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Résumé – Dans cet article, nous présentons une nouvelle méthode d’initialisation pour la première couche de réseaux de neurones convolution-
nels (CNNs). Avec la nouvelle initialisation, nous obtenons un ensemble de filtres passe-haut tout en conservant la stabilité statistique de l’entrée
et de la sortie. Expérimentalement, la méthode nous permet de mieux identifier les opérations de traitement d’image couramment utilisées pour
altérer une image dans un scénario réel.

Abstract – In this paper we present a simple yet effective initialization method for the first layer of convolutional neural networks (CNNs). The
proposed initialization gives a set of high-pass filters while keeping the statistical stability of the input and output. Experimentally, this allows us
to better identify image processing operations that would normally be used in order to tamper an image in a real scenario.

1 Introduction

Image forensics [1] is a technique that analyzes traces in
image data in an attempt to assess the image’s authenticity.
Identifying whether an image has been modified or not is im-
portant because tampered images can have serious consequences
on society, e.g., misleading the public opinion or even hinde-
ring law enforcement if a doctored picture is taken as a “convin-
cing” proof in court.

In a real tampering scenario, there are several basic opera-
tions that can be performed on an image in order to modify it,
such as median filtering, resampling and noise addition. Fol-
lowing several recent studies [2, 3, 4, 5], we focus on the de-
tection of these image processing operations which would pro-
vide useful hints on exposing image forgeries. To solve this
forensic problem, majority of existing methods follow a com-
mon strategy. First, local pixel difference or residuals are com-
puted through an adequate filtering to remove or suppress the
image content. Then the pixel difference or residuals are taken
as the input to a feature extractor followed by classifier training,
or more recently to a convolutional neural network (CNN) for
joint feature learning and classification. In the recent and effec-
tive CNN-based methods [3, 5], the authors put at the beginning
of CNN either a fixed layer of residual extraction or a constrai-
ned layer that is forced to learn a group of Laplacian-like filters.
We think that such a fixed or constrained first layer is rather res-
trictive and therefore may limit the learning capacity of CNN,
leading to non-optimal forensic detection accuracy. Accordin-
gly, we suggest that it would be a better solution to set up a
good initialization for the first layer and then to freely train the
CNN. The proposed very simple initialization is able to give

better forensic performance when compared with the existing
methods.

The rest of our paper is organized as follows. In Section 2 we
describe the proposed initialization scheme for the first layer
of CNN. The experimental results, comparisons and analysis
are presented in Section 3. Finally, the conclusion remarks are
drawn in Section 4.

2 The Proposed Initialization
Our method was inspired by the milestone work of Glorot

and Bengio [6], also well known as the Xavier initialization.
More precisely, for initializing filter weights in a CNN, a ma-
thematically rigorous study has been performed which takes
into account the stability of the variance of the signal of CNN
data flow. This helps the signal to reach deep into the network.
Indeed, if the filter weights in a network start too small (resp.
too large), then the signal shrinks (resp. grows) as it passes
through each layer until it becomes too tiny (resp. too massive)
to be useful for the network training [6].

In a CNN, each filter (also called a kernel) performs locally
a weighted sum of the input data “seen” by the kernel, using
the kernel values as weights [7, 8]. Let us assume that the filter
comprises n scalars denoted by W = (w1, w2, ..., wn) (here
considered as a group of random variables), then accordingly
the input data “seen” locally by this filter also comprises n sca-
lar random variables, denoted by X = (x1, x2, ..., xn). Now
it can be seen that the output y of a filter is simply the in-
ner product between W and X. We can therefore easily derive
the variance of y as given in Eq. (1), where the second equa-
lity holds under mild conditions that the n random variables



FIGURE 1 – Shape and notations of the initialized filter (left)
and the corresponding input (right), with a 3 × 3 filter as
example.

wi,i=1,2,...,n (resp. xi,i=1,2,...,n) follow zero-mean independent
and identical distribution (iid) and that wi and xi are mutually
independent [7, 8].

