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Abstract – Graph matching for shape comparison or network analysis is a challenging issue in machine learning and computer vision. Gener-
ally, this problem is formulated as an assignment task, where we seek the optimal matching between the vertices that minimizes the difference
between the graphs. We compare a standard approach to perform graph matching, to a slightly-adapted version of regularized optimal transport,
initially conceived to obtain the Gromov-Wassersein distance between structured objects (e.g. graphs) with probability masses associated to the
nodes. We adapt the latter formulation to undirected and unlabeled graphs of different dimensions, by adding dummy vertices to cast the problem
into an assignment framework. The experiments are performed on randomly generated graphs onto which different spatial transformations are
applied. The results are compared with respect to the matching cost and execution time, showcasing the different limitations and/or advantages
of using these techniques for the comparison of graph networks.

1 Introduction

With the ever-increasing use of graphs for representing com-
plex data, due to their ability to synthetically capture structural
relations, the need to provide a meaningful comparison among
them becomes more relevant. In the computer science liter-
ature, this is often formulated as a graph-matching problem.
The main idea is to obtain an evaluation of the similarity be-
tween two graphs, by finding the optimal correspondence be-
tween their vertices, such as to align their structure (i.e their
adjacency matrices) [1]. In other words, the difference between
them is evaluated by the amount of edge differences up to an
optimal node permutation.

Among the methodologies proposed for this purpose, we
consider the class of inexact graph matching, tailored specif-
ically to real-world graph representations. This class of meth-
ods allows for a less strict correspondence of the graph vertices,
and hence a less strict edge preservation. In this paper, we are
interested in one of the various techniques to perform many-
to-many graph matching [2], where the merging of multiple
nodes to match another one is allowed, especially in the case
of graphs with different dimensions (i.e. different number of
total vertices). A particular case is considered to be one-to-one
graph matching, where the issue of having to match graphs of
different dimensions, is handled in practice by adding dummy
nodes (with no connection) to the smaller size graph. In any
case, these are formulated as discrete optimization problems
for which several approximations are proposed [1].

From a different perspective, we refer to another line of work,
mainly to approaches based on the optimal transport, for the

comparison of structured objects (e.g. graphs) with associated
probability distributions. The approach in [3] seeks to com-
pare structured data, by minimizing the cost of transport of the
mass from one discrete distribution to the other. For the com-
parison of distance/kernel matrices, they consider the intrinsic
structural information in the cost formulation. Furthermore,
an efficient algorithm to compute the Gromov-Wasserstein dis-
crepancy [4] (an optimal transport metric capable of matching
metric - measure spaces) is proposed.

In this paper, we compare the two approaches from a graph-
matching perspective, on randomly generated graphs. If on one
hand, the graph matching by many-to-many assignment cap-
tures the distance between two given graphs, in the cost of per-
muting the structure of one graph to match that of the second
one (giving rise to an interpretable distance), on the other hand
the Gromov-Wasserstein discrepancy is computed faster with
similar performances in some of the scenarios. This work is
also a preliminary study for the development of a graph-based
computational model for the extracellular matrix fibronectin
fibers in microscopy imaging [5].

2 Many-to-Many Graph Matching

We are motivated by the use of proven robust methods that can
clearly reflect the cost of matching in their formulation, as a
measure of similarity between the graphs. There are a few
main approaches to find approximate solutions to the corre-
sponding NP-hard problem, such as local search algorithms,
spectral methods and optimization problems solved through a



continuous relaxation of the formulation [1]. In this paper,
we consider the latter family of methods, for its advantages
in terms of speed and, therefore, the possibility of comparing
graphs with large dimensions in a reasonable time. Another
reason to select these techniques, is their flexibility in terms of
multiple matching of vertices (or addition of the dummy nodes
with no connection), as opposed to the one-to-one matching
framework. The problem is defined in the following manner.
We consider two undirected graphs represented by their real-
valued adjacency matrices G and H of size NG × NG and
NH×NH respectively. Denoting by ||·||F , the Frobenius norm
of the matrices (defined as ||A||2F = trATA = (

∑
i

∑
j A

2
ij),

the objective is to find the matrices P1 ∈ {0, 1}NK×NG and
P2 ∈ {0, 1}NK×NH (which can be regarded as matching ma-
trices between G, H , and a virtual intermediate graph for each
matching, of size NK , where NK is min {NG, NH}):

min
P1,P2

||P1G
TPT

1 − P2HP
T
2 ||2F s.t.

