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Résumé – Dans cet article, nous dérivons la borne de Cramér-Rao hybrique (HCRB) pour un modèle de propagation basé sur le formalisme
de Jones corrompu par un bruit Gaussien composé (CG) pour différentes distributions de la texture (K-distribution, Student’s t, Cauchy, et la
distribution Gaussienne-composé inverse-Gaussienne (IG-CG)). Dans ce modèle physique standard, le modèle de propagation est paramétré par
des paramètres d’intérêt physiques et déterministes (gains complexes, phases, DOA, etc.). Nous montrons, dans ce cadre, que la HCRB dérivée
par rapport aux paramètres est donnée par la la borne de Cramér-Rao modifiée (MCRB). La MCRB est aisée à dériver car elle n’exige que le
moment d’ordre un de l’inverse de la texture.

Abstract – In this paper, the hybrid Cramér-Rao bound (HCRB) is derived for a propagation model based on the Jones-matrix formalism cor-
rupted by a compound-Gaussian (CG) noise for several texture distributions (K-distribution, Student’s t, Cauchy, and Inverse-Gaussian compound
Gaussian distribution (IG-CG)). In this standard physical model, the waveform propagation model is parameterized by a set of deterministic phys-
ical parameters of interest (complex gains, phases, DOA, etc.). In this work, we show that the HCRB w.r.t. the parameters is in fact given by the
modified CRB (MCRB). The MCRB is easy to derive since only the first-order moment of the inverse of the texture variable is needed.

1 Introduction

Astronomical radio-waves cross different layers of the at-
mosphere and are subject to various distortions before reaching
earth. Hence, sky imaging requires a robust estimation of the
different parameters deforming the signal (delay, phase, com-
plex gain-attenuation, etc.). The Jones-matrix formalism [12] is
a widespread model of radio wave propagation, standing for all
physical phenomena which affect the signal, from the source
until the receiver. Typically, the calibration process is perfor-
med based on the so-called calibration sources. It is worth
mentioning that, in addition to the distortion introduced by the
layers of the ionosphere, ambient Gaussian noise is present as
well a number of unknown non-calibration sources interfering
with known calibration sources, leading to unrealistic Gaus-
sian noise assumption. Compound-Gaussian (CG) noise model
is, however, closer to reality taking in consideration these non-
calibration sources. Many calibration algorithms are found in
literature, giving different scenario dependent efficiencies. S.
Kazemi and S. Yatawatta [5] have first, introduced a student
model to overcome the limitations inherent to a Gaussian fra-
mework. Recently, we have shown [8] that estimator based on

compound Gaussian noise improves S. Kazemi and S. Yata-
watta results thanks to the use of a more powerful and flexible
distribution. Thereby, a new performance-evaluation reference
is needed in order to convoy this improvement.

The Cramér-Rao bound (CRB) is commonly used as a refe-
rence for evaluation of estimators. The classical CRB is a lo-
wer bound for unbiased estimators’ variance. Other forms de-
rived from the CRB (the estimated Cramér-Rao Bound ECRB,
the modified Cramér-Rao Bound and the hybrid Cramér-Rao
Bound) may be used as lower bounds on the MSE of estima-
tors, such as the maximum a posteriori (MAP) used in [9] under
a compound-Gaussian assumption of the noise. In this case, the
noise is modeled as a zero mean complex Gaussian component
with a positive random variable representing the texture. Ta-
king into account this nuisance random parameter (texture) in
the estimation process leads us to take it as well into conside-
ration in the definition of the lower bound.

The notations used in this paper are the following : (.)T ,
(.)H , (.)∗, stand, respectively, for the transpose, the transpose
complex conjugate and the complex conjugate operators with
j denoting the imaginary unit. <{.} and ={.} are, respectively,
the real and the imaginary parts of a complex value. E{.} stands



for the expectation while VAR(.) and COV(.) denote, respecti-
vely, the variance and the covariance. The Kronecker product is
represented by ⊗, the trace operator by tr{.}, the determinant
by |.| while vec(.) denotes the vectorization (column stacking).

