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Résumé – Cette contribution traite du calcul du flot optique dans des scènes faiblement texturées et affectées par des changements d’illumi-
nations importants. Un nouveau descripteur invariant à l’illumination est proposé dans le terme d’attache aux données de la fonctionnelle à
minimiser. Un modèle local de changement d’illumination a été utilisé pour prouver théoriquement que le descripteur est invariant à des chan-
gements complexes d’éclairage. Des tests avec des images simulées et des données endoscopiques réelles (cliniques) permettent d’évaluer la
précision du flot optique et de mettre en lumière la robustesse induite par le descripteur.

Abstract – This contribution deals with the optical flow computation in weakly textured scenes affected by strong illumination changes. The
data-term is based on a new illumination invariant patch-based descriptor which also preserves the texture information. An illumination change
model was used to theoretically prove that the descriptor is invariant to complex illumination changes. Tests with complicated simulated images
and challenging clinical endoscopic data allowed us to assess the accuracy of the OF and to highlight the robustness induced by the descriptor.

1 Introduction

Optical flow (OF) plays a key role in numerous computer vi-
sion applications. Computing precise OF fields under compli-
cated illumination conditions is at stake and frequently requi-
red in the medical field. Although OF determination has been
studied for decades, accurate OF estimation is still a challenge
when mosaics have to be constructed from endoscopic video-
sequences (e.g, in gastroscopy [1] or cystoscopy [2]). Although
this contribution focuses on endoscopic images, the proposed
OF algorithm can deal with many other complex scenes.

In gastroscopy, an endoscope is used to scan the inner sur-
face of the stomach. By extending the field of view, mosai-
cing of gastroscopic images should facilitates the diagnosis and
follow-up of stomach inflammatory diseases. The flow field
gives the correspondence of homologous pixels between image
pairs of the video-sequence and and its computation is a crucial
step for the data registraton and mosaicing [3].

As illustrated in Figs. 4(a)-4(e), gastroscopic images show
low or no texture and changing illumination conditions bet-
ween the acquisitions. Moreover, images can be affected by
specular reflections or blurred. For such scenes, the OF me-
thods based on matching sparse keypoints [4] may not achieve
the necessary registration performances in terms of robustness
and accuracy. Dense OF approaches often lead to higher ac-
curacy than sparse OF methods, especially when images are

weakly textured. Thus, dense OF estimation based on a varia-
tional model is more appropriate to gastroscopic images.

Variational OF models can be formulated as follows. Given
a source image Is and a target image It, the dense flow field
u = (ux, uy) between Is and It is computed by minimizing

E(u) = Ereg(u) + λEdata(Is, It,u), (1)

whereEreg is a regularization term that assumes smoothness of
solution u, Edata is a data-term that measures the similarity of
the pixels in Is and It, and λ > 0 is a parameter controlling the
relative importance of these two terms. In Eq. (1), Edata plays
the key role in handling illumination changes. Numerous im-
proved OF methods have been proposed [1,5–10] since the first
variational methods of Horn and Schunck [11] and Nagel [12].
Recently, several methods [1, 8, 10] using local descriptors in
the data-term have proven their robustness in estimating OF
under varying illumination conditions.

This contribution proposes a variational OF method based
on a novel illumination-invariant descriptor. The illumination
invariance of the proposed descriptor is theoretically proven
based on a linear illumination change model. Experimental re-
sults on the Middlebury data-base [13] and on real gastroscopic
images show that the proposed method achieves high accuracy
OF estimation for scenes with few (or no) textures and strong
illumination changes.



2 Proposed OF method

2.1 Descriptor-based variational OF model
Let PI(x) denote small patches centered at pixel x in image

I . These patches have a size (2k+ 1)× (2k+ 1) pixels with k
a positive integer. Descriptor D(PI(x)) “encodes” the values
of the pixels in patch PI(x) and is given as a vector in a space
Rm (m > 0). D(PI(x)) can be used in the descriptor-based
OF variational model defined by

min
u

[E(u) = Ereg(u) + λEdata(Is, It,u)] (2)

where

Edata =
∑
x∈Ω

‖D(PIs(x))−D(PIt(x + ux))‖2, (3)

Ereg =
∑
x∈Ω

∑
x′∈Nx

wx′

x ‖ux − ux′‖1. (4)

In the data-term defined by Eq. (3), Ω stands for the image
domain and ux denotes the motion vector at pixel x between
Is and It. The regularization term in Eq. (4) is a non-local total
variation of flow field u.Ereg is computed with the set of pixels
defined by neighborhoodsNx centered on x and using weights
wx′

x depending on the similarity of pixels x and x′. Similarly
to [8], the weights wx′

x are defined as follows :

wx′

x = exp

(
−‖x− x′‖2

2σ2
1

− ‖L(x)− L(x′)‖2

2σ2
2

)
, (5)

where σ1 and σ2 are parameters controlling the similarity mea-
sure, and L(x) is the color vector in the CIE Lab space.

