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Résumé – Les techniques de stéganalyses aveugles doivent être capables de détecter la présence d’un message secret enfouit dans un média
quelconque comme un son, une image ou une vidéo, et la détection doit se faire sans connaissance a priori sur l’algorithme de stéganographie
utilisé. Ce papier se propose d’étudier une nouvelle stratégie basée sur le spectre multifractal comme signature robuste. Nous montrons que le
spectre multifractal d’un média corrompu change significativement par rapport au spectre d’origine. Afin de tester cette signature, nous simulons
l’attaque associée à un algorithme de stéganographie par modification ponctuelle des bits LSB. Dans ce travail, nous proposons de nous placer
dans une stratégie différente de l’état de l’art à savoir que nous privilégions la modélisation à l’apprentissage afin d’apporter des réponses dans
des cadres à faible nombre de données.

Abstract – The techniques of blind steganalysis are able to detect the presence of a secret message embedded in digital media files, such
as audio, images and video, without any prior knowledge of the steganography algorithm used for embedding. This paper presents a new
steganalysis method based on the multifractal spectrum as a robust signature. We test the proposed approach on different data corrupted by an
LSB steganography algorithm. In this work, we choose a strategy that differs from the state-of-the-art methods that are mainly based on machine
learning. We emphasize the importance of data modelling in contrast to the learning based approaches in case of small training sets.

1 Introduction

Goals of steganalysis. The steganalysis aims at detecting the
presence of a message hidden in a cover media using a stega-
nography algorithm. Different approaches have been develo-
ped depending whether the embedding algorithm is known or
not. In the first case, one usually tries to identify the statisti-
cal flaws of the steganography algorithm that has been used
to insert the fraudulous message. Having a prior knowledge
about the embedding algorithm is, most of the time, unrealistic,
which makes important using of the so-called universal blind
steganalysis methods, designed without any information about
the message insertion procedure. In this paper, a new blind ste-
ganalysis will be proposed based on the measure of the local
regularity of the signal.
State-of-the-art algorithms in the blind universal case. The
recent and mostly used steganalysis techniques in the blind uni-
versal framework are based on the supervised learning proce-
dures. One first identifies what characterizes a cover media with
respect to a steganographed one by extracting the relevant fea-
tures separating well these two classes (cover and stego). The-
reafter, the decision about the class membership is made by
using a suitable classifier as the SVM [1], deep learning [2] or
the ensemble classifiers [3, 4]. A serious limitation of these me-

thods is the need of storage of large learning databases. In our
strategy, we try to replace the learning process by the modeli-
zation of local regularity.

A crucial part of an efficient steganalysis algorithm is then
the choice of informative features of an image. Usually, these
features are based on the wavelet or DCT coefficients (see for
example [5, 6, 1] in the image framework). But several alterna-
tive approaches are possible. For example, [1] uses the features
based on the mean, variance, skewness and kurtosis of the sub-
band coefficients. In [5] the marginal distribution of the wavelet
coefficients is modelled using the generalized Gaussian den-
sity. Another model proposed in [6] is based on the moments
of the characteristic functions of the wavelet coefficients. No-
tice that a lot of number of method use Wavelet or others trans-
forms for watermarking or steganography process but it is out
of scope of this paper (the use of the coefficients is different).
Goals of the present contribution. We propose to use multi-
fractal features in order to detect a steganography attack. Our
conjecture is that the insertion of a message perturbs the inter-
scale structure of the media of interest. Consequently, we sug-
gest to use the multifractal attributes based on the so-called wa-
velet leaders [7, 8] as relevant features to discriminate the cover
from the stego. These multifractal attributes describe the inter-
scale structure of a signal or image and have been successfully



used in [9] to classify physiological signals or in the Van Gogh
challenge [10], to discriminate between different periods of the
famous painter.

2 Multifractal attributes of a media
Here we only recall the definition of wavelet leaders and

practical estimation procedures of multifractal features intro-
duced in [7, 8].
The wavelet framework. Denote by X : x ∈ Rd 7→ R the
media to be analyzed. We consider here only the two cases
d = 1, 2 depending whether the analyzed input is a signal or
an image. Note that the framework remains clearly valid in the
case where d > 2. The wavelet coefficients of X are defined
as dX(i, j, k) = 2−dj

∫
Rd X(x)ψ(i)(2−jx− k)dx. We assume

that the mother wavelets are compactly supported and admit at
leastN vanishing moments, that is

∫
Rd x

α1
1 · · ·x

αd

d ψ(i)(x)dx =
0 for any integers (α1, · · · , αd) such that α1 + · · ·+ αd < N .
We also assume that {2−jd/2ψ(i)(2−jx−k)}i,j,k forms a basis
of L2(Rd).
Interscale multiresolution quantities. In the image framework,
one defines a dyadic cube as λj,k =

∏d
`=1[k`2

j , (k` + 1)2j)
and 3λj,k as the union of λj,k+n where n ∈ {−1, 0, 1}d.