2 Model setup
The model setup given in [6] reduces to the use of a 2 × 2

Jones matrix with the assumption of a plane-wave with two
components of the electric field in xy plane, perpendicular to
the direction of propagation z. The measured voltage at antenna
p with a single source i is given by

vi,p(θ) = Ji,p(θ)si. (1)

in which the 2 × 1 vector vi,p = [vxi,p, v
y
i,p]

T is the voltage
measured in the two polarization directions x and y, the cali-
bration source signal is given by si = [sxi , s

y
i ] and the 2 × 2

Jones matrix Ji,p(θ) models the propagation from source i to
antenna p. Each Jones matrix is parametrized by the unknown
vector θ representing all the distortions along the propagation
path [12]. This standard waveform propagation model, defined
in [10], is given for the p-th antenna and the i-th source by :

Ji,p(θ) = Gp(gp)Hi,pZi,p(φi,p)Fi(ϑi,p) (2)

where
— Gp(gp) = diag{gp} is a 2 × 2 diagonal matrix

that represents the antenna complex gain, with gp =

[[gp]1, [gp]2]
T .

— Zi,p(φi,p) = exp{jφi,p}I2 represents the ionospheric
phase with I2 the 2× 2 identity matrix.

— The Faraday rotation effect is represented by

Fi(ϑi,p) =

[
cosϑi,p − sinϑi,p
sinϑi,p cosϑi,p

]
.

— Finally, the known 2×2 matrix Hi,p is obtained thanks to
electromagnetic simulations and represents antenna res-
ponse [9].

The ordered global output vector reads

x =
[
xT12 xT13 xT23 · · · xT(M−1)M

]T
. (3)

where M denotes the total number of antennas and L =
M(M−1)

2 is the number of possible antenna pairs. Each 4 × 1
sub-vector of x, i.e., for a given antenna pair (p,q), is given by

xpq = vpq + npq (4)

where the signal and noise contributions denoted by vpq and
npq , respectively, are described in the two next paragraphs.

2.1 Cross-correlations measurement
The deterministic physical parameters of interest for D

sources are collected in a K× 1 vector with K = 2MD+4M
given by θ = [ϑT ,φT , gT ]T where the (MD) × 1 vec-
tor ϑ = [ϑT1 . . .ϑ

T
M ]T with ϑp = [ϑ1,p . . . ϑD,p]

T (D × 1

vector) collect the Faraday angles per source (index i) per
antenna (index p) while φ = [φT1 . . .φ

T
M ] with φp =

[φ1,p . . . φD,p]
T is the ionospheric phase delay for the i-th

source and the p-th antenna. One assumes a D × M source
and receiver dependent ionospheric parameter vector. Finally,
gp = [<

{
[gp]1

}
,=
{
[gp]1

}
,<
{
[gp]2

}
,=
{
[gp]2

}
]T represents

direction independent antenna gain after vectorization of both
real and imaginary parts. Interferometers measure the cross-
correlations of antenna pairs [6]. The correlation measurement
for antennas p and q is written as

Vpq(θ) = E

{(
D∑
i=1

vi,p(θ)

)(
D∑
i=1

vHi,q(θ)

)}

=

D∑
i=1

Ji,p(θ)CiJ
H
i,q(θ)

(5)

where Ci = E
{
sis

H
i

}
is the 2 × 2 source coherency matrix

[6]. Using [7, eq. 82], an equivalent vectorized expression of
eq. (5) is given by

vpq(θ) = vec(Vpq(θ)) =

D∑
i=1

(J∗i,q(θ)⊗ Ji,p(θ))ci (6)

where ci = vec(Ci) is the 4×1 vector obtained by vectorizing
the ith source coherency matrix (column stacking).

2.2 Non-Gaussian noise modeling
The noise is assumed to follow a compound-Gaussian dis-

tribution with two components : a zero mean complex Gaus-
sian component and a texture representing the effect of non-
calibration sources interference [13]. Hence, npq =

√
τpqupq

where τpq is a positive real random variable representing the
texture and upq is a 4× 1 vector following a zero-mean circu-
lar Gaussian distribution, i.e., upq ∼ CN (0,Ω) where Ω is the
noise covariance matrix. The noise vector (sorted accordingly
with x in eq. (3)) is

n|τ ∼ CN (0,Γ) where Γ = T⊗Ω (7)

in which T = diag(τ ) is the L × L texture matrix with τ =
[τ11 . . . τ(M−1)M ]T . Statistical priors on τ as K-distribution,
Student’s t, Cauchy, Laplace and Inverse-Gaussian Compound
Gaussian distribution (IG-CG) are considered in the sequel [9].

