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Résumé – La segmentation d’images médicales présente des défis sans précédent par rapport à la segmentation d’images naturelles, en
particulier à cause de la rareté des images annotées. Dans cet article, nous nous plaçons dans le cadre de la segmentation des organes à risque
thoraciques dans les images tomodensitométriques, objet de la compétition en cours SegTHOR 2019. Alors que le cadre de l’apprentissage
supervisé (c’est-à-dire annotation au niveau des pixels) est considéré dans cette compétition, nous cherchons dans cet article à aller plus loin en
exploitant le paradigme de la segmentation faiblement supervisée, c’est à dire en apprenant avec uniquement des boites englobant les organes
étudiés. Après une étape de pré-traitement, la méthode proposée opère un apprentissage ensembliste basé sur l’algorithme GrabCut, afin de
transformer les images initiales en images annotées au niveau des pixels. Ensuite, un réseau neuronal profond est appris sur les images médicales,
où plusieurs fonctions de perte sont examinées. Les expériences montrent la pertinence de la méthode proposée, fournissant des résultats
comparables à ceux de la segmentation entièrement supervisée.

Abstract – Medical image segmentation has unprecedented challenges, compared to natural image segmentation, in particular because of
the scarcity of annotated datasets. Of particular interest is the ongoing 2019 SegTHOR competition, which consists in Segmenting THoracic
Organs at Risk in CT images. While the fully supervised framework (i.e., pixel-level annotation) is considered in this competition, this paper
seeks to push forward the competition to a new paradigm: weakly supervised segmentation, namely training with only bounding boxes that
enclose the organs. After a pre-processing step, the proposed method applies the GrabCut algorithm in order to transforms the images into
pixel-level annotated ones. And then a deep neural network is trained on the medical images, where several segmentation loss functions are
examined. Experiments show the relevance of the proposed method, providing comparable results to the ongoing fully supervised segmentation
competition.

1 Introduction

Medical image segmentation is of great importance in medical
image computing, at the intersection of several fields in image
processing, computer vision, and medicine. It consists in par-
titioning an image into meaningful segments, such as different
tissue classes or distinct organs. While there has been a large
effort to address image segmentation of natural images thanks
to availability of large annotated databases (e.g. ImageNet with
more than 14 millions hand-annotated images, including more
that 1 million images bounding box annotations), medical im-
age segmentation is more challenging due to many difficulties.
On one hand, medical images encompass segmentation ambi-
guities, due to low contrast and noise. On the other hand, they
are diverse by nature, depending on the region under study and
the imaging equipment, such as computed tomography (CT)
scanners collecting radiodensity values, and PET scanners for
positron emission tomography. For all these reasons, there is
no large annotated database that allows to efficiently pre-train

or train deep neural networks for medical image segmentation.
In particular, the segmentation of organs in CT images is of

great interest. Before radiotherapy, the process of irradiation
planning on CT images requires the delineation of the target tu-
mor and healthy organs, called Organs At Risk (OAR), near the
target tumor. In practice, the delineation process is manually
performed by a medical practitioner. Such a time-consuming
approach is often susceptible to an unaffordable level of im-
precision, which may result in missed tumorized areas, or at-
tacking a healthy tissue. Therefore, the need for an automated
segmentation system has been attracting increasing attention.

In this regard, the Segmentation of THoracic Organs at Risk
in CT images (SegTHOR) dataset is of great interest, because
each CT image is manually pixel-wise segmented by an ex-
pert radiation oncologist [10]. This dataset has just been re-
leased publicly in an ongoing competition1 conducted at the
2019 IEEE International Symposium on Biomedical Imaging2.

1https://competitions.codalab.org/competitions/21012
2https://biomedicalimaging.org/2019/challenges/



FIG. 1: Images from SegTHOR with the 4 segmented organs.

In this paper, we push forward the segmentation problem,
with application to SegTHOR, into the paradigm of weakly
supervised segmentation [6]. Our major motivation is the
difficulty in obtaining fine-grained pixel-level annotations in
medical images. Within the weakly supervised segmentation
paradigm, we seek to learn the segmentation by using a train-
ing dataset with a rough bounding box annotation that encloses
the organ under scrutiny.

Our approach is based on three main stages. The first stage
operates a pre-processing in order to transform the SegTHOR
CT images into an appropriate format, namely slice/label pairs;
it is worth noting that the raw images are very different from
natural images (e.g. ImageNet or Pascal VOC). In the sec-
ond stage, we transform the images with bounding boxes into
images having pixel-level annotations. To this end, we use
the GrabCut method, which is iterative intensity graph based
method that segments objects from bounding boxes [7]. The
third stage is the machine learning (ML). To this end, we con-
sider the FCN (Fully Convolutional Network) and propose to
train the neural network on the SegTHOR dataset, by exploring
several loss functions that are relevant for image segmentation.
A specific attention is carried out on the class imbalance issue,
since the four classes are very imbalanced (i.e., organs of dif-
ferent volumes). Note that our method shares similarities with
Khoreva et al’s ’Simple Does It’ method [2]; however different
from them, we did not use any objectness cues. Experiments
conducted on the SegTHOR dataset demonstrate the relevance
of the proposed approach.