Var(y) = Var(w1x1 + w2x2 + ...+ wnxn)

= nVar(wi)Var(xi).
(1)

The basic idea of Xavier initialization is to keep the variance
of the filter output the same as that of the filter input, so that
the data flow keeps stable throughout the CNN, and this helps
to facilitate the network training. From the above analysis, we
can see that this requirement means that the term nVar(wi) in
Eq. (1) should be equal to 1, i.e., we have Var(wi) =

1
n . Once

we know the variance of wi, we can draw values from a simple
and appropriate distribution (i.e., a uniform or a Gaussian dis-
tribution) to be the initial weights of the filter.

Recall that in this paper we want to detect the traces of image
processing operations. Although CNNs give a promising me-
thodology towards automatic feature learning, in their current
form (mostly from the computer vision community), they are
not fully suitable for forensic problems. This is on the grounds
that current neural networks tend to learn features representa-
tive of an image’s content, contrary to forensic traces which
are rather content-free and reside towards the high-frequency
part of the images [3, 5]. The Xavier initialization is one of
the possible reasons to explain this observation, as in general
the initialized filters in the first layer are not high-pass and not
sensitive to forensic traces. Therefore, our objective here is to
design a new initialization method which is able to keep the
variance stability of filter’s input and output, and at the same
time capable of generating high-pass initialized filters. To this
end, we make adaptation to the original Xavier initialization as
explained in the following.

We first of all choose a simple “template” for the high-pass
filters to be initialized, which is shown in Fig. 1 left. The filters
in fact can have different sizes in different applications. In the
case of a 3× 3 filter, we divide the 9 elements into two groups:
The first group is the center element with an unknown constant
value C, while the remaining ñ = 8 elements are all scalar ran-
dom variables following a tractable and adequate distribution.
Both the value of C and the statistical properties of the random
variable distribution are to be derived.

The derivation is based on the variance stability of input and
output of our filter, as detailed below. First, in order to have
a high-pass filter after initialization, we require that the ma-
thematical expectation of wi,i=1,2,...,ñ should be equal to −C

ñ

(i.e., E(wi) = −C
ñ ), so that the expectation of the sum of all

the ñ elements is equal to−C, together with the center element
forming a high-pass filter (see Fig. 1 left). For the filter input,

we set the notations as shown in Fig. 1 right. Afterwards, by
applying the variance properties of the sum and the product of
random variables, we can compute the variance of the filter out-
put y, for the general case where the number of non-constant
filter elements is ñ, as:

Var(y) = Var(w1x1 + w2x2 + ...+ wñxñ + C.xñ+1)

= Var(xi)

[
C2 +

C2

ñ
+ ñ.Var(wi)

]
.

(2)

Here we still assume that wi and xi are mutually independent
and follow iid. To have the second equality, we have mainly
used the variance property of the product of two independent
random variables [9] as detailed in the equation below:

Var(wixi) = [E(wi)]
2Var(xi) + [E(xi)]

2Var(wi) + Var(wi)Var(xi)

=
C2

ñ2
Var(xi) + 0.Var(wi) + Var(wi)Var(xi).

Now, because we want to have the same variance for the in-
put and output, it can be seen that the term inside the square
brackets in Eq. (2) should be equal to 1. Then the variance of
wi can be obtained as:

Var(wi) =
1− C2 − C2

ñ

ñ
. (3)

In the meanwhile, we need to choose an adequate distribu-
tion of wi, which should also be as simple as possible for the
sake of easy numerical sampling. To this end, for wi we choose
in our case one of the simplest distributions with a prescri-
bed expectation of −C

ñ (to have a high-pass filter as discus-
sed above), i.e., the uniform distribution within the interval
[− 2C

ñ , 0] or [0,− 2C
ñ ], depending on the chosen sign of C. The-

refore, the variance of wi can be easily calculated as (with C
being positive as example, but the final result is the same re-
gardless of the sign of C):

Var(wi) =

∫ 0

− 2C
ñ

(
x+

C

ñ

)2
ñ

2C
dx =

C2

3ñ2
. (4)

By equalizing Eqs. (3) and (4), we obtain a simple quadratic
equation which is guaranteed to have two valid real roots as:

