
A Data Imputation Method for Matrices in
the Symmetric Positive Definite Manifold

Pedro L. C. RODRIGUES1, Marco CONGEDO1, Christian JUTTEN1

GIPSA-lab, CNRS, University Grenoble Alpes, Grenoble Institute of Technology
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Résumé – L’imputation de données manquantes (aussi connue sous le nom de complétion de données) est une technique standard d’analyse
statistique de données utilisée pour remplacer des valeurs manquantes sur une base de données. Elle est utile, par exemple, lorsqu’un ou plusieurs
capteurs d’un enregistrement exprimental présentent des problèmes et doivent être rejetés. Dans ce travail, nous présentons une méthode pour
compléter les valeurs d’une matrice symétrique définie positive lorsqu’elle est utilisée comme descripteur statistique d’une série temporelle
multiple. Nous illustrons notre contribution dans des tâches de classification pour des Interfaces Cerveau-Machine et comparons sa performance
à celle d’une méthode de référence.

Abstract – Missing-data Imputation (sometimes called data completion) is a standard technique from statistical data analysis used for replacing
missing values in databases. It is useful, for instance, when one (or several) of the sensors on an experimental recording presents a problem and
has to be discarded. In this work, we present a method for completing missing values of symmetric positive definite matrices when they are used
for describing the statistics of a multivariate time series recorded on multiple sensors. We illustrate our proposal on classification tasks in the
field of Brain-Computer Interfaces and compare its performance to a reference method.

1 Introduction

Missing-data Imputation (sometimes called data completion)
is a standard technique from statistical data analysis used for
replacing missing values in databases [7]. It is useful when
working with spreadsheets, where the values of some attributes
on certain rows may be missing due to technical problems,
and also when monitoring physical experiments, where one (or
more) sensors may present recording problems.

One might argue that it would be easier to simply discard
data points presenting problems in one (or more) of their di-
mensions instead of filling missing values via an imputation
method. However, there are many situations where gathering
data points may be expensive and discarding even just a few of
them is not acceptable. An example of such an application are
Brain-Computer Interfaces (BCI), where each data point of a
dataset is the recording of electroencephalographic (EEG) ac-
tivity of a subject that may last for a few seconds. In this case,
discarding a trial because of only one or a few malfunctioning
electrodes is not desirable.

In this work, we propose a method for imputation when the
data points are n-dimensional symmetric positive definite (SPD)
matrices. In this case, the goal is to be able to augment an m-
dimensional SPD data point (m < n) into an n-dimensional
data point respecting some geometric constraints. An important
application is in the field of BCI, where the state-of-the-art me-
thods for classification employ spatial covariance matrices as
statistical features, which are SPD matrices [1]. An EEG epoch

recorded using n electrodes yields an n-dimensional SPD ma-
trix, but if p electrodes present problems and have to be dis-
carded, the data point becomes a m-dimensional SPD matrix,
with m = n − p. Our imputation method transforms the m-
dimensional matrix into an n-dimensional matrix respecting
geometric and statistical constraints.

The rest of the present paper is organized as it follows : we
start with a brief introduction to concepts of Riemannian geo-
metry for SPD matrices. Then, we present our data imputation
method as well as its interpretations in the context of multi-
variate time series. Finally, we describe our numerical illustra-
tions on BCI datasets and discuss the results.

2 The SPD manifold

We denote the set of n-dimensional SPD matrices by P(n)
and endow it with the Affine Invariant Riemannian Metric [2].
This choice turns P(n) into a symmetric Riemannian manifold
with non-positive curvature whose geodesic distance between
Xi, Xj ∈ P(n) is [2]

δ2R(Xi, Xj) =
∥∥∥log (X−1/2i XjX

−1/2
i

)∥∥∥2
F
. (1)

The geometric mean (or center of mass) MX of a set of points

X = {X1, . . . , XK} ⊂ P(n)



is defined as [2]

MX = argmin
X∈P(n)

K∑
k=1

δ2R(X,Xk) , (2)

and we denote by dX the dispersion of the set of points, that is,
the minimum value attained by the cost function in (2).

