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Résumé – Les réseaux de neurones profonds (DNN) ont atteint des performances à la pointe de la technologie dans plusieurs applications,
mais ce sont des systèmes extrêmement peu robustes, en ce sens qu’ils sont vulnérables aux légères perturbations adversaires de leurs entrées.
Dans cet article, nous étudions la relation entre la probabilité d’erreur, la qualité de d’ajustement et l’incertitude du classifieur. Nous proposons
un nouvel objectif (loss) basé sur l’entropie conditionnelle et la divergence de Rényi. Nos résultats numériques, sur les jeux de données MNIST,
CIFAR-10 et SVHN, montrent que, sans autre modification, la fonction coût proposée conduit à une amélioration significative de la robustesse
des DNN face aux exemples adversaires par rapport à l’entropie croisée standard.

Abstract – Deep Neural Networks (DNNs) have achieved state-of-the-art performance in several applications, whereas they are extremely
vulnerable to adversarial perturbations of inputs. This work first investigates bounds on the misclassification error as a funcion of the goodness
of the fit and the uncertainty of the classifier. Then, these bounds are used to define a novel loss function based on the conditional entropy and
the Rényi divergence. Our empirical studies, on MNIST, CIFAR-10 and SVHN datasets, show that, with no further modifications, the proposed
loss leads to a significant enhancement in the robustness of DNNs to adversarial examples with respect to the standard categorical cross-entropy.

1 Introduction
Deep Neural Networks (DNNs) have achieved several break-

throughs on different fields like computer vision, speech re-
cognition, natural language processing, etc. Nevertheless, it is
well-known that these systems are extremely sensitive to small
perturbations on the inputs [10]. For instance, it is possible
to design additive perturbations that will slightly modify in-
put images (in the sense that they are indistinguishable to the
naked eye) so that they will be misclassified by a DNN with
high probability. These are known as adversarial examples and
they exist in different domains, which has led to the emergence
of the field of adversarial machine learning (see [11] for further
details). The effectiveness of adversarial examples has been at-
tributed to the linear regime of DNNs [5] and the data manifold
geometrical structure itself [4]. Although the problem of adver-
sarial examples is relevant for several areas of deep learning, in
this paper we only focus on training robust classifiers in the
framework of supervised learning.

An important property of adversarial examples is that they
are transferable, which means that adversarial examples gene-
rated with a given DNN can be used as adversarial examples
for another neural network even if the architectures are rather
different [9]. This implies that keeping the DNN model pri-
vate is not a robustness guarantee, i.e., the so-called black box
attacks are feasible [8]. As a consequence, improving robust-

ness of DNNs to adversarial (universal) attacks is necessary for
critical and safety related applications. The literature on adver-
sarial machine learning is extensive and can be mainly divided
in three overlapping groups which study generative models, de-
tection and defence aspects of the field. Adversarial examples
can be generated in a targeted or untargeted manner. A popular
formulation of the problem of generating adversarial examples
is as follows [5] : find an additive perturbation δ (with an `p
norm bounded by some parameter ε) to an input x, in such
a way that the loss is maximized. The most simple genera-
tion algorithm is the Fast Gradient Sign Method (FGSM) [5],
which is based on a single step in the direction of the sign of
the gradient of the loss with respect to the input. Surprisingly,
this method is already quite effective in fooling a well-trained
DNN. In the literature, most of the work explores the ubiqui-
tous Cross-Entropy (CE) loss but some papers have proposed
different alternatives. In [7], the authors consider the reverse
CE loss function which encourages uniformity among the ele-
ments of the softmax output to improve robustness. In [3], a
connection is made between adversarial training and total va-
riation regularization and between worst-case adversarial trai-
ning and Lipschitz regularization of the loss.

In this paper, we first show a strong theoretical relation bet-
ween the misclassification probability of the classifier, the good-
ness of fit of the model (measured by the Rényi divergence bet-



ween the true distribution of the data and the one induced by the
softmax distribution) and the uncertainty of the classifier (mea-
sured by the conditional entropy of the softmax distribution).
This is used to define a novel loss function. We then evaluate
the robustness of a DNN trained with the resulting new loss
and show that it offers considerable improvements over a DNN
trained based on the CE loss. Our loss is as simple as the CE
while achieving the same accuracy when evaluated with natu-
ral (i.e., non-adversarial) examples. Moreover, in some cases,
it converges faster than CE loss.