(4 + 3ñ)C2 − 3ñ = 0 =⇒ C = ±
√

3ñ

4 + 3ñ
. (5)

This nicely implies that our initialization can be applied to ar-
bitrary size of filters which comprise ñ+1 elements and which
follow the template that we have chosen. In the case of 3×3 fil-

ter, the center elementC is equal to±
√

6
7 . Accordingly, we can

easily get the uniform distribution for the numerical sampling
of wi. We initialize the CNN’s first layer by using the value of
C and drawing samples of wi to build initialized high-pass fil-
ters, and the remaining layers are initialized with the conventio-
nal Xavier initialization. This is illustrated in Fig. 2. As shown
in the next section, our method copes well with two CNNs to
solve two different forensic problems of detecting image pro-
cessing operations, with comparable or slightly better perfor-
mance than existing methods.
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FIGURE 2 – Our CNN initialization scheme for forensic detec-
tion of image processing operations.

3 Experimental Results
In this section we present two sets of experiments that we

performed to test and validate the proposed initialization. In
order to ensure fair comparisons and show the utility of our me-
thod, we carry out experiments for the two forensic problems
considered in [5] and [3]. We first test a multiclass forensic
problem for identifying a group of image processing operations
[5], and then conduct experiments for median filtering forensics
with JPEG post-processing [3]. For fair comparisons, for each
problem, we use CNN architectures from the original papers
[5, 3] and apply our initialization at the first layer of these net-
works. The remaining layers of our CNNs are initialized with
conventional Xavier initialization. In both experiments, for the
CNN with our initialization, we use Adam [10] optimizer to
train the CNN, and we let the network learn for 25 epochs.
The implementation and the test of our method were based on
Tensorflow R© v1.7.0 with two Nvidia R© GPUs of GeForce GTX
1080 Ti.

3.1 Multiclass Forensics

In this first experiment, we consider a multiclass classifica-
tion problem. Following [5], our objective is to correctly clas-
sify six kinds of image patches: the unprocessed pristine patches
and the processed patches by respectively five different opera-
tions listed in Table 1. Note that our parameter setting of opera-
tions is more challenging than those considered in [5]. The ex-
periment was conducted on the Dresden image database [11],
which comprises 1491 unprocessed high-resolution images and
which was also used in [5]. The Dresden images were conver-
ted to be grayscale by the Python rgb2gray function and then
divided into three groups with the ratio of 3:1:1, respectively
for training, validation and testing. We conduct tests on patches
of 64×64 pixels drawn from full-sized Dresden images. There
are 100, 008 patches in the training set, i.e., 16, 668 patches for
each of the six classes. The validation and testing sets both have
32, 022 patches, with 5, 337 patches for each class.

Since we focus on the first layer initialization, for this first
experiment we have borrowed the network design used by [5]
(see the original paper for details of network architecture). The
first layer of their network contains three constrained 5 × 5
high-pass filters. In our network, we only replace the first layer
by three 5×5 filters initialized by our method presented in Sec-
tion 2, while keeping the network architecture unchanged. La-

TABLE 1 – Considered processing operations and their para-
meters in the multiclass problem. The parameter is randomly
chosen for the last two operations. σ is the parameter of stan-
dard deviation.

Median filtering FilterSize = 3

Gaussian blurring σ = 0.5, F ilterSize = 3

Gaussian noise σ = 1.1

Resampling ScalingFactor ∈ {0.9, 1.1}
JPEG compression QualityFactor ∈ {90, 91, ..., 100}

TABLE 2 – Testing accuracy of the three methods (in %, ave-
rage of 15 runs) for the multiclass forensic problem.

Method Accuracy
Fixed high-pass filters 77.38

Constrained filters [5] 81.32

Our initialization 87.56

ter, our network was trained without any constraint. For com-
parison purposes, we also tested a network with three fixed
5 × 5 high-pass filters which simply compute the prediction
error of the center element in input by using a weighted sum
(with equal weights) of its 24 neighbors “seen” by the filter.
For the constrained CNN [5], we have used the implementa-
tion shared on-line by the authors 1.