There are many ways to describe the geometry of a set of
points. Some consider all the pairwise distances between them,
others are based on an empirical estimation of their statistical
distribution [8]. In this work, we describe the datasets via their
center of mass and their dispersion. We use the following no-
tation to refer to the geometry of a dataset X to which a data
point Xi belongs to :

Xi ∼ (MX , dX ) .

3 The imputation method

3.1 Problem statement
Consider a dataset X ⊂ P(n) and a data point Y ∈ P(m)

(m < n). We assume that Y is the only element to which we
have access from a dataset Y whose geometry can be summa-
rized by (MY , dY). Our imputation method is a transformation
from P(m) to P(n) such that, when it is applied to Y , the
new data point Ỹ has the same geometric characteristics as the
points coming from X . We require then :

Y ∼ (MY , dY)
imputation−−−−−→ Ỹ ∼ (MX , dX ) . (3)

3.2 The transformations
The imputation method consists of 4 transformations :

Step 1 (re-center to Identity) : transform Y so its description
is centered around the m-dimensional Identity matrix :

Y ∼ (MY , dY)
re-center−−−−→ Yrct ∼ (Im, dY) , (4)

where
Yrct =M

−1/2
Y Y M

−1/2
Y . (5)

Step 2 (scaling) : adapt the dispersion around the mean for Yrct
so that it is equal to dX :

Yrct ∼ (Im, dY)
scaling−−−→ Ystr ∼ (Im, dX ) , (6)

where
Ystr = (Yrct)

s and s =
dX
dY

. (7)

Step 3 (expand) : expand Ystr to an n-dimensional matrix :

Ystr ∼ (Im, dY)
expand−−−→ Ỹstr ∼ (In, dX ) , (8)

where

Ỹstr =

[
Ystr 0m×(n−m)

0(n−m)×m I(n−m)

]
(9)

and 0p×q is a p× q matrix filled with zeros.

Step 4 (re-center to MX ) : transform Ỹstr so its description is
centered around MX :

Ỹstr ∼ (Im, dX )
re-center−−−−→ Ỹ ∼ (MX , dX ) , (10)

where
Ỹ =M

1/2
X Ỹstr M

1/2
X . (11)

This sequence of steps applied to Y gives as output a new data
point Ỹ that satisfies Equation 3. The geometric motivation
behind these transformations, as well as their formal justifica-
tions, are presented in [10].

3.3 A time series interpretation
In our formalism up to here, we have only said that the data

points in X are n-dimensional SPD matrices. From now on, we
will assume that these data points are in fact spatial covariance
matrices describing the statistics of multivariate time series.

We consider having a dataset S with K recordings over n
electrodes during T time samples so that

S = {S1, . . . , SK} ⊂ Rn×T . (12)

To each element Si ∈ S we associate a spatial covariance ma-
trix Xi and form a dataset X ⊂ P(n). In this context, having
a data point Y ∈ P(m) means having in fact a recording with
problems over p electrodes so that only m = n− p time series
can be used. We denote this recording S ∈ Rm×T .

We can interpret the steps of our data imputation method as
operations over the multivariate time series S as follows :

1. First, apply a whitening matrix to make the time series on
each electrode approximately uncorrelated to each other
(Step 1) :

Swhitened =M
−1/2
Y S ⇒ Ywhitened ' Im. (13)

2. Then, add p new dimensions to the multivariate time se-
ries and fill them with uncorrelated white noise (Step 3) :

S̃whitened =

[
Swhitened

sp

]
⇒ Ỹwhitened ' In , (14)

where sp is a realization over T time samples of a p-
dimensional time series with zero mean and covariance
matrix Ip. For instance, it could be a spatially uncorrela-
ted zero-mean Gaussian white noise.

3. Dewhiten S̃whitened by doing (Step 4) :

S̃ =M
1/2
X S̃whitened ⇒ Ỹ 'MX . (15)

Note that this step mixes the newly added sp with the
time series from other electrodes.