2 A Novel Loss Function to Train DNNs

2.1 Bounds on the misclassification probability
Consider a standard supervised learning framework where

X ∈ X denotes the input vector on the feature space X , and
let Y ∈ Y be the discrete concept defined without loss of ge-
nerality as : Y := {1, . . . ,M}. The data distribution is deno-
ted by pXY . A soft classifier is represented by the family of
conditional probability distributions pŶ |X , where Ŷ is the soft
decision. The soft classifier is used to induce a hard decision :
f : X → Y with f(X) := arg maxy pŶ |X(y|X). We also de-
fine the misclassification probability as Pe := P(Y 6= f(X)),
and the uncertainty of the classifier as Pu := P(Ŷ 6= f(X)).
The conditional entropy of Ŷ givenX is indicated byH(Ŷ |X).
The Rényi divergence of order α between two distributions p
and q is denoted as Dα(p‖q).

The following bounds on the error probability Pe hold for an
arbitrary classifier and are a consequence of the so-called loga-
rithmic probability comparison bounds (LPCBs) which relate
the probability of an event using two different probability mea-
sures with the Rényi divergence between them (see Appendix
A for definitions and details).

Proposition 1 The error probability Pe satisfies the following
inequalities :

log Pe ≤
α− 1

α
log[1− exp(−H(Ŷ |X))]

+ (α− 1)Dα(pX,Y ‖pX,Y ), ∀α > 1, (1)

log Pe ≥ β
α− 1

α− 2
log[1− exp(−H(Ŷ |X))]

− (α− 1)Dα−1(pX,Ŷ ‖pX,Y ), ∀α > 2, (2)

where Dα denotes the Rényi divergence of order α and β is a
constant dependent only on M . For the second inequality, the
mild assumption Pu ≤ 1− 1/M is required.

Proof 1 See Appendix A.

This result shows that the error probability Pe is controlled
by the conditional entropy of the softmax distributionH(Ŷ |X),
which is a measure of the uncertainty of the classifier, and a
Rényi divergence between the data distribution pXY and the

distribution induced by the softmax pXŶ = pX pŶ |X , which is
a measure of the goodness of fit of the model.

2.2 A New Loss
The upper bound presented in Proposition 1 could be directly

used to define a new loss function to train a DNN. The problem
with (1), however, is that it diverges as H(Ŷ |X) → 0, which
can lead to numerical issues at the end of the learning process.
Thus, the bound was relaxed to define the new loss function,
but preserving the monotonic relation between H(Ŷ |X) and
Pe, leading to the following result.

Corollary 1 From the results of Proposition 1, we can define a
new loss function as follows :

LHR(θ) = H(Ŷ |X) + αDα(pXY ‖pXŶ ), (3)

where α > 1 is considered as an hyperparameter.

Proof 2 See Appendix B.

It should be noted that α controls the way in which the good-
ness of fit of the softmax is measured. In the limit as α → 1,
it converges to the KL divergence : αDα → D. On the other
hand, as α becomes larger, the loss LHR penalizes more heavily
the mismatch between pXY and pXŶ , since αDα is a monoto-
nically non-decreasing function of α [1]. By a simple applica-
tion of Jensen’s inequality [2], it can also be shown that the CE
loss and the Rényi divergence are related by the following in-
equality : CE ≤ αDα(pXY ‖pXŶ ) +H(Y |X). Thus, the most
significant difference between our lossLHR and the CE loss lies
on the term H(Ŷ |X).

FIGURE 1 – Validation accuracy evolution for MNIST based
on CE and HR with light and medium attacks using CE.