3 Hybrid set of parameters

3.1 Deterministic and random parameters
— The deterministic physical parameters of interest are col-

lected in θ defined in section 2.1.1.
— The unknown nuisance parameters are represented by the

random texture vector τ defined in section 2.1.2.
Let θ̂′ be an estimate vector of the hybrid parameter of inter-

est vector, i.e., θ′ = [τT ,θT ]T . A key fidelity measure for any
estimator is the MSE defined by

MSE(θ̂′) = EτEx|τ ||θ̂′(x)− θ′||2. (8)



3.2 Hybrid lower bound
In this part, we focus on the HCRB which is the most rea-

listic, since it is derived considering the deterministic and the
random parameters. The HCRB matrix, denoted by CH(θ

′), is
a lower bound on the MSE for any estimator θ̂′ according to
the following inequality :

tr{CH(θ′)} ≤ MSE(θ̂′). (9)

Specifically, CH(θ
′) is defined as the inverse matrix of the

Hybrid Information Matrix (HIM) [2] given by

FH(θ
′) = Fdet(θ

′) + Fprior(τ ) (10)

where

Fdet(θ
′) = Eτ

{
Ex|θ′

{
−∆θ′

θ′ logP (x|τ ;θ)
}}

(11)

in which [∆β
α g(·)]i,j = ∂2g(·)

∂[α]i[β]j
,

Fprior(τ ) =

[
F′prior(τ ) 0

0 0

]
(12)

and
F′prior(τ ) = Eτ {−∆τ

τ logP (τ )} . (13)

3.2.1 Link to the Modified CRB

A comparison and links between different forms of the CRB,
among which the HCRB and the MCRB, have been defined in
[14]. In our context, we provide in the following lemma a key
technical result on the HCRB.

Lemma 1 The HCRB matrix is block-diagonal, i.e., parame-
ters θ and τ are decoupled.

Proof 1 As x|τ ∼ CN (µ,Γ), the conditional log-likelihood
function reads [9] :

logP (x|τ ;θ) = − log (|πΓ|)−wHΓ−1w (14)

where w = x − µ. The coupling terms between θ and τ , are
given by

∆τ
θ logP (x|τ ;θ) = ∂µ

∂θ

H ∂Γ

∂τ

−1
w + wH ∂Γ

∂τ

−1 ∂µ

∂θ
. (15)

Since Ex|τ (w) = 0, we have

Ex|τ {−∆τ
θ logP (x|τ ;θ}} = 0. (16)

Theorem 1 The lower bound on the parameters of interest θ
can be easily derived according to the well-known Modified
CRB (MCRB) [3].

Proof 2 As a consequence of lemma 1, eq. (11) can be written
as

Fdet(θ) = EτEx|τ

{
−∆θ

θ logP (x|τ ,θ)
}

(17)

and its inverse matrix denoted by CM(θ) is the well-known
MCRB matrix [3]. Equivalently, the HCRB matrix is given by :

CH =

[
F′−1prior 0

0 CM

]
. (18)

This result is important since closed-form expressions with
respect to the texture parameter would be easily obtained with
the MCRB. On the other hand, it is difficult to obtain closed-
form expressions with the Expected CRB (ECRB) [4]. This
bound is defined as :

CE(θ) = Eτ

(
Ex|τ

{
−∆θ

θ logP (x|τ ,θ)
})−1

. (19)

Indeed, in the expression above, the derivation in a closed-
form of the expectation over τ is a delicate problem since this
step is done after a matrix inversion. More precisely, in the
ECRB approach, the generic form of the expressions invol-
ving the texture parameter is Eτ (f(τ)) where function f(·) due
to the matrix inversion is generally mathematically intractable.
On the contrary, we show in the following that the function f(·)
is simple for the MCRB.

3.3 Closed-form expressions of the MCRB for
different texture priors

3.3.1 General expression

As x|τ ∼ CN (µ,Γ) or equivalently, the observation condi-
tionally to the texture vector follows a complex Gaussian dis-
tribution, the Modified FIM is given by the expectation over the
texture of the Slepian-Bangs formula [11], i.e.,

Fdet(θ) = 2<{UHEτ

(
Γ−1

)
U} (20)

where U = ∂µ
∂θT and Eτ

(
Γ−1

)
= Eτ (T

−1)⊗Ω−1.