The rest of this paper is organized as follows. Next section
presents the SegTHOR dataset. Section 3 describes the pro-
posed method of weakly supervised segmentation. Section 4
provides experimental results on the SegTHOR dataset.

2 SegTHOR Dataset Description

The SegTHOR dataset is constituted of 60 patients with lung
cancer referred for radiotherapy at the Centre Henri Becquerel,
Rouen, France. The CT images have 512 × 512 pixels with
in-plane resolution varying between 0.90 mm and 1.37 mm per
pixel, depending on the patient. The number of slices varies
from 150 to 284 with a z-resolution between 2 mm and 3.7 mm.

Note that in this paper we focus on the segmentation of one
organ at risk, the heart - even though the SegTHOR dataset
contains the ground truth segmentation for three other OAR,

TAB. 1: Partition of the SegTHOR dataset

# Patients # Slices
Training dataset 38 1522
Validation dataset 2 77
Evaluation dataset 20 726

namely aorta, trachea, esophagus (FIG. 1), that will be consid-
ered in upcoming, multiclass studies. For the training, as well
as the evaluation, the images were hand-annotated at the pixel
level by a radiotherapist. We use the data partition provided
in the SegTHOR competition: the training set includes 40 CT
scans and the test set includes the remaining 20 CT scans. Note
that we extracted the slices in which the organ of interest eg the
hear) is present: out of 7390 slices in the provided training set,
we kept 1522 of them; in the testing set, 726 images were re-
tained out of 3694 slices. Additionnally, we partition the train-
ing dataset and leave out four patients for validation (hyper-
parameter tuning). However, in our case, the training images
are not pixel-level segmented, but using bounding boxes that
enclose the organs under study. The patient distribution over
the folds is shown in TAB. 1.

3 Proposed Method

3.1 Pre-processing
The pre-processing phase includes clipping pixel intensities
into a lower and upper bound of 1000 and 3000. To avoid
problems of exploding and vanishing gradients, the data is then
normalized by extracting the mean value per image.

3.2 From weakly supervised to supervised data
In this paper, we adopt Grabcut, an iterative intensity based
algorithm primarily implemented on RGB images as stated in
[7]. Essentially, the algorithm estimates object segments from
their bounding box as follows. Given an image and a bounding
box(BB), the algorithm considers all pixels outside the BB as
belonging to the set TB of background pixels and considers all
pixels within the BB as belonging to TU : the set of pixels to
be predicted as foreground or background. the algorithm then
estimates two Gaussian mixture models basing on these pixel
distributions and builds a similarity graph from the different
pixels constituting the image. This graph is later on optimized
using minimal cut and new Gaussian distributions are then es-
timated. Pixels are then reassigned new labels basing on the
Gaussian models. The process is iterated until convergence.

3.3 Training the segmentation model
We take advantage of the well-known FCN model [3], a state-
of-the-art model for semantic segmentation, in order to address



FIG. 2: Stage 2, from weakly supervised to supervised images,
and Stage 3, the deep neural network

our medical image segmentation problem. The FCN model
resembles an auto encoder, where the encoder is a VGG-16
model with its classification layers removed. Thus, the encoder
part is a standard network, which can be pretrained using Im-
ageNet for example. The rest of the network is dedicated to
perform image to image inference and can be initialized ran-
domly, then fine-tuned on the SegTHOR data set. Skip-grams
are added in order to combine context with spatial information,
as suggested in [3].

Taking a look at the nature of the data at hand, we verify the
fact that medical images do indeed pose a challenge due to the
nature of class imbalance within the medical slices. To solve
this problem, we perform a fair comparison of multiple loss
functions present within the literature of image segmentation,
in order to study their effect on class imbalance. In the follow-
ing, we provide a brief description of the used loss functions.
Let pi be the predicted pixel level probability for pixel i, and
gi its ground truth label. Let N be the total number of pixels of
the image under scrutiny.

When considering binary segmentation, the standard way is
the so-called log-loss or cross entropy [5], defined as

−
N∑
i=1

gi, log(pi).

This formulation is sensitive to class imbalance, which is a ma-
jor issue medical image segmentation because background of-
ten overshadows the segmented organs. In the following, we
explore loss functions that are less sensitive to class imbalance.

To overcome class imbalance, a weighted version of the
cross entropy [1], called balanced cross entropy, is defined as:

−
N∑
i=1

βigi log(pi),

where βi is the ratio of negative samples over total samples.
Another metric that takes into account class imbalance is the
Dice loss, which has an inbuilt normalization. Dice loss is a
soft approximation of the Dice score, defined as the intersection
over union ratio of two binary segmentations given a smoothing
variable ε. This approximation is required to make the loss
function differentiable and turns the binary segmentations into
the probabilities: [4]:

2
∑N

i=1 pigi + ε∑N
i=1 p

2
i +

∑N
i=1 g

2
i + ε

.