3 Experimental results
We evaluate our proposed loss function with three different

data sets : MNIST, CIFAR-10, and SHVN. In each case, the va-
lue of α was optimized on a validation set, and we found that α



Attack-based CE Attack-based CE Attack-based HR Attack-based HR
ε CE (MNIST | CIFAR-10 | SVHN) HRCE (MNIST | CIFAR-10 | SVHN) HR (MNIST | CIFAR-10 | SVHN) CEHR (MNIST | CIFAR-10 | SVHN)

0 0.985 | 0.656 | 0.865 0.986 | 0.685 | 0.901 0.986 | 0.685 | 0.901 0.985 | 0.656 | 0.865
0.1 0.907 | 0.296 | 0.797 0.945 | 0.337 | 0.836 0.977 | 0.324 | 0.835 0.977 | 0.288 | 0.801
0.25 0.852 | 0.282 | 0.672 0.861 | 0.320 | 0.704 0.974 | 0.306 | 0.698 0.972 | 0.271 | 0.674

TABLE 1 – Test accuracy on different datasets (MNIST, CIFAR-10 and SVHN) with (ε > 0) and without (ε = 0) adversarial
attacks based on all combinations of training and attack on CE and HR losses.

= 1.6 works well for all datasets. We averaged over 5 different
realizations for each simulation. The details of the DNNs ar-
chitectures that we used for the simulations are relegated to
Appendix C.

Due to its simplicity and effectiveness, we decided to com-
pute adversarial examples using the FGSM algorithm [5], which
generates an adversarial example xadv from a normal example
(x, y) according to xadv = x + ε sgn

(
∇x L(x,y)(Θ)

)
, where

sgn is the sign function, ∇x L(x,y)(Θ) denotes the gradient
w.r.t. x of the loss function evaluated at (x, y), and ε is a para-
meter controlling the magnitude of the perturbation. Note that
we omit the subscript intentionally in L since the attack can be
performed with either the HR or the CE losses.

In Fig. 1, we show the validation set accuracy of both clas-
sifiers on MNIST as the training evolves across epochs for na-
tural training (ε = 0), light (ε = 0.1) and medium (ε = 0.25)
CE attacks. Results with the HR attacks are not reported since,
in our experiments, during training, the accuracy for adversarial
examples generated with a DNN using HR was almost constant
and better than the accuracy using CE. The results for CE attack
were therefore more interesting to visualize. We observe that
DNNs trained on the HR are more robust to small and medium
perturbations than trained on CE, no matter how well each of
them is trained. It should emphasized that we wanted to com-
pare CE and HR in a similar framework and this is why we
fixed α for the entire training. Moreover, we can point out the
fact that training convergence on MNIST using HR seems to
be faster than using CE.

For completeness and comparison purposes, Table 1 pre-
sents the test accuracy for three data sets : MNIST, CIFAR-10,
SHVN, and different magnitude of the attacks (none, light, me-
dium) for both classifiers (HR and CE) and both attack methods
(CE and HR). Note that HRCE stands for the classifier trained
with the HR loss but attacked with the CE loss while CEHR
stands for the other asymmetrical case. Results show that for
MNIST, the worst-case attacks are generated by the CE, whe-
reas for SVHN and CIFAR-10, they are generated by the HR.

For all datasets, no matter how the attack is generated, trai-
ning on the HR loss will be beneficial (0.1% to 3.6% without
any attacks, 3.4% to 4.1% for light attacks, 0.2% to 3.8% for
medium attacks).

Finally, we computed the confusion matrices, i.e., the semi-
empirical estimation of the probabilities pŶ |Y (ŷ|y) where ŷ
is the row index and y is the column index, corresponding to
the classifiers under the CE and HR loss for MNIST and un-
der the CE attack with ε = 0.1. These matrices represent the

uncertainty of the DNNs. Then, we computed the Frobenius
norm of the difference between the identity matrix and each of
these confusion matrices, yielding : ‖I10 −CHR‖F = 0.23 and
‖I10 − CCE‖F = 0.40. This result clearly shows that there is
less uncertainty for the model trained with our loss.