The wavelet leaders of X are then defined as LX(i, j, k) =
supλ′⊂3λj,k

|dX(i, j, k)|. Note that the wavelet coefficients can
naturally be arranged over a nested multiscale structure and
that the definition of the wavelet leaders at scale j involves
all the wavelet coefficients belonging to the tree whose root
is dX(i, j, k). If we insert a fraudulous message at some leaf
of the tree, we change all the wavelet leaders located at a coar-
ser level of the hierarchy. This fact is the key ingredient of our
methodology. Note that the notion of coarse scale should be
numerically limited because the modification associated with
the fraudulous message is only limited to the first scales of the
decomposition.
Multifractal features. Multifractal features are built from the
wavelet leaders and reflect the multiscale properties of the data.
The multifractal paradigm assumes that for any q ≥ 0, the
quantity SX(j, q) = n−1j

∑nj

k=1 L
q
X(j, k) has an asymptotic

power distribution of the form Fq2
jζ(q) as nj := 2j → 0.

The so-called multifractal spectrum is related to the structure
function ζ by a Legendre transform and summarizes the rough-
ness properties of X . Following [11, 7, 8], to estimate a pa-
rametric equation of the multifractal spectrum, one first per-
forms a linear regression of SX(j, q) on the scale j at a range
{j1, · · · , j2}which yields some weightswj1 , · · · , wj2 . We then
compute

h(q) =

j2∑
j=j1

wjV (j, q) and D(q) = d+

j2∑
j=j1

wjU(j, q)

where V (j, q) =
∑
k R

q(j, k) log2 L(j, k) and
U(j, q) = log2(nj) +

∑
k R

q(j, k) log2R
q(j, k) with

Rq(j, k) = L(j, k)q/
∑
k′ L(j, k

′)q .

The vector h contains all possible values of the roughness
indices of the image at each point and the D(q) the correspon-
ding “size” (in the sense of Hausdorff measure) of the set of
points whose roughness index equals h(q).

3 Results and discussions

Now we illustrate by numerical experiments the potential ef-
ficiency of multifractal analysis for the detection of stegano-
graphy attacks. We consider three types of cover data : one-
dimensional synthetic data as a fractional Brownian motion,
two-dimensional real image data, a real audio file. For each co-
ver we have extracted its multifractal spectrum and look at its
change after a steganography attack.

To simulate the insertion of a message in our cover media
with a steganography algorithm we modify LSB (least signi-
ficant bit) of the sample data. The simulation modifies one or
two least significant bits of a chosen data entry (with a setting
probability). We insert a message with the insertion rate p that
is defined as the percentage of changed 8-bit units of informa-
tion per data file. The computation of the multifractal spectrum
is done with a Matlab library that the authors have developed
in the context of CNRS project. The proposed library uses a
numerical strategy similar to the one proposed by Wendt et al.
in [8] with some variations. A detailed explanation and descrip-
tion of the numerical aspects of this work is not a subject of this
article but one has to be aware of that the estimated spectrum
is sensitive to several numerical factors. For the estimation of
the spectrum, we propose to use Daubechies Wavelet with 8
vanishing moments. We have tested different decompositions :
decimated or undecimated, orthogonal or biorthogonal, based
on periodic convolution product or based on symmetric convo-
lution product (for the border effect) in order to obtain the more
robust estimation. For this paper, we propose to use the simple
form of the decomposition : orthogonal decimated transform
based on periodic convolution product. The number of levels of
the wavelet decomposition depends on the length of the analy-
zed signal. It is necessary to use an important number of scales
taking into account the length of the used filters in order to limit
the effect of the boundary.

In order to analyze the influence of the LSB steganography
algorithm, we first propose to consider a synthetic signal as
an input : a fractional Brownian motion (fBm) WH(t), t ∈
[0, 1] for different values of the Hurst parameter. The evolu-
tion of the spectrum is associated with the local regularity of
the signal and the hypothesis proposed in this paper is that the
steganography modification disturbs this local regularity and,
consequently, disturbs the multifractal spectrum as well. We
present the spectrum of the initial cover data and the spectrum
of the simulated steganographed cover for different insertion
rate p ∈ {0.1, 0.2 . . . , 0.9}. Figure 1 shows the evolution of
the spectrum when inserting a message.We have used a frac-
tional Brownian motion with H = 1/2 with amplitude values
spread on a full 8 bits scale (the amplitude of the signal is sca-



led to the interval Z[0,255]). The insertion was performed by
modification of two last bits of randomly chosen points of the
data with the insertion rate p. The figure shows that there is a
significant modification of that right-hand side of the spectrum
when the insertion rate is significantly high (greater that 0.4).
The spectrum of a modified data has a larger support shifted to
the left. The modification of a significant number of samples
increases the “irregularity” of the signal and thus reduces the
part of the spectrum associated with uniform area.
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FIGURE 1 – The spectrum of fBm WH(t), H = 1/2, for dif-
ferent values of p, the original spectrum is in blue.