P11NG
≤ kmax1NK

, PT
1 1NK

= 1NG

P21NH
≤ kmax1NK

, PT
2 1NK

= 1NG

(1)

where 1N represents the constant N-dimensional vector of all-
ones. In our experiments, we consider NG ≥ NH . The maxi-
mal number of vertices merged together is represented by kmax

and the many-to-many matching matrix is given byP = P1P
T
2 ,

where P ∈ {0, 1}NG×NH is the matching matrix between G
and H . The authors in [2] propose an approximation of the
final solution, using a version of the conditional gradient al-
gorithm, based on the continuous relaxation of (1). They also
reformulate the gradient minimization as a linear assignment
problem with a cubic complexity, hence making it feasible for
high-dimension graph matching.

3 Gromov Wasserstein - Optimal Trans-
port

3.1 General Optimal Transport
Optimal transport offers a well-founded approach to measure
meaningful distances (expressed as transport costs) across dis-
crete distributions. Its appeal comes from the ability to com-
pare histograms while reflecting the geometry of the underly-
ing space in the transport cost.

We define an N-dimensional set of histograms SN = {x ∈
[0, 1]N ,

∑
i xi = 1}. Suppose that we take two discrete distri-

butions a and b ∈ SN , and we also consider the cost function
matrix C ∈ (R+)N×N , a matrix whose term C(i, j) denotes
the cost to move the mass between bin i of a to the bin j of b.
Then the classical formulation of the optimal transport between
the two histograms a and b, that provides the well-known Earth
Mover distance (EMD) [6], seeks the coupling (transportation)
matrix PEMD that satisfies: minPEMD∈RN×N

∑
ij CijPEMDij , s.t.

PEMD1N = a, PT
EMD1N = b and PEMD ≥ 0. PEMDij repre-

sents the amount of mass moving from bin i of a to bin j of

b. A generalization of this framework is the m-Wasserstein dis-
tance, defined as Wm(a, b) = minPEMD〈PEMD, C

m〉1/m. How-
ever, this classic discrete formulation doesn’t take into account
the inner structural dependency of the objects.

3.2 Structured Optimal Transport
Recently, within the framework of structured optimal transport,
several works [3, 7, 8, 9] have shown the advantage of incor-
porating additional geometrical properties into the cost func-
tion, for tasks such as domain adaptation, natural language pro-
cessing, computing graph barycenters or graph clustering. If
the approach in [3] includes the intrinsic structure of the ob-
jects in the cost formulation, the authors in [7] present a new
class of distances, that incorporates both structural and fea-
ture information into its transport cost. They focus on pre-
viously labeled structured objects, where for instance, graph
edges represent relationships between features (vertices). Our
interest in this paper is to compare unlabeled graphs, where
no previous pairwise correspondences between the vertices of
two graphs are known. Therefore, we focus on the work of
Peyre et al.[3] that have considered a metric called Gromov-
Wasserstein, capable of comparing objects that lie in spaces
with different dimensions. This discrepancy is computed with
a fast iterative algorithm based on an entropic regularization
of the transportation matrix. In the following, we consider
(G, a) ∈ RNG×NG × SNG

and (H, b) ∈ RNH×NH × SNH
,

where G and H encode the graphs’ structure given by either
the adjacency matrices, or the shortest path between the graph
nodes, and a and b are the mass distributions associated to the
graph vertices (e.g. uniform distributions, a = 1

NG
1NG

and
b = 1

NH
1NH

). The entropic Gromov-Wasserstein discrepancy
between (G, a) and (H, b) is defined as follows:

min
P ′

∑
i,j,k,l

L(Gi,k, Hj,l)P
′
i,jP

′
k,l − εH(P ′) s.t.

P ′1NH
= a, P ′

T
1NG

= b

(2)

where the entropy of the coupling matrix P ′ ∈ RNG×NH is:
H(P ′) = −

∑
i,j P

′
i,j(log(P

′
i,j) − 1). The transport matrix

indicates the matching between the two graphs such as if its
term P ′(i, j) > 0, the node j of graph H is assigned to the
node i of graph G. The loss function L(u, v) can be taken
as the quadratic loss or Kullback-Leibler divergence. We note
that for ε = 0, the optimization problem is approximated by a
classical solver with supercubical complexity.