4 Summary and Concluding Remarks
We have introduced a new loss for training DNNs. Our loss

was shown to be a surrogate of the misclassification probability
and consists of two terms : the conditional entropy of the soft-
max distribution and the Rényi divergence between the data
generating distribution and the joint distribution of the input
and the soft decisions. As was shown through experimental re-
sults, this new loss function offers better robustness to adversa-
rial examples than the standard cross-entropy loss. The results
presented in this paper are promising but, of course, prelimi-
nary. As future work, we will consider more powerful attacks
than the FGSM algorithm. An advantageous property of infor-
mation measures is that they are amenable to the analysis of
nonlinear perturbations, thus offering the possibility to extend
the adversarial transformations and eventually generalize the
current concept of robustness in deep neural networks.

A Proof of Proposition 1
The Rényi divergence is formally defined as follows :

Dα(µ‖ν) =
1

α(α− 1)
log Eµ

[(
dν

dµ

)1−α
]
, (4)

if ν � µ (i.e., ν is absolutely continuous with respect to µ).
The LPCBs [1] are very general inequalities relating the pro-

bability of an arbitrary event for two probability measures with
the Rényi divergence between the measures. Concretely, by
considering µ = PXY , ν = PXŶ , and A be the error event
of the classifier f , i.e A = {(x, y) ∈ X × Y : y 6= f(x)}, then

1

α− 1
log Pe ≥

1

α− 2
log Pu −Dα−1(pXŶ ‖pXY )

1

α− 1
log Pe ≤

1

α
log Pu +Dα(pXY ‖pXŶ ), (5)

where, the first inequality holds for any α > 2 while the second
one holds for any α > 1.



Upper Bound. We start by writing
Pu = P(Ŷ 6= f(X)) = 1− EX [pŶ |X(f(X)|X)]. (6)

Now, by the definition of f , it is easy to see that
EX [pŶ |X(f(X)|X)] ≥ EX [EŶ |X [pŶ |X(Ŷ |X)]], (7)

with equality if Ŷ = f(X) almost surely. Finally, using Jen-
sen’s inequality, we have

EX [EŶ |X [pŶ |X(Ŷ |X)]] ≥ exp
(
−H(Ŷ |X)

)
. (8)

This completes the proof of inequality (1).

Lower Bound. By Fano’s inequality [2], considering the Mar-
kov chain f(X)↔ X ↔ Ŷ , we have that

q(Pu) = h(Pu) + Pu logM ≥ H(Ŷ |f(X)) ≥ H(Ŷ |X), (9)
where the last inequality follows from the data-processing in-
equality. Here, h(.) is the binary entropy [2]. Note that if Pu ≤
1−1/M , the function q(Pu) is monotonically increasing. The-
refore, under this assumption, we have that Pu ≥ q−1(H(Ŷ |X)).
It can also be shown that

log q−1(H(Ŷ |X)) ≥ β log[1− exp(−H(Ŷ |X))], (10)
where β is a constant dependent on M . Thus, we finally obtain
the second inequality in (2)

B Derivation of Loss Function LHR

Consider (1). Notice that the bound diverges as H(Ŷ |X)→
0, which is an undesirable behavior for a loss function. Thus, to
obtain a suitable surrogate, we will use the so-called fundamen-
tal inequality in information theory which states that log a ≤
a− 1 for any a > 0 with equality if and only if a = 1. We also
consider the inequality− exp(−a) ≤ a− 1 which holds for all
a ∈ R. This gives us

log[1− exp(−H(Ŷ |X))] ≤ H(Ŷ |X)− 1. (11)

for any H(Ŷ |X) > 0. This finally leads us to define the loss
function presented in Section 2.2.

C Network Architecture
For MNIST, input images are scaled to be between 0 and

1. The model used is composed of two convolutional layers,
each followed by a max pooling layer, and two fully connected
layers. For the optimization, we use the SGD algorithm with
a learning rate equal to 0.001. We train the model for 1000
epochs by using batches of size 100 (we observed that increa-
sing the batch size doesn’t have much effect on the results).
Every 10 epochs, we generate adversarial examples from the
test dataset using the FGSM method. The ε parameter is varied
according to the experiment as described in Section 3.

For CIFAR-10, we use ResNet [6] with n = 1 and without
data augmentation. We train for 200 epochs, with batches of
128 samples. Regarding SVHN, we use the same setup as for
CIFAR-10 except that we do not perform data processing be-
fore training.
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