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Abstract – Radiomics is the high-throughput extraction of quantitative features from medical images, used to build 

prognostic and predictive models for personalized medicine. Given the large number of extracted features with 
respect to the small number of patients’ data available, machine (deep) learning (ML) has become a major 

component of radiomics analyses. In this work we compared three ML methods, namely random forest (RF), support 

vector machines (SVM), both with embedded features selection, and logistic regression (LR) with stepwise feature 
selection, for building prognostic models exploiting clinical and 18F-FDG PET radiomics features in lung cancer 

patients.  Moreover, we are interested in determining if the fusion of these methods outputs could improve the final 

prediction. Our results show that the different ML pipelines select different sets of features and reach different 

classification performance, with a relatively moderate agreement, which is why the fusion of their outputs can help 
reach a higher performance (accuracy of 71% for the fusion using majority voting, compared to 67, 64 and 63% for 

RF, SVM and LR respectively). Even though the level of accuracy reached can seem relatively low (~70%), the 

resulting prognostic stratification is higher than when relying on clinical stage (61%), and of interest for clinical 
practice as it could help identifying patients with higher risk amongst stage II and III patients, that could benefit 

from intensified treatment and/or more frequent follow-up after treatment. 
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1 Introduction 

Lung cancer is still a deadly disease, despite 
improvements in diagnosis, staging and treatment. It 

remains the first cause of cancer death for men and the 

second for women [1]. The variability in outcomes 
remain vast, with significant differences between 

patients depending on the stage of the disease. Staging 

is indeed one of the major clinical criteria on which 

physicians rely in order to choose a therapeutic strategy 
(i.e., concomitant or sequential combination of surgery, 

chemotherapy and radiotherapy) [2]. However, even 

amongst patients with a similar disease stage, especially 
for stage II and III, there can be highly variable 

outcomes (i.e., response to therapy and survival). 18F-

FDG Positron Emission Tomography / Computed 
Tomography (PET/CT) (figure 1) is the standard 

medical imaging modality for lung cancer diagnosis, 
staging and treatment planning and monitoring [3].  

However, these highly informative quantitative 

medical images are still used routinely in clinical 

practice only through visual examination and for 
diagnosis and staging only. Radiomics consists in the 

extraction of a large amount of handcrafted quantitative 

features from medical images that are subsequently 
processed by machine learning algorithms in order to 

build models (combining these radiomics features with 

other clinical variables such as gender or stage) to 

identify a tumor type, correlate with underlying 
biological information, or predict outcomes [4]. 

In the present work we focus on the comparison of 

different machine learning techniques as well as their 
fusion, for the goal of building models predictive of 

outcome (prognosis) in lung cancer, based on radiomics 

features extracted from the FDG PET component of the 
PET/CT images. 

2 Material and methods 

2.1 Patients data 

A cohort of 138 non-small cell lung cancer (NSCLC) 

patients with stage 2 and 3 was retrospectively (n=87) 

and prospectively (n=51) collected at the CHU Milétrie 

in Poitiers, France. Treatment was mostly (chemo) 

radiotherapy (surgery mostly concerns stage I patients, 
whereas metastatic patients with stage IV disease have a 

whole different management). All patients had a 18F-

FDG PET/CT acquired as part of their diagnosis and 
staging procedure prior to treatment, which was 

exploited in the present work. The cohort was split into 

a training set (67%, n=92) and a testing set (33%, n=46) 
using stratified sampling, ensuring similar outcome, 

number of events and clinical characteristics in both 

sets. The set endpoint for this study was to identify 

patients with poor overall survival (OS). Median OS in 
the present cohort was 14.7 months. 

The local ethics committee board approved this 

study. 

2.2 Radiomics and machine learning workflow 

Regarding the radiomics workflow, primary tumor 

volumes were characterized after automated 
segmentation of the PET image using the Fuzzy Locally 

Adaptive Bayesian (FLAB) algorithm [5], [6]. The 

handcrafted radiomics features were intensity metrics 

(n=10), shape descriptors (n=14) and textural features 
(n=66). They were extracted from the 3D delineated 

tumor volumes in PET and were validated with the most 

up-to-date international Image Biomarker 
Standardization Initiative (IBSI) reference definition 

and benchmark [7], [8]. Regarding the 2nd- and higher-

order textural features, three different grey-level 

discretization methods, namely histogram equalization, 
fixed number of bins (using 64 bins) and fixed bin-

width interval (bin width of 0.5 SUV) were considered. 