The imputation method can be seen as a general way to fill p
dimensions of S with time series whose second order statistics
have some desired structure. For particular applications, there
are other methods to solve this problem. For instance, for ma-
gnetoencephalographic (MEG) and EEG signals the method of
reference is the spherical spline interpolation [9], which fills
the signals on problematic channels by taking linear combina-
tions of the time series on electrodes which are spatially close
to them.



3.4 Estimating MY and dY

Our imputation method relies on the estimation of parame-
ters MY and dY , but we have access to just one data point Y
from Y . We cope with this limitation by doing the following :
discard the same p problematic electrodes related to S from
all n-dimensional data points in S. Estimate their spatial cova-
riance matrices and denote this new dataset X (−p) ⊂ P(m).
Estimate the geometric mean and the dispersion for the data
points inX (−p) and use them as estimates forMY and dY . This
procedure relies on the assumption that datasets X (−p) and Y
are similar to each other, which is reasonable when considering
that Y was obtained during the same experiment that generated
the data points from X .

4 Numerical Illustrations

4.1 The dataset
We illustrate our method on a database containing electroen-

cephalographic (EEG) recordings of a brain-computer interface
(BCI) experiment [3]. The database contains recordings on 23
electrodes of 52 subjects executing a left-hand/right-hand mo-
tor imagery paradigm. The signals are band-pass filtered bet-
ween 8 Hz and 35 Hz (sampling frequency is 512 Hz) and epo-
ched into one hundred 3-second trials : 50 trials on the left-hand
class (labeled 0) and 50 trials on the right-hand class (labeled
1). Such pre-processing yields for each subject a set of data
points S as defined in (12) with m = 23, T = 1536, and
K = 100, as well as a set of labels associated to it

L = {`1, . . . , `100} with `i ∈ {0, 1} . (16)

For each element Si ∈ S we estimate a spatial covariance ma-
trixXi using Ledoit-Wolf shrinkage [6], which ensures its good
numerical conditioning by shrinking the sample-covariance ma-
trix to the identity matrix via a weighting factor. The set of spa-
tial covariances forms the dataset X ⊂ P(23).

When an epoch has a problem on p electrodes, it generates a
data point S ∈ Rm×1536 where m = 23 − p. Without loss of
generality, we will consider that the dimensions related to these
discarded electrodes correspond to the p last dimensions of the
data points in X . The spatial covariance matrix Y estimated
from this epoch is an element of P(m).

4.2 The classification procedure
In this paper, every classification task is done using the Mini-

mum Distance to Mean classifier (MDM) [1], which is a gene-
ralization of the nearest-centroid classifier to the space of SPD
matrices. It works by first estimating the geometric mean of the
elements of each class in the training dataset (the class means).
Then, it assigns to each unlabeled data point the class of the
nearest class mean according to the geodesic distance defined
in (1). The classification score is simply the average accuracy
of the classifier.

We demonstrate the usefulness of our imputation method
by comparing the classification score obtained via MDM on
three different methods. Firstly, we get the accuracy on a da-
taset where there is no problem on any electrode (we call this
the full method). Then, we consider the case when a few data
points have problems on a set of p arbitrarily chosen electrodes.
For this, we select a few epochs from the dataset used in the full
method and emulate the problematic electrodes by discarding
them from the recordings. We apply our imputation method
to augment the dimension of these data points and compute
the accuracy of MDM for classifying them (imputation me-
thod). As a comparison, we consider the case when the matrices
are augmented via spherical spline interpolation (interpolation
method) as implemented in the MNE-Python package [5].

The scores are obtained via cross-validation. The data points
in the training dataset are always n-dimensional and used for
estimating the centroids for the MDM classifier. The unlabeled
data points from the testing dataset are either n-dimensional
(full method) or m-dimensional (imputation and interpola-
tion methods).

