)

k , k = 1, 2 . . . , n}. The observations are
at times tk with constant timestep ∆t = tk−tk−1. For each tra-
jectory x̃(i), A is estimated with formula (18). The estimation
bias b(A) and standard deviation σ(A) are calculated from the
estimations Ã1, Ã2, . . . , ÃN . For comparison, the same pro-
cedure is carried out with ML estimation, where the transition
probabilities are approximated by Gaussian random variables
according to Euler-Maruyama scheme. This approach was pro-
posed in [3].

The same approach is carried out with B, except that now we
explore the interval [10, 1000] Hz with a step of 10 Hz. For B,
we simulate N trajectories {γ̃(i), i = 0, 1, . . . , N} of γt. For
all i, B is estimated from the real and imaginary parts of γ̃(i)

and the average estimation is retained. Again, we compare the
results with the ML estimator with Euler-Maruyama’s approx-
imation for the transition probabilities as in [3].

For A, both estimators have about the same standard devi-
ation for ∆t = 10−3 s and ∆t = 10−4 s. They are ‘signifi-
cantly’ biased but in opposite directions for ∆t = 10−3 s, and
the bias is almost zero for ∆t = 10−4 s. For B, the volatility-
based estimator is slightly less biased, but has a larger standard
deviation. A relevant way to compare the two estimators is to
compute their root mean square error (RMSE) after debiasing.
Let for example Ã(A) be an estimator of A with bias b(A).

To debias the estimator, we solve the following equation in
Â(A):

Ã(A) = Â(A) + b(Â(A)), (23)



and obtain the bias-corrected estimator Â(A). For fixed A, the
RMSE is then computed from the N trajectories as:

rmse(Â)2 =
1

N

N∑
i=1

(Âi −A)2. (24)

The RMSE after the bias correction is a measure of the best the
estimator can do. It is applicable of course if the bias is known,
which is not always the case. Applying the bias correction and
computing the RMSE, we obtain the results in figure 2 for A
and B. It is remarkable that the volatility-based and ML estima-
tors have almost identical RMSE. The larger bias of ML turn
into an additional standard deviation when the bias correction
is applied, such that overall the two estimators have identical
performance.

FIG. 2: RMSE of the estimators for A (up) and for B (down)
as a function of true A and B. 2 estimators are compared: the
volatility-based estimator and the ML estimator with Euler’s
approximation for the transition probabilities.

5 Conclusion
Field’s model describes the scattering of electromagnetic waves
by a random medium with the formalism of stochastic differ-
ential equations. In particular, it applies to radar waves and
the sea surface. It is statistical in nature, such as the random
walk model, but contrary to this last it is dynamic. Because
in Field’s model the reflectivity has two timescales, two pa-
rameters A and B parameterize it. In this paper, we have de-
rived estimators forA and B based on volatility-estimation. We
showed based on numerical experiments that they perfom sat-
isfactorily with realistic observation configurations (duration,
timestep etc). The volatility-based estimators perform as well
as the maximum likelihood ones. We may recommend them
due to their much higher simplicity.
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