Texture matrices were implemented in 3D with the 
merging strategy, considering all directions 

simultaneously. A total of 223 features were thus 

extracted from each PET tumor volume for each patient.  
All available clinical variables (gender, stage, 

smoking history, histology, treatment modality, etc.) 

and radiomics features were entered in the three 

different ML pipelines (features selection and classifier) 
under comparison, namely Support Vector Machines 

(SVM) with Recursive Feature Elimination (RFE), 

Random Forests (RF) with Embedded Wrapper (EW) 
method, and Logistic Regression (LR) with the stepwise 

method. The classification task was defined as to 

identify for each patient whether its OS would be > or ≤ 
median OS. The performance of this binary and 

balanced (since the aim is to classify above or below 

median survival) classification was evaluated using 

accuracy, sensitivity and specificity. For each method, 
the best model was chosen in the training set according 

to the following criteria: number of required features 

(for similar levels of accuracy, a lower number of 
features is preferred for reducing the risk of overfitting 

and for higher chance of generalizability and better 

performance in external testing sets), accuracy and 

balance between sensitivity and specificity. Finally, in 
order to generate a consensus of the outputs from the 

 
Figure 1: left: an FDG PET/CT image of a lung cancer 

patient (axial slice of a 3D volume acquisition at the tumor 

level in the lungs). PET and CT datasets are fused for 

visualization: CT appears in grey levels while PET appears 

in false colors, red indicating higher uptake of FDG 

radiotracer and thus higher tumor metabolism, 

quantitatively measured as standardized uptake values 

(SUV). Right: zoom-in of tumor, showing the automated 

contour (dashed white) to define the tumor volume, in which 

handcrafted radiomics features (shape, intensity, textures) 

are calculated. 



three ML pipelines, we implemented a simple majority-

voting rule.  

3 Results 

In the training set, the best model built by RF with a 

reasonable number of features (25) reached an accuracy 
of 89%. In the testing set, this model obtained 67% 

accuracy. With SVM, the best model combining a small 

number of features (27) obtained an accuracy of 100%, 

however in the testing set, this model obtained only 
64% accuracy. Higher accuracy (69%) could be 

obtained, at the cost of including a much larger number 

of features, which would likely reduce the likelihood the 
model could perform well in external datasets. The 

logistic regression reached 72% accuracy in training 

relying on 37 features, with 63% accuracy in testing. 
The agreement between the three ML pipelines was 

moderate suggesting potential improvement could be 

provided by fusing the outputs. The fusion of the three 

methods with majority voting indeed led to an increased 
accuracy of 71% in the testing set (Tab 1.), 

demonstrating a slightly higher performance than each 

of the ML pipelines independently. By comparison, the 
accuracy reached by the standard clinical factor 

routinely used to stratify patients and determine 

therapeutic options (stage 2 vs. 3), was 61% and 58% in 

the training and testing sets respectively. 

Tab 1: Comparison results of ML pipelines 

ML Method Training 

Accuracy 

Testing 

Accuracy 

# 

Features 

RF 89 67 25 

SVM 100 64 27 

LR 72 63 37 

Fusion 

(majority 

voting) 

1 71  

 

4 Conclusion 

Our study has a few limitations. It is a mostly 
retrospective and monocentric study. Only primary 

tumor volumes, not involved lymph nodes, were 

analyzed. We did not include features extracted from 
the low-dose CT component. We included and 

compared only three ML pipelines, however we selected 

optimized ones relying on embedded feature selection 

approaches.  
Nonetheless, our results obtained in a rather large 

group of patients can be of interest for the community as 

they show that even optimized ML pipelines select 
different sets of features and reach different 

classification performance, with a relatively moderate 

agreement, which is why the fusion of their outputs can 
help reaching a higher performance (accuracy of 71% 

for the fusion using majority voting, compared to 67, 64 

and 63% for RF, SVM and LR respectively). Even 

though the level of accuracy reached can seem relatively 
low compared to other applications, it is important to 

emphasize that prognostic prediction in lung cancer is 

notoriously difficult and that even such a moderate 
accuracy actually leads to a higher prognostic 

stratification than clinical staging, and is therefore of 

real interest for clinical practice, as it could help 

identifying patients with higher risk amongst stage II 
and III patients. These higher risk patients could benefit 

from intensified treatment and/or more frequent follow-

up after treatment.  
Future work will consist in adding the radiomics 

features from the low-dose CT component and 

considering other ML methods and fusion approaches. 
Comparison with deep learning techniques is also 

ongoing. Finally, validation of the developed models in 

external cohorts will be carried out as well. 
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