4 Method design
In order to evaluate the performances of the two chosen meth-
ods (whose implementations are found online 1 2) in a graph

1http://projects.cbio.mines-paristech.fr/graphm/mtmgm.html
2https://github.com/gpeyre/2016-ICML-gromov-wasserstein

http://projects.cbio.mines-paristech.fr/graphm/mtmgm.html
https://github.com/gpeyre/2016-ICML-gromov-wasserstein


matching setting, we have first generated random graphs of dif-
ferent size (i.e. 16 vertices and 181 vertices). The graphs de-
scribe the structure of Voronoi diagrams, generated from seeds
uniformly distributed on a bounded region. We applied several
spatial transformations to the previously generated graphs (i.e
rotation with π/2, removal of nodes) and evaluated the cost of
matching between the original variants and the modified ones.
The rotation is directly applied to the set of vertices, and there-
fore the size of the graphs remains unchanged. Subsequently,
we chose to modify the size of the graphs by removing vertices
of various degrees (the vertex degree is given by the number
of incident edges). For each case, we have considered the two
graphs to compare, G and H , (see Figures 1,2,3) represented
alternatively by the binary adjacency matrix, or by the shortest
path between the vertices at different orders: 2,3 and total. Ad-
ditionally, we considered the integer values of the shortest path
between nodes as well as the subunitary values (i.e. replacing
the integer value by its inverse).

4.1 Graph Matching experiments
Denoting by F the objective function in (1), the actual algo-
rithm seeks the minP1,P2{F − λs(||P1 − 0.5||2F + ||P2 −
0.5||2F + c)}, where λs is a sparsity penalization parameter and
c is a parameter depending on the graphs size. We tested the
method for various values of λs in the [0, 1] interval, and chose
the parameter configuration that resulted in the best match-
ing. The difference between the dimensions of the graphs to be
matched is handled, either by setting kmax ≥ 2 (hence allow-
ing at most kmax vertices to be merged to match another one),
or by setting kmax = 1 (hence allowing the implicit choice of
nodes that will be assigned as dummy, within the graph having
a larger dimension). Setting kmax ≥ 2 requires careful tuning
of λs, and doesn’t always guarantee a good matching quality,
therefore, we kept kmax = 1. The initialization of the P1 and
P2 matrices is extremely important as the non-convex problem
is sensitive to it. In our experiments, we kept the initialization
proposed by the authors, shown empirically to be a reasonable
choice: P1 = 1

NH
1NG

1T
NH

and P2, the identity matrix I .

4.2 Gromov-Wasserstein experiments
For the loss function L(u, v), we considered the quadratic ver-
sion defined in [3], and uniform weights associated to the graph
vertices (i.e. a = 1

NG
1NG

and b = 1
NH

1NH
). We assume that

a vertex i of graph G is matched to a vertex j of graph H , if its
entire weight is transported to that of vertex j.

Regularizing the problem with an entropy term is shown to
lead to a faster iterative algorithm. However, this also leads to a
spread of mass from vertex i from graph G to multiple vertices
of graphH . In order to recast this approach in the framework of
graph-matching problems, we set ε = 0. Moreover, to avoid the
mass spreading as a consequence of the different dimensions
of the two graphs (e.g when removing vertices), we added a
dummy vertex (with no connection) to the graph with lower

dimension (e.g. graph H) to which we assigned a mass that
compensates the mass difference of vertices between the two
graphs. Hence, this weight is equal to 1− NG

NH
.

5 Results
For each of the previous pairs of graphs (G − H), we ran
the algorithms for graph matching using many-to-many graph
matching and structured optimal transport. In order to com-
pare the performances of the two methods, we computed the
cost of matching given by the difference between G, the ad-
jacency matrix of the first graph, and PHPT , the adjacency
matrix of the matched graph, as ||G− PHPT ||1, where ||A||1
= (

∑
i

∑
j |Aij |).

FIG. 1: Initial graphs G - 16 and 181 nodes

FIG. 2: Target graphs H - 16 nodes: Rotation with π/2 clock-
wise, Removal of one degree node, Removal of 3rd degree
node

FIG. 3: Target graphsH - 181 nodes: Rotation with π/2 clock-
wise, Removal of one degree node, Removal of 4th degree node

Since we already know which is the expected assignment
between the vertices of the simulated graphs, we computed
the cost of the perfect matching for all of the cases mentioned
above. Table 1 contains the matching cost and execution time
in the case of the perfect matching (PM), many-to-many method
(MM), and the optimal transport (OT).

We notice in the case of many-to-many assignment, that for
both graphs, the rotation is handled perfectly for most cases,
except when G and H are binary adjacency matrices. Addi-
tionally, removal of one degree node returns the expected as-
signment, while removal of a higher degree node is correctly
handled only in the case of larger graphs.

