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Résumé – Dans cette communication nous exploitons l’imagerie de profondeur pour le suivi de la croissance de plantes. Nous montrons
comment cette situation peut se ramener à un problème de traitement du signal. En plus du classique taux de croissance instantané, d’autres traits
liés à la croissance apparaissent sous la forme de motifs répétitifs qui se prêtent à une analyse harmonique. Nous identifions l’origine de ces motifs
et analysons comment ils peuvent être mis à profit dans des situations d’intérêt agronomique. Cette situation constitue une application originale
de l’analyse de Fourier 197 ans après son introduction. Cet exemple, simple du point de vue de l’analyse, permet notamment en enseignement
de sortir des cas classiques de signaux périodiques (sons, secteur électrique, ondes de diffusion, ... ). Nous proposons à cet effet un exemple de
jeu d’images et de données à analyser.

Abstract – In this report, we apply depth imaging to the monitoring of plants growth. We demonstrate that the situation can be understood as a
signal processing problem. In addition to the instantaneous growth rate, other traits linked with growth appear under the form of periodic patterns
that we analyze in the Fourier domain. We identify the cause of these periodic patterns and show their value for agronomic applications. This
constitutes an original application of the Fourier analysis 197 years after its introduction. This simple example from a signal processing point
of view is of high value in a teaching perspective if one seeks to provide illustrations that go beyond the classical domains for periodic signals
(sounds, electrical voltage, heat, ...). We propose a data set as supplementary material to allow the reader to reproduce our analysis.

1 Introduction

Plant imaging is a topic of growing interest. In agronomy
and biology, of course, plant imaging enables to automate and
improve time-consuming measurements that used to be done
manually. Also from the perspective of computer vision, plant
imaging is now recognized as an applied field with its own spe-
cificities and challenges in a way similar to the bio-medical
domain [1]. In this communication, we consider the problem
of monitoring the growth of plants from top view. Depth ima-
ging, which produces a distance map of an object in front of
a camera to the camera, has been shown useful in such confi-
gurations to segment the upper leaves on individual plants[2].
This is especially interesting since in plants the color contrast
is very low and that depth imaging is now available at low-cost
(few hundred euros) through the use of “Kinect” like sensors.
Here we consider the more complex situation where a popula-
tion of plants possibly touching each other are positioned under
a depth camera as visible in Fig. 1. Instead of developing algo-
rithm to segment each individual plant we consider the 2.5D
surface formed by the canopy of the plant as a whole. Under
assumption of stationarity of the growth pattern from one plant
to another we consider the average distance of this canopy to
the camera as a signal characterizing the global growth of the
population. This work proposes a signal processing analysis of
the plant growth process. In comparison with the closest related
work [3], we use very low-cost imaging systems (hundred eu-
ros versus keuros) while observing larger populations (hundred
of plants versus ten plants), over a longer time scale including
the appearance of new leaves (two weeks versus one week) and

we demonstrate that this growth signal analysis can be used to
recognize growth anomalies (while only controlled plants were
exhibited in [3]). This is obtained with simple Fourier series
while more advanced wavelet analysis were used in [3].

2 Image acquisition system

In this section, we briefly describe the imaging protocol used.
We positioned a depth imaging system gazing from the top
view on populations of plants automatically irrigated. The pro-
duced depth map is converted after sphericity correction into a
distance map of the population of plants to the camera. The
depth imaging system used is an active imaging system ba-
sed on infrared lighting, it therefore enables to monitor plant
growth during the night. The depth map are thresholded to re-
move the soil. The average value of this distance map is com-
puted and plotted as a function of time with a time-lapse of one
image every 15 minutes. Per depth image 100 plants are cap-
tured, which means that this imaging system has rather high
throughput. The plants were observed during two weeks, af-
ter which they tend to bend and the distance to the camera no
longer precisely corresponds to their actual height. Monitoring
over these two weeks is however of great relevance since they
correspond to the first two weeks of the plant life after emer-
gence from the seed. This is a stage of interest for biologists
since this is where photosynthesis is activated, and a stage of
interest for breeders since this is the stage where they sale their
products. This early stage is often crucial to the prognostic of
the whole plant development and its yield. The plants monito-



red here were seedlings of sugar beet. However the approach
can equally be applied to any species of interest.