Similarly as the Dice loss, the Tversky loss [8] is defined as:∑N
i=1 pigi + ε∑N

i=1 pigi + α
∑N

i=1 pi(1− gi) + β
∑N

i=1(1− pi)gi + ε
,

where α and β are tunable parameters. In our experiments we
adopt the ratios presented in [8], taking α = 0.3 and β =
0.7 so that the Tversky loss boils down to the well-known F1

score. The latter provides a trade-off between precision (related
to false positives) and recall (related to false negatives).

4 Results and Analysis
For evaluation, we have used the Dice coefficient. Our first at-
tempt was to examine the performance of the neural network
pre-trained on the ImageNet dataset, without any fine-tuning.
Doing this yields a poor segmentation accuracy of 4.67 % in
mean Dice coefficient. This poor performance was expected,
because medical image segmentation often requires domain
specific knowledge, absent within the features extracted from
natural datasets such as ImageNet and Pascal VOC2012. For
this reason, we fine-tuned the neural network on the SegTHOR
training dataset for heart segmentation.

Despite the fact that image analysis requires minimally a
number of few thousand iterations as indicated in [9], how-
ever, since our objective is to simply compare the methods as a
first step, we settled for about 550 iterations and recorded the
results as shown in TAB. 2.

From the table, we realize that balanced cross entropy and
binary cross entropy achieved the highest scores with a mean
Dice similarity coefficient of 84.67% and 71.79%, respectively.
In contrast, Dice and Tversky losses scored poorly. This may
be due to the nature of these two loss functions, thus requir-
ing a larger number of iterations or larger data-set size to in-
sure stable convergence. Another explanation remains within
the poor characterization of the Dice loss function. Thus, the
convergence of Dice may highly depend on the value the of
smoothing variable ε set out during training.Thus,smoothing
often prevents the gradients from being set to zero.Moreover, it
helps the model to overcome the vanishing/exploding gradient
problem. On one hand, setting a high value for ε helps to avoid
overfitting, on the other hand a smaller value may enable the
training to converge faster.

Performing manual hypertuning of ε, we realize that as the
ε value decreases, the model performance increases. However,
with low ε values, the model is more prone to overfitting. For
this reason, proper tradeoff between lower values of ε and con-
vergence speed should be found. For our experiments, we have
adopted a smoothing value of 10−7. Future studies should in-
clude proper set up of smoothing value within the Dice, or even
a dynamic one that would change with respect to the number
of epochs.

After training, we have evaluated the Dice similarity per-
formance with respect to the Grabcut label estimates, in addi-
tion to the evaluation w.r.t. the actual ground truth values. We



TAB. 2: Accuracy results in terms of the Dice coefficient, with the mean and standard deviation values, as well as the extrema

mean % std % max % min %
Pre-trained only (with ImageNet) 10.09 6.42 32.19 0.15
Trained with cross entropy loss 71.87 12.88 89.78 0.0
Trained with balanced cross entropy loss 84.67 3.94 90.57 67.86
Trained with Dice loss 41.07 18.49 74.63 0.0
Trained with Tversky loss 28.94 10.97 53.89 1.28
Trained with Full Supervision 93.18 4.54 98.18 72.12

recorded a similarity value of 94.73 % which at first sight opens
way for us to believe that our model is learning well. However,
comparing with the actual label masks, we observe that our
model registers a performance of 84.67% w.r.t.the ground truth
segmentation maps. This causes us to believe that intensity
based measures such as grabcuts may not be a good represen-
tatives of our dataset labels.

Finally, the proposed weakly supervised method provides an
accuracy of up to 84.67% for the heart segmentation, using the
balanced cross entropy with only 550 iterations, which is com-
parable to the best results obtained so far at the SegTHOR com-
petition, using fully supervised segmentation methods: the first
rank competitor of the leaderboard as of mid-March 2019 has
a mean Dice coefficient of 94.32%. However, the score this
competitor was obtained on all slices, and not only the ones
containing the heart, so his score is not fully comparable.Thus,
we can conclude that our weakly supervised approach reaches
about 90.86% of the quality of fully supervised models when
compared to competition results and about 91.97 % when com-
pared to our own fully supervised implementation.

5 Conclusion and Future Work
In this paper, we proposed a weakly supervised segmentation
method for medical images. Several loss functions were ex-
amined. Tested on the heart segmentation of the SegTHOR
dataset, the balanced cross entropy loss function outperformed
the other losses. With a mean Dice coefficient of 84.67%,
it provided comparable results with the best fully supervised
methods. In future work, we aim at automatically hypertuning
the value ε for proper network convergence under the guidance
of the Dice model. We will also integrate our binary segmen-
tation model onto multi-class segmentation. Moreover, we will
address the problem of class imbalance by proposing a training
procedure that alternates between multiple losses, in order to
take into account the strengths of each loss function.
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