In the case of the approach based on the optimal transport,
the results indicate that similarly to the first method, the rota-
tion of the graphs is handled well, except for the case when



TAB. 1: Maching cost for the perfect matching (PM), many-
to-many matching (MM) and optimal transport (OT). Graphs
have either 16 or 181 vertices and the transformations are: ro-
tation, removal of one-degree node (Remove A), removal of
multiple-degree node (Remove B). G and H have the following
representations: binary adjacency matrices (Int1), shortest path
integer values and subunitary values at order 2,3, total (Int2,
Int3, IntT, Sub2, Sub3, SubT).

Graph PM MM OT
Transf G,H Cost Cost Time(ms) Cost Time(ms)

Rotation (16)

Int 1 0 16 70 52 30
Int 2 0 24 50 0 5
Int 3 0 0 20 0 4
IntT 0 0 20 0 2
Sub 2 0 0 20 0 4
Sub 3 0 0 20 0 3
SubT 0 0 10 0 2

Remove A (16)

Int 1 2 2 20 58 70
Int 2 10 10 20 86 7
Int 3 34 34 20 186 6
IntT 102 142 40 118 4
Sub 2 4 4 30 32 5
Sub 3 6.7 6.7 20 18 4
SubT 10.4 10.4 20 17.5 2

Remove B (16)

Int 1 6 14 60 58 40
Int 2 42 82 90 114 5
Int 3 124 196 100 232 3
IntT 538 546 100 550 2
Sub 2 15 29 60 67 5
Sub 3 23.6 39 70 44.3 4
SubT 40.2 50 40 57.6 2

Rotation (181)

Int 1 0 424 5600 1048 100
Int 2 0 0 1800 0 80
Int 3 0 0 1500 0 30
IntT 0 0 2700 0 20
Sub 2 0 0 2000 384 100
Sub 3 0 0 1500 14.7 50
SubT 0 0 1700 0 20

Remove A (181)

Int 1 2 2 2300 1054 100
Int 2 14 14 1900 4074 100
Int 3 50 50 1500 50 40
IntT 3766 3766 3000 5006 30
Sub 2 5 5 5900 1000 100
Sub 3 9 9 2000 29.7 80
SubT 45.9 45.9 1900 105.2 40

Remove B (181)

Int 1 8 8 4800 1044 100
Int 2 56 56 2800 4324 90
Int 3 196 196 2000 196 70
IntT 4928 4928 2900 5916 30
Sub 2 20 20 18600 108 20
Sub 3 34.7 34.7 3000 552 100
SubT 94 94 2900 662 90

G and H are the adjacency matrices. A higher order of the
shortest-path distance provides a more faithful representation
of the graph adjacencies. However, in the case of larger-size
graphs, increasing the order might also increase the time needed
for the algorithm to converge to an optimal solution. This leads
us to believe that a compromise (e.g. consider a 3rd order)
might work best, as confirmed by the results.

Generally, the optimal transport fails to provide the expected
matching in far more scenarios than the many-to-many assign-
ment. For most of the experiments nonetheless, the OT method
finds the result in a shorter time, corresponding to one order
of magnitude for the smaller graphs, and up to two orders of
magnitude for the largest ones. This may be a considerable ad-
vantage over the many-to-many graph matching technique, if
considered for the modeling of real graph-networks.

6 Conclusions
Generally, when it comes to comparing undirected and unla-
beled graph networks in an assignment framework, the short-
est path seems to be a better choice compared to the binary
adjacency matrix (G - H representation), as it incorporates
more information about their topological structure. In terms
of the matching cost, many-to-many matching performs better,
as highlighted by the results. However, we found that having
to set a sparsity penalization parameter to trigger the expected
solution as well as the sensitivity of the non-convex problem
to the initialization, to be important drawbacks. The method
by optimal transport performs significantly faster. Adding a
dummy node to avoid mass splitting allows us to employ this
formulation as a one-to-one graph matching problem. The re-
sults that we have obtained have a preliminary character, as we
intend to explore these observations for further development of
a computational model that is able to compare biological net-
works.

Acknowledgements. This work was supported by the French Gov-
ernment (National Research Agency, ANR) through the ”Investments
for the Future” LABEX SIGNALIFE: program reference ANR-11-
LABX-0028-01.

References
[1] Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng, Hongyuan

Zha, and Xiaokang Yang. A short survey of recent advances in
graph matching. pages 167–174, 06 2016.

[2] Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. Many-
to-many graph matching: A continuous relaxation approach. In
Machine Learning and Knowledge Discovery in Databases, pages
515–530, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
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