FIGURE 1 – Panel A, view of the image acquisition system.
Panel B, colorized depth map with look up table “fire”. The
levels are indicated in cm.

3 Qualitative signal analysis
Typical growth signals recorded with the imaging setup of

the previous section are shown in Fig. 2. Different compo-
nents are visible. First, a global linear trend shows the global
growth of the plant which gets closer and closer to the ca-
mera. Second, some oscillations are visible at the exact day
period. These oscillations correspond to the so-called circadian
rhythm that allows plants (like most living organisms) to syn-
chronize their physiology with the daily period of light, maxi-
mizing their ability to benefit from sunlight and minimizing
energy loss when the light is not available [4]. A third com-
ponent is visible and corresponds to a higher frequency pattern
that occurs when leaves are replicated and produce some me-
chanical movements. For illustration, we propose in Fig. 2, an
example of the growth curve for control plants and plants under
stress (hydric or salt stress).

4 Design of a Fourier feature space
Before the introduction of low-cost depth imaging operating

in the infrared domain, the monitoring of plant growth was so-
mehow limited to the average growth rate. The monitoring of
growth, as shown in Fig. 2, allows to quantify this process in
more details. Following the qualitative description of the pre-
vious section, we propose to design a feature space based on
a small set of numbers to encode the growth signal. The spa-
tial average distance map to the camera x(t) is first detrended
with a daily linear trend which for the plants and growing du-
ration selected in this study stands as a reasonable model. This
produces the daily signal

y(t, n) = x(t)− (Gr(n)× t+K) (1)

FIGURE 2 – Spatial average of the distance map x(t) to the
camera in cm as a function of time in various conditions. The
values indicated in the inset correspond to average growth rates
in centimeter per minute.

with t ∈ [nT, (n+ 1)T )] and

(Gr(n),K) = argminG̃r,b̃

t=(n+1)T∑
t=nT

(x(t)− (G̃r × t+ K̃))2

(2)
where Gr(n) simply measures the daily growth rate on day
n = {0, 1, 2, ..., 12} of the canopy and T is the daily period.
Then, since the cellular processes can, from a theoretical bio-
logic point of view [4], be assumed to be synchronized with
the daily period of the sun, we decompose y(t, n) as a Fourier
series and compute the modulus of its fundamental

c1(n) =
√
a1(n)2 + b1(n)2 (3)

with
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The daily period T is assumed constant over the two weeks
of observation. Energy in the daily sinus of amplitude c1(n) is
found to represent more than 95% of y(t, n) over the two weeks
of observation. Therefore c1(n) constitutes a good approxima-
tion of the amplitude of the circadian cycles [3, 4]. However,
to also capture the presence of the high frequency movements,
we also consider the harmonic distortion rate

HDR(n) = 100×

√
E(n)− 1

2 × c1(n)2
1
2 × c1(n)2

, (6)

where E(n) is the energy of the detrended signal y(t)

E(n) =
1

T
×
∫ (n+1)T

nT

y(t)2dt , (7)



which captures the relative energy in the replication phenome-
non of the leaves which causes the high frequency patterns.
The instantaneous growth rate Gr obviously enables in Fig. 2
to differentiate between control plant and a stressed plant. Ho-
wever, when representing growth in a (HDR, c1) graph, as in
Figs. 3 and 4, with time as a parameter, it appears that these tra-
jectories clearly differ also between control and stressed plants.
Also, all recorded trajectories start with a low amplitude of the
fundamental, then approximately after 6 days, an increase of
the harmonic distortion rate with diminution of amplitude of
fundamental follows, and after 10 days a decrease of the har-
monic distortion rate and an increase of the fundamental. Tra-
jectory learning could be undertaken in this feature space once
we have more of these experiments. Here, we rather focus on
the assessment of the added value of this extended feature space
Gr, c1, HDR when compared to the usual single scalar feature
space based on the sole growth rate Gr. We propose a feature
space which sums up the global shape of the temporal trajecto-
ries of Figs. 3 and 4 and consider the following 5-dimensional
feature vectors

feat = (Gr,max(c1),min(c1),max(HDR),min(HDR)) .
(8)

We propose to compare the added value of this feature space
when compared to the classical single growth rateGr alone for
two applications.

