
A Filtered Bucket-Clustering Method for Projection onto the Simplex
and the `1 Ball

Guillaume PEREZ, Michel BARLAUD, Lionel FILLATRE, Jean-Charles RÉGIN

Université Côte d’Azur, CNRS, I3S, 06900 Sophia Antipolis, France
guillaume.perez06@gmail.com, barlaud@i3s.unice.fr, fillatre@i3s.unice.fr,

jcregin@gmail.com

Résumé – Nous proposons une nouvelle méthode pour le calcul de la projection d’un vecteur de taille arbitraire sur le simplex ou la boule `1.
Notre méthode fusionne deux principes. Le premier est une recherche originale de la projection utilisant un algorithme de Bucket. Le second est
un filtrage, au vol, des valeurs du vecteur qui ne peuvent pas appartenir à la projection. La combinaison de ces deux principes offre un algorithme
simple et efficace.

Abstract – We propose in this paper a new method processing the projection of an arbitrary size vector onto the simplex or the `1 ball. Our
method merges two principles. The first one is an original search of the projection using a bucket algorithm. The second one is a filtering, on the
fly, of the values that cannot be part of the projection. The combination of these two principles offers a simple and efficient algorithm.

1 Introduction
Looking for sparsity appears in many applications. Minimizing
the number of non-zero components of a given vector is gener-
ally a very difficult problem. Hence the common solution is to
minimize the `1 norm of the vector [9, 4]. To this purpose, it is
crucially important to have a simple algorithm to project a vec-
tor onto the `1 ball. Given a vector y = (y1, y2, . . . , yd) ∈ Rd
and a real a > 0, we aim at computing its projection PBa

(y)
onto the `1 ball Ba of radius a:

Ba =
{
x ∈ Rd| ‖x‖1 6 a

}
, (1)

where ‖x‖1 =
∑d
i=1 |xi|. The projection PBa(y) is defined by

PBa(y) = arg min
x∈Ba

‖x− y‖2 (2)

where ‖x‖2 is the Euclidean norm. As shown in [5] and revisited
in [2], the projection onto the `1 ball can be derived from the
projection onto the simplex ∆a:

∆a=

{
x ∈ Rd |

d∑
i=1

xi = a and xi > 0,∀i = 1, . . . , d

}
. (3)

Let the sign function sign(v) defined as sign(v) = 1 if v > 0,
sign(v) = −1 if v < 0 and sign(v) = 0 otherwise, for any real
value v ∈ R. The projection of y onto the `1 ball is given by the
following formula:

PBa(y) =

{
y if y ∈ Ba,
(sign(y1)z1, . . . , sign(yd)zd) otherwise,

(4)
where z = P∆a

(|y|) with |y| = (|y1|, |y2|..., |yd|) is the pro-
jection of |y| onto ∆a. The fast computation of the projection

x = P∆a
(y) for any vector y is of utmost importance to deal

with sparse vector surrogates. An important property has been
established to compute this projection. It was shown [2] that
there exists a unique τ = τy ∈ R such that

xi = max{yi − τ, 0},∀i = 1, . . . , d. (5)
The projection is almost equivalent to a thresholding operation.
The main difficulty is to compute quickly the threshold τy for
any vector y. Let y(i) be the ith largest value of y such that
y(d) 6 y(d−1) 6 . . . 6 y(1). It is interesting to note that (5)
involves that

∑d
i=i max{yi − τ, 0} = a. Let S∗ be the support

of x, i.e., S∗ = {i|xi > 0}. Then,

a =

d∑
i=1

xi =
∑
i∈S∗

xi =
∑
i∈S∗

(yi − τ).

It follows that τy = (
∑
i∈S∗ yi − a)/|S∗| where |S∗| is the

number of elements of S∗. The following property allows us to
compute the threshold τy . Let

%j(y) =

(
j∑
i=1

y(i) − a

)
/j (6)

for any j = 1, . . . , d. Then, it was shown that τy = %Ky (y)
where

Ky = max{k ∈ {1, . . . , d} | %k(y) < y(k)}. (7)
Looking for Ky , or equivalently y(τy), allows us to find immedi-
ately the threshold τy. The most famous algorithm to compute
the projection, which has been presented in [6], is based on (7).
It consists on sorting the values and then finding the first value
satisfying (7). A possible implementation is given in Algorithm
1. The worst case complexity of this algorithm is O(d log d).
Several other methods have been proposed [2, 7, 8, 10], outper-
forming this simple approach.