The minimization of energy E(u) defined by Eqs. (2)-(4)
is performed with the projected-proximal-point algorithm [14].
Interested readers can refer to [8] for more details about the
general OF scheme used in this contribution.

2.2 New illumination-invariant descriptor
The proposed descriptor is inspired by a binary descriptor

(MLDP, [10]) which is a modified (M) version of the local
directional pattern (LDP) presented in [15]. MLDP is defined
by :

DMLDP (PI(x)) =


sgn(M1 ⊗ PI(x))
sgn(M2 ⊗ PI(x))

...
sgn(M8 ⊗ PI(x))

 , (6)

where M1,M2, . . . ,M8 are the Kirsch edge kernels used to
compute edge responses in eight directions (see Fig. 1), PI(x)
is a patch of size 3× 3 and centered at pixel x, and sgn(υ) is a
sign function defined by sgn(υ) = 1 if υ > 0 and sgn(υ) = 0
otherwise. Operator ⊗ in Eq. (6) gives the sum of the element-
wise products of two matrices. The performance of descrip-
tor MLDP was experimentally validated by the high ranking
of the OF method in [10] on the Middlebury 1 and the KITTI 2

1. http ://vision.middlebury.edu/flow/eval/
2. http ://www.cvlibs.net/datasets/kitti/index.php

FIGURE 1 – Kirsch kernels for the MLDP descriptor.

benchmarks. Although results in [10] showed that MLDP may
handle illumination, it is however sensitive to strong illumina-
tion changes [1]. In the aim of improving illumination inva-
riance of the latter, let us first assume that in small patches the
illumination change between (Is, It) pairs can be modelled by
the following linear model :

PIt(x + ux) = axPIs(x) + bx, (7)

where PIs(x) and PIt(x + ux) are two corresponding patches
in Is and It, and ax ∈ R>0, b ∈ R (ax is positive since the
intensity values of pixels are non-negative). Therefore, a des-
criptor D is invariant to illumination changes when

D(axPI(x) + bx) = D(PI(x)) (8)

for all pixels x in image I , and for all ax ∈ R>0, b ∈ R.
If one considers the MLDP descriptor in Eq. (6), by repre-

sentingPI(x) as a vector of its intensity valuesPI(x) = [I(x1),
I(x2), . . . , I(x9)]T and Mi (i = 1, 2, . . . , 8) as a vector of the
coefficient Mi(x) = [αi,1, αi,2, . . . , αi,9]T , one gets :

Mi ⊗ PI(x) =

9∑
j=1

αi,jI(xj). (9)

Then,

Mi⊗(axPIs(x) + bx) = ax

9∑
j=1

αi,jI(xj)+bx

9∑
j=1

αi,j . (10)

Note that for all the Kirsch kernels Mi, the sum αi,1 + αi,2 +
. . . αi,9 = 0, and thus

Mi ⊗ (axPI(x) + bx) = axMi ⊗ PI(x),∀i. (11)

Because ax is assumed to be a positive number,

sgn (Mi ⊗ (axPIs(x) + bx)) = sgn(Mi ⊗ PI(x)),∀i. (12)

Consequently, MLDP satisfies the illumination change model
in Eq. (8) which represents complicated variations between ima-
ges when the patches are small. This justifies the robustness to-
wards illumination changes of the MLDP descriptor. However,
the threshold of the sgn function in Eq. (6) results in the loss
of valuable texture or structure information in the patches.

A novel descriptor can be defined as follows to overcome
this drawback of the MLDP descriptor :

D(PI(x)) =
V(PI(x))

‖V(PI(x))‖
, (13)



(a) Source image (b) Target image (c) Multipicative mask

(d) MLDP (e) Proposed descriptor (f) Ground truth OF

FIGURE 2 – OF results. In (d)-(f) the classical motion color
code is used to visualize the flow fields.

with Vx = [M1 ⊗ PI(x),M2 ⊗ PI(x), . . . ,M8 ⊗ PI(x)]
T ∈

R8. From (11), one can deduce

V (axPI(x) + bx) = axV(PI(x)), (14)
‖V(axPI(x) + bx)‖ = ax‖V(PI(x))‖. (15)

Taking the ratio of the respective sides of equalities in both
Eqs. (14) and Eq. (15) leads to D(axPI(x)+bx) = D(PI(x)).
Consequently, the new descriptor in Eq. (13) is also illumina-
tion invariant.