FIGURE 3 – Temporal trajectories of growth represented in a
HDR, c1 graph for control in blue and hydric stress in red.
The arrows indicate the flow of time.

5 Applications

5.1 Best observation time
One of the biological questions that we can address with our

feature space is, how to discriminate the plants which are in
control condition from plants under stress. When is the best
time to observe the differences between the plants in different
situations? To this purpose, we computed the Mean Square Er-

FIGURE 4 – Same as in Fig. 3 but with red for salt stress.

ror (MSE) of the feature vectors between control and stressed
plants as a way of feature space contrast

MSE =
1

5

5∑
i=1

(featc(i)− feats(i))2, (9)

where featc is the feature vector for the control and feats for
the stressed plant. As shown in Figs. 5 and 6, the extended fea-
ture space based on feat of Eq. (8) can be above the basic refe-
rence of the growth rate at early stages, but it is difficult to have
a definite point on this since only two records were done. Ho-
wever, it seems obvious from Figs. 5 and 6 and from Fig. 2 that
the contrast (MSE) between stressed plant and control plant
is much higher after ten days with the extended feature space
proposed here and the usual single growth rate. This is the best
observation time if one wants to take benefit from the extended
feature space based on Fourier analysis proposed here.

FIGURE 5 – Contrast between control and salt stress for the
sole growth rate (Daily GR) and for the extended feature space
of Eq. (8) computed by the MSE of Eq. (9).



FIGURE 6 – Same as in Fig. 5 but with hydric stress.

5.2 Stress detection
To further assess the interest of the proposed extended fea-

ture space of Eq. (8) we go beyond contrast metric and imple-
ment a supervised detection scheme to classify stressed plants
from a control plants. The feature extracted from Eq. (8) are fed
to a support vector machine (SVM) with linear kernel. The ef-
fectiveness of SVM classifier is evaluated by the K-fold cross-
validation K=10. [5]. For comparison the sole growth rate is
computed and applied to the same support vector machine clas-
sifier. Small images of size 15 by 15 pixels are created in depth
maps as shown in Fig. 1. This corresponds to the size of a single
pot. The performance of the classification is given in terms of
accuracy based on the following formula

accuracy =
TP + TN

Total
, (10)

where TP stands for the true positive and TN for the true ne-
gative. The accuracies for classifications based on the extended
feature space of Eq. (8) and the sole growth rates are given in
Table 1. This clearly demonstrates a gain between 4% and 9%
of accuracy when the feature space is extended to the Fourier-
based features of Eq. (8). Measuring the amplitude of the circa-
dian cycle and the distortion rate of these circadian cycles im-
proves efficiency to discriminate control from stressed plants.

6 Conclusion
197 years after the introduction of the Fourier analysis [6],

its ubiquitous applicability was again illustrated in this com-
munication with recent low-cost imaging systems to monitor
the growth of plants. In this context we designed a feature
space based on Fourier analysis and demonstrated its inter-
est on agronomical applications. Accumulated data will enable
in the future more applications in the direction of deeper un-
derstanding of the temporal trajectory of growth in this feature
space. So far the material produced here can already be used
for educational purposes to provide the students with new ap-
plication fields of the Fourier analysis. To this purpose we give

Accuracy K-fold
K=10

GR FS
Control, Hydric Stress 83.1%

GR FS
Control, Salt Stress 94.8%

Extended FS
Control, Hydric Stress 92.2%

Extended FS
Control, Salt Stress 99%

TABLE 1 – Accuracy for the SVM K-fold (K=10) cross-
validation classification between stressed plants from control
plants with a feature space only based on growth rate (GR FS)
or based on our extended feature space of Eq. (8) (Extended
FS).

access to raw data of our experiment in https://uabox.
univ-angers.fr/index.php/s/hf2csYRguVKNtWy.
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