Algorithm 1 Sort based algorithm [6]
Data: y, a
u← sort(y)

K ← max16k6d{k|(
∑k
r=1 ur − a)/k < uk}

τ ← (
∑K
r=1 ur − a)/K

for i ∈ 1..|y| do
xi ← max(yi − τ, 0)

2 Bucket Partitioning
This section describes the bucket-based algorithm which
achieves a better worst case complexity than existing algorithms.

2.1 Theoretical Principle
The bucket-based method is based on the existence of Ky in
(7). The main idea is to split recursively the vector y into
a hierarchical family of B > 2 ordered sub-vectors ỹkb with
b = 1, . . . , B and k = 1, . . . , k̄. The number of recursive
splitting, also called the number of levels, is k̄. It may depend
on y contrary to B which is constant. The sub-vectors are
ordered in the sense that all elements of ỹkb are smaller than the
ones of ỹkb+1 for all b = 1, . . . , B − 1. Each sub-vector ỹkb is
called a bucketed vector or simply a bucket. The goal is to find
the bucket which contains y(Ky). We will show that only one
bucket at level k is relevant because only this single bucket is
necessary to identify the bucket which actually contains y(Ky)

where Ky is defined in (7). Hence, all the buckets ỹk+1
b at

level k + 1 are contained in a single bucket ỹkbk where bk is the
identification number of the bucket at level k which needs a
deeper analysis. By convention, we assume that ỹ0

b0
= y and

b0 = 1.
Let us define the process to create and analyze the hierarchical

family of buckets. For any level k + 1 > 1, let us consider the
interval Ik+1 defined by

Ik+1 = [min ỹkbk ,max ỹkbk] (8)

where min ỹkb , resp. max ỹkb , denotes the minimum element,
resp. maximum element, of bucket ỹkb . Let us consider a parti-
tion of Ik+1 into B ordered sub-intervals Ik+1

1 ,. . . , Ik+1
B . Let

hk+1 : Ik+1 7→ {1, . . . , B} be the bucketing function such that
hk+1(v) = b when the real value v belongs to Ik+1

b . The bucket
ỹkbk is then splitted into B ordered sub-vectors ỹk+1

b such that

(i) ỹk+1
b = (yi)i∈Sk+1

b
,

(ii) Sk+1
b = {i ∈ Skbk | h

k+1(yi) = b},

(iii) max ỹk+1
b 6 min ỹk+1

b+1 for all b = 1, . . . , B − 1,

with the convention S0
b0

= {1, . . . , d}. We get
∣∣SkB∣∣ > 1 at any

level k > 1 because of the definition of Ik+1.
Let C0

b0+1 = 0 and, for any k > 0,

Ck+1
b =

{
Ckbk+1 +

∑
b′>b

∑
i∈Sk+1

b′
yi if bk < B,

Ck−1
bk−1+1 +

∑
b′>b

∑
i∈Sk+1

b′
yi if bk = B,

(9)

be the cumulative sum of buckets ỹk+1
b to ỹk+1

B , including also
the cumulative sum of the buckets kept at previous levels 1, 2,
. . . , k which have been not discarded. Thus, by definition, Ck+1

b

is the cumulative sum of all y(i) for i 6 Nk+1
b where

Nk+1
b =

{
Nk
bk+1 +

∑
b′>b

∣∣Sk+1
b′

∣∣ if bk < B,

Nk
bk−1+1 +

∑
b′>b

∣∣Sk+1
b′

∣∣ if bk = B,
(10)

is the number of elements in the family of buckets ỹk+1
b , . . . ,

ỹk+1
B , including also the number of elements not discarded at

previous levels 1, 2, . . . , k. We adopt the conventionN0
b0+1 = 0.

It follows from (9) and (10) that

%Nk+1
b

(y) = (Ck+1
b − a)/Nk+1

b . (11)

By definition of the buckets, it follows that

min ỹk+1
b:B = y(Nk+1

b) (12)

where ỹk+1
b:B is the vector obtained from the concatenation of

buckets ỹk+1
b . . . , ỹk+1

B . If %Nk+1
B

(y) > min ỹk+1
B = y(Nk+1

B),

then Ky < Nk+1
B according to (7). Hence, we can discard all

the remaining buckets ỹk+1
b for b < B and continue the bucket-

based exploration of ỹk+1
B to approximate Ky more accurately.