5 Results and discussion
In the results described below, we have used knowledge of

the neurophysiology of BCI experiments in the motor imagery
paradigm to consider settings with different combinations of
EEG electrodes as problematic. We chose channels located in
the motor cortex, which are known to carry important informa-
tion for classifying the trials (C3 and C4), as well as electrodes
which are not relevant for this kind of paradigm (Fz and Pz) [4].
See Figure 1 for a representation of the spatial disposition of
the 23 electrodes used for the recordings in the database.

F3 Fz F4

FC5 FC1 FC2 FC6

C6C4CzC3C5

CP5 CP3 CP1 CP2 CP4 CP6

P3 Pz P4

PO4PO3

FIGURE 1 – Diagram with the electrodes configuration. The
gray area indicates where the sensory motor cortex is approxi-
mately located, which is the region expected to be the most
relevant for classification tasks in the motor imagery paradigm.

Table 1 displays the classification scores for the imputation
and interpolation methods when different electrodes are consi-
dered as problematic. The score obtained with the full method
was 0.663 and serves as a reference for our comparisons.

We observe that the scores with the imputation method when
only the Fz and/or the Pz electrodes are missing is not very dif-
ferent from that of the full method. In fact, a paired t-test com-



TABLE 1 – Average accuracy scores for the imputation and in-
terpolation methods over the 52 subjects in the database (stan-
dard deviation inside parenthesis). The missing electrodes co-
lumn indicates which electrodes were discarded in each case.
The average accuracy for the full method was 0.66.

missing electrodes imputation interpolation
{Fz} 0.66 (0.11) 0.64 (0.10)
{Pz} 0.66 (0.10) 0.63 (0.10)

{Fz, Pz} 0.66 (0.10) 0.61 (0.10)
{C3} 0.65 (0.10) 0.63 (0.10)
{C4} 0.65 (0.10) 0.61 (0.08)

{C3, C4} 0.64 (0.09) 0.61 (0.09)

paring the scores for each subject of the database indicates no
evidence for rejecting the null hypothesis of them being equal.
Such a result is not surprising, since the referred electrodes
were not expected to carry relevant information to discrimi-
nate between the classes of the experiment. However, when the
C3 and/or the C4 are missing, the important discriminative in-
formation provided by these channels can not be replaced by
our imputation method, so the average classification score de-
creases.

We also note that the imputation method consistently yields
better results, in average, when compared to the interpolation
method. We performed paired t-tests to compare the results of
the two methods and the null hypothesis of equal scores was
always rejected with p-values smaller than 10−3 (corrected for
the multiple comparisons problem via the Bonferroni correc-
tion). A possible explanation for this could be the diversity of
information used by our imputation procedure as compared to
the interpolation method, since it adds new dimensions to the
problematic m-dimensional Y matrix using information from
the rest of the dataset X , whereas spherical spline interpolation
uses only information from the time series S related to Y . Fur-
thermore, because the p dimensions added to S are simply li-
near combination of itsm time series, the rank of S̃ ∈ Rn×1536

is just m. As a consequence, although the estimated Ỹ has no
zero eigenvalues (because of the Ledoit-Wolf shrinkage), some
of its eigenvectors point to directions which are not descriptive
and may prejudice the classification procedure.

It should be mentioned that the matrix augmentation scheme
provided by our imputation method is purely based on the dis-
tribution of the spatial covariance matrices of each trial. This
means that there is no physiological interpretation for the time
series obtained on the p added dimensions. However, one could
try to determine a physiologically plausible sp in (14) with the
statistical properties required by the imputation method.

6 Conclusions
We have presented a new method for augmenting the dimen-

sions of an m-dimensional SPD matrix to make it compatible

with datasets having n-dimensional data points. One important
application of this method is in the case of EEG multivariate
time series, where an electrode (or more than one) may present
problems and have to be discarded. Our method provides a way
for filling the values on this discarded electrode and allow it
to be combined in a classification pipeline with other epochs.
Comparisons with a reference method from the literature [9]
show that our proposal is superior when the data imputation is
used in classification pipelines.

Further work may include the use of physiological and spa-
tial information from the location of the EEG electrodes to im-
prove the imputation method and allow for the extraction of
meaningful time series from the added dimensions.
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