The advantage of this method is two-fold : (i) the use of the
Kirsch kernels without thresholding functions preserves local
spatial textures due to pixel values changes in the patches, and
(ii) the illumination variation model between small patches (see
Eq. (7)) facilitates the design of descriptors which are robust
against complex illumination changes (see [16]).

3 Results and discussion

This section compares the performances of the proposed des-
criptor with those of MLDP, both descriptors being used in the
same variational OF scheme for a fair result assessment.

The well-known coarse-to-fine warping strategy is used in
the OF scheme of Section 2.1 to cope with large displacements.
Parameters σ1 and σ2 in Eq. (5) were set to 3 and 5, respecti-
vely. The λ-parameter in Eq. (2) and the scale factor (denoted
by Pys) in the coarse-to-fine strategy were experimentally ad-
justed using the Middlebury training set [13]. For each descrip-
tor, the parameter pair (λ, Pys) leading to the most accurate OF
results was chosen for all the tests in this section. The values of
pair (λ, Pys) were set to (10, 0.5) and (40, 0.5) for the MLDP
descriptor and the proposed descriptor, respectively.

It is worth noticing that all parameters were adjusted with
images with weak illumination changes, whereas the tests des-
cribed in the next sub-sections were performed for strong illu-
mination changes in simulated data with known ground truth
(Section 3.1) and real clinical data without ground truth (Sec-
tion 3.2). This way to proceed was chosen to highlight the ro-
bustness of the OF algorithm based on the new descriptor.

(a) Source image (b) Target image

(c) MLDP (d) Proposed descriptor

FIGURE 3 – OF results on a pair of gastroscopic images.

(a) (b) (c) (d) (e)

(f) Mosaiced image

FIGURE 4 – Mosaic built with 21 images of a gastroscopic se-
quence. Five images of the sequence are given in (a)-(e).

3.1 Tests using simulated illumination changes

For these tests with known ground truth, strong illumina-
tion changes were simulated by using the RubberWhale image
pair of the Middlebury training set (see Figs. 2(a)-2(b)). Target
image It (see Fig. 2(b)) was obtained by modifying the color
intensities of one of the RubberWhale images with the Gaus-
sian multiplicative mask given in Fig. 2(c) and an additive fac-
tor of 20 to simulate the vignetting effect of endoscopes. Source
Is is the other RubberWhale image with unchanged colors.

As visually perceptible, the OF image obtained with the pro-
posed descriptor (see Fig. 2(e)) is significantly closer to the
ground truth shown in Fig. 2(f) than the OF of the MLDP des-
criptor given in Fig. 2(d)). Moreover, the error criteria AEPE
(Average End-Point Error) and AAE (Average Angular Error)
of MLDP are 5.12 pixels and 19.48 degrees respectively, while
the respective values for our proposed descriptor are signifi-
cantly lower with 0.09 pixels and 2.92 degrees.



3.2 Tests on gastroscopic images
This section gives OF results on gastroscopic images of the

pyloric antrum region (stomach) to demonstrate the robustness
of the proposed descriptors on complex real scenes.

Fig. 3 shows the vector flow field related to the homologous
pixels between the source image in Fig. 3(a) and the target
image in Fig. 3(b), the point displacements between the images
being caused by both inner stomach and endoscopic camera
movements. Although there is a difference in magnitude and
direction between the motion vectors of different pixels, the
motion fields are smooth for such scenes. Moreover, the mo-
tion vectors inside the black “hole” (duodenum) and the flow
vectors at the circular border of this “hole” (pyloric sphinc-
ter limits) have to be equal since the movement is constant is
this region. Visually, the OF result of the proposed descriptor in
Fig. 3(d) is smoother than that of descriptor MLDP in Fig. 3(c).
As shown in the rectangles of Fig. 3, the flow field of the pro-
posed descriptor is closer to an OF without discontinuities (it
is nearly constant onto and around the duodenum black disc)
compared to MLDP one.

Fig. 4 shows the mosaicing result computed with a sequence
of 21 images. The registration uses the flow fields estimated
by the proposed method. The precise mosaic of Fig. 4(f) once
again confirms the potential and robustness of the proposed
method. The illumination discontinues were intentionally not
corrected (as in [17]) to show the image superimposition.

4 Conclusion
This paper presents a method for accurate OF estimation.

A new descriptor is introduced which can effectively capture
the image spatial structure and is highly invariant to illumi-
nation changes. The illumination-invariance of the proposed
descriptor was theoretically proven. Experimental results have
demonstrated the suitability of the proposed method for regis-
tering gastroscopic images and its potential interest for other
similar applications.
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