This first numerical result justifies our hypothesis : the evo-
lution of the multifractal spectrum based on wavelet leaders
allows to detect the presence of an inserted message. We have
next tested our approach on the real data. In the first example
we have inserted a message in a selected line of a real image.
Figure 2 shows the image from which the line was extracted
(associated with a highly textured content), as well as the lumi-
nance of one of the lines of the image that was modified.

FIGURE 2 – The image (on the left) and the extracted cover
media line (on the right).

Let us note that the insertion would be generally done only
within a certain well localized area. It would be interesting to
detect a significant irregularity in the spectrum with respect to
the untouched parts. To simulate this setting, an area of 512
adjacent pixels on the line was modified by the LSB algorithm
(with p = 0.8). Then the line was analyzed within a sequence
of overlapping sliding windows with 50% overlap. Figure 3 be-
low illustrates the obtained spectra. The values in the legend
stand for the consecutive window numbers, the negative va-
lue (-4) corresponds to the window that contains mostly the
steganographed area. We can clearly see the difference in the
behavior of the corrupted interval spectrum. One can observe
the change in the right part of the spectrum when the number
of modified pixels increases. We can make the same conclu-
sion as for the synthetic example : the application of a stegano-
graphy algorithm perturbs the local regularity which results in

the perturbation of the part of the spectrum associated with the
“regular” area. The next step of our work will be an automatic
detection of steganographic attacks of some local area. The de-
tection algorithm is based on the following idea : we will track
the evolution of the spectrum along adjacent windows and de-
tect significant differences in the spectra using an appropriate
statistical test.
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FIGURE 3 – The image line spectrum calculated within over-
lapping windows of size 512. The violet line shows the spec-
trum of the corrupted area. Each curve is associated with an
interval, and the negative number for a window indicates that
the interval is associated with modified samples.

Finally we illustrate our approach applied to the audio file.
We have inserted a message into a 8192-length interval of a
record of a single note on an 8-bit dynamic by modifying 2 bits
with the insertion rate p = 0.8 for the interval. Figure 4 shows
the steganographed sound.

Stego area

FIGURE 4 – The steganographed audio record.

Again, the sound was analyzed within half-size overlapping
sliding windows. In order to obtain a more visual detection of
the stego part of the signal, we propose a representation like the
Time-Frequency representation, the evolution of the spectrum
along the time with an image coding. In this case, the value of
the spectrum for each interval is recorded on the gray value of
the pixel, and the time coordinate of each block is the time co-
ordinate of the middle of each window. Figure 5 illustrates the
obtained representation, in this experimentation we use smal-
lest windows (equal to 1024 samples). One can observe that
this representation permits one to detect a significant change
in the behavior of the spectrum associated with the stego area
and thus to decide to do not guarantee the integrity of the data
recorded. The “shift” of the spectrum around the time position
0.5 is only due to the message insertion. The spectrum of the
original signal in this time area is close to the spectrum of in-
tervals before and after.
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FIGURE 5 – The spectrum of audio record calculated within half-size overlapping windows of size 1024 : each block is associated
with an interval, the x-axis is asscoiated with time (seconds), the y-axis is the h value, and the color value is associated with the
value of the different multifractal spectrum.

4 Conclusion
In this paper, we presented a blind steganalysis scheme based

on multifractal attributes and provided an evidence of a signifi-
cant change in the interscale structure of an attacked image. We
have used the multifractal spectrum estimation strategy based
on the wavelet leaders as proposed by Wendt et al. In this first
work, we tested our approach when applied to the detection of
modifications made by the simplest steganography algorithm
(LSB) that modifies the Least Significant Bit of the data en-
tries at a given insertion rate. The numerical results obtained
on synthetic signals, audio signals and image data justify our
hypothesis that the insertion of a message affects the local re-
gularity of the cover signal and thus modifies the right side of
the multifractal spectrum, that corresponds to the regular part
of the signal. Moreover, in this paper, we propose an original
strategy of detecting the presence of an inserted message that is
based on comparison of the spectra calculated withing sliding
windows. The future work is to propose a relevant test statistic
that will be able to detect the change in the multifractal spec-
trum and to study its theoretical properties. We will also focus
on the application of the proposed approach to detecting a pre-
sence of a message in a sequence of image frames like a video
file.
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