We measure the forensic performance by using the detection
accuracy which is computed as the percentage of correctly clas-
sified patches among all the patches of the six classes. Table 2
presents the accuracy on the testing set of all the three methods
for the setting of the network’s first layer: our initialization, the
constrained filters of [5], and the fixed high-pass filters. In order
to enhance the significance and reliability of the results, we ran
the experiments for 15 times for all three methods and report in
Table 2 the average of 15 runs. We can see that our initialization
has higher forensic accuracy than the other two methods. It is
worth mentioning that we also tested with other parameter set-
tings for this multiclass forensic problem (e.g., with different
JPEG quality factors). We find that our initialization performs
consistently well for both easy and challenging problems, in
general with higher accuracy, but less improvement compared
with existing methods, under easy parameter settings (e.g., with
lower JPEG quality factors).

3.2 Median Filtering Forensics

To continue the test of proposed initialization, we now consi-
der a second forensic problem and carry out experiments with
a different network. The objective is to accurately detect me-
dian filtering applied before JPEG compression. This problem
is challenging because JPEG post-processing can partially re-
move the traces of median filtering. Similar to the last expe-
riment, we borrow network architecture from Chen et al.’s work

1. Code available at https://gitlab.com/MISLgit/
constrained-conv-TIFS2018/.



TABLE 3 – Detection accuracy (in %, average of 5 runs) on
the testing set of the median filtering forensic problem with
JPEG post-processing of different quality factors of 50, 70 and
90. An additional JPEG compression of default quality factor
of 75 was mistakenly introduced which makes the detection of
median filtering even more difficult.

Method JPEG50+75 JPEG70+75 JPEG90+75
Chen [3] 80.32 83.32 85.32

Bayar [5] 81.56 84.65 86.32

Xavier init. 71.56 75.32 84.23

Our init. 83.55 85.77 88.63

[3] and replace the first layer of their residual computation by
our initialization, the constrained approach [5] and the origi-
nal Xavier initialization [6], respectively. Here we use our own
implementation for the methods in [3] (original authors’ im-
plementation is unavailable to our knowledge) and [5] (wor-
king with a new network architecture). For [5], we follow the
training procedure described in the original paper. Adam opti-
mizer was used for our initialization, Xavier initialization, and
the method in [3]. These three methods shared the same Adam
optimizer parameters under each testing scenario. The training
set has 16, 668 patches, and the validation and testing sets both
have 5, 556 patches, with equal number of patches for the two
classes with or without 3 × 3 median filtering applied before
JPEG compression. We use 64× 64 patches and consider three
JPEG compression quality factors of 50, 70 and 90. It is worth
mentioning that we mistakenly introduced a second JPEG com-
pression of default quality factor of 75 when saving patches on
hard drive. So in the end, there are two JPEG compression post-
processing operations on patches with or without 3× 3 median
filtering, denoted respectively by JPEG50+75, JPEG70+75 and
JPEG90+75. Therefore, our careless mistake in data prepara-
tion makes the forensic problem even more difficult, but we
believe that the problem still remains realistic and reasonable.

Table 3 presents the testing accuracy at the end of the CNN
training of 25 epochs for all the three scenarios. It can be noti-
ced that our method has satisfying performance, comparable or
slightly better then existing methods. The difference of detec-
tion accuracy of Chen et al.’s method when compared to that
reported in [3] is probably due to difference and randomness in
JPEG post-processing, experimental data, and network imple-
mentation and training.

4 Conclusion and Future Work
In this paper, we propose a new and simple initialization me-

thod used in CNN for forensics of image processing operations.
The effectiveness of the proposed method is demonstrated by
experiments for two different detection problems with different
CNNs. In the future, we would like to further improve the ini-
tialization, by introducing more diversity in the design of filter
template and by making it dependent on the input data. Like
in existing CNN-based methods [3, 5], currently in our scheme

the proposed initialization is applied to the first layer while the
remaining layers are initialized with a conventional method,
e.g., the original Xavier initialization [6]. An adaptive initia-
lization according to the layer’s depth would be a promising
future working direction. It would also be interesting to apply
and adapt our initialization for solving other forensic problems.
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