3.3.2 Texture priors

According to [9], it is realistic to assume that texture τpq fol-
lows a distribution parametrized by a set of hyper-parameters
independent from the antenna pairs. Under this mild assump-
tion, we are interested by the first moment of the random va-
riable Tpq = 1

τpq
, denoted by m(1)

T . Thus the MCRB matrix is
given by

CM(θ) =
1

2m
(1)
T

[
<{UH

(
I⊗Ω−1

)
U}
]−1

. (21)

As we see, the MCRB matrix is the product of two terms.
The first one 1

2m
(1)
T

is characterized by the choice of the tex-

ture prior and the second one,
[
<{UH

(
I⊗Ω−1

)
U}
]−1

, is
texture-independent. Let us remark that regarding the ECRB, it
is not possible to obtain a “physically” interpretable characte-
rization.

— K-distribution. If the noise follows a K-distribution then
τpq ∼ Gamma(a, b). Thus, Tpq ∼ InvGamma(a, 1b )

and thus m(1)
T = 1

b(a−1) .

— Student’s t distribution. If the noise follows a Student’s
t distribution, the texture τpq ∼ InvGamma(a, b). This
means that Tpq ∼ Gamma(a, 1b ) and m(1)

T = a
b .



— Cauchy distribution. If the noise follows a Cauchy distri-
bution, in this case, τpq ∼ InvGamma(1, b). The distri-
bution of Tpq follows an Exponential distribution of rate
b (special case of Gamma) and m(1)

T = 1
b .

— Inverse-Gaussian Compound-Gaussian. In this case, the
texture τpq follows an Inverse Gaussian distribution
(Wald distribution) with a unit mean, i.e. τpq ∼ IG(1, λ).
So, Tpq follows a reciprocal inverse Gaussian distribu-
tion, i.e. Tpq ∼ RIG(1, λ) [1] and m(1)

T = 1 + 1
λ .

3.3.3 Simulation

In order to visualize the MCRB for the different texture
priors, we consider D = 3 calibration sources with M = 8
receivers. For K-distribution, Student’s t and Cauchy cases, the
shape and the scale parameters of the texture distribution are
a = 3 and b = 2 , respectively, while we consider λ = 0.5 for
the inverse-Gaussian compound-Gaussian case.

The source signals as well as the parameters of the Jones-
matrices are randomly generated, with entries following the
uniform distribution, with respect to the physical nature of each
parameter,i.e. , for the Faraday rotation angles and the ionos-
pheric phase, a randomly generated number following the uni-
form distribution is multiplied by π in order to get a radian
angle in the gap [0, π]. Thus, the complex quantities, such as
the complex gain, is generated so that both the real and the
imaginary parts follow the uniform distribution.
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FIGURE 1 – Evolution of the trace of the MCRB in (dB) in
function of the signal to noise ratio (SNR) in (dB) for the dif-
ferent kinds of prior in the Compound-Gaussian distribution.

In figure 1, we plot the trace of the MCRB (dB) in function
of the signal to noise ratio (dB) for the different priors on the
texture, i.e. for different kinds of compound-Gaussian distri-
butions. The choice of the prior can thus be easily discussed,
depending only the first moment m(1)

T of the random variable
Tpq , that defines the tightness of the bound for each prior.

4 Conclusion
In this paper, we defined the tractable lower bound on the

MSE for a model with non-Gaussian noise used in robust array
calibration for radio-interferometers. A compound-Gaussian
(GC) assumption was considered on the noise, consisting of
a zero mean complex Gaussian component and a random va-
riable representing the texture, with different priors on the tex-
ture. In order to define the lower bound, we derived a hybrid
form of the Cramér-Rao bound (HCRB) regarding the deter-
ministic physical parameters of interest as well as the random
parameters of nuisance (texture). The derivation of the HCRB
gave us, as a result, a decoupling between the deterministic
and the random parameters, leading to an equality between the
HCRB and the modified Cramér-Rao bound (MCRB) for the
deterministic parameters of interest. This result allowed us to
settle for the calculation of the MCRB, for the different priors
on the texture, that we simulated as well. Generally speaking,
this paper opens the way to the introduction of tractable mini-
mal bounds for design tools in radio astronomy.
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