Otherwise, we know that Ky > Nk+1
B , thus we continue the

analysis of the remaining buckets ỹk+1
b . Let bk+1 be the largest

b such that
%Nk+1

b
(y) > min ỹk+1

b:B . (13)

When k = 0, the index b1 may not exist if y ∈ ∆a: the process
is stopped. Otherwise, if bk+1 exists, then Ky < Nk+1

bk+1
. Hence,

we can discard all the remaining buckets ỹk+1
b for b < bk+1

and continue the analysis with ỹk+1
bk+1

, . . . , ỹk+1
B . However, by

definition of bk+1, we know that

%Nk+1
bk+1+1

(y) < min ỹk+1
bk+1+1:B . (14)

Hence, Ky necessarily satisfies Nk+1
bk+1+1 6 Ky < Nk+1

bk+1
. To

compute Ky , it is then sufficient to explore only ỹk+1
bk+1

.
From the definition of Ik+1, it is easy to verify that the size

of the bucket ỹkbk is strictly decreasing as a function of k since
the boundaries of Ik are two elements of the previous bucket
ỹk−1
bk−1

and B > 2. After a finite number k̄ of iterations, ỹk̄bk̄
contains only one value or some repetitions, say t0 > 1, of the
same value, say v0. It is straightforward to verify that

C k̄bk̄ − a
N k̄
k̄

> v0 ⇐⇒
C k̄bk̄ − t0v0 − a

N k̄
k̄
− t0

> v0. (15)

Hence, this last bucket ỹk̄bk̄ can not contain y(Ky). We stop the
exploration. It follows that τy satisfies

τy =

 %N k̄
b
k̄

+1
(y) if bk̄ < B,

%
N k̄−1

bk̄−1+1

(y) if bk̄ = B.
(16)

The complexity of this algorithm essentially depends on the
choice of the bucketing functions hk at any level k. This aspect
is studied in the next subsection. A possible implementation is
given in Algorithm 2.

y

ỹ1
1

ỹ1
2

ỹ1
3

ỹ1
4

ỹ1
5

ỹ1
6

ỹ2
1

ỹ2
2

ỹ2
3

ỹ2
4

ỹ2
5

ỹ2
6

...

ỹj1

ỹj2

ỹj3

ỹj4

ỹj5

ỹj6

Figure 1: Principle of ”hierarchical bucket filtering”.

Example A synthetic example is given in figure 1. The vector
y is split in 6 buckets. Starting from the vector of the largest
values ỹ1

6 , the algorithm checks if %N1
6
(y) < min ỹ1

6 . It is thus
the algorithm continues and checks ỹ1

5 , which is also true. Then
for ỹ1

4 , the assertion is false, thus the algorithm splits the vector
ỹ1

4 . The same process is made until the last layer k̄, where the
bucket ỹk̄5 has the property to stop the algorithm: τy = %N k̄

6
(y).

2.2 Worst Case Complexity
Let dxe be the function, defined from the real number to the
integer number, returning the lowest integer greater than x. A
first possible implementation of the function hk+1, defined for
the values in the interval [α = min ỹkbk , β = max ỹkbk] is :

hk+1(x) =

⌈
x− α
β − α

∗B
⌉

(17)

This function splits the interval [α, β] into B intervals of equal
length. Using this function, the worst-case complexity is O(d2),
since at worst, each iteration removes only 2 elements.

That’s why we propose another function, based on the encod-
ing of numbers. Let D be the number of binary digits used to
encode the numbers of y. Consider that number u is greater
than number v if the encoding of u is lexicographically greater
as the one of v, assumption which is true in nowadays computer
using positive double precision values.

Consider the numbers u = 1.6250 and v = 0.9375, if we
consider the digits, then u is lexicographically greater than v.
Today’s computers store the number by first storing the exponent
of the first non zero bit of the number, often using a bias for
reaching negative exponent. Then, starting from the next bit on
the right of the first non zero bit, the k next digits are stored.
These vector of k bits is usually called the fraction. For negative
numbers, a bit is set to 1, but we consider here only positive
numbers.

Consider an exponent given using 3 bits and 4 bits for the
fraction. We use here a bias of 3. Consider the numbers:

• 011-1010. First the exponent is equal to 3 minus the bias,

thus 0. The represented number is 20 + 2−1 + 2−3 =
1 + 0.5 + 0.125 = 1.625

• 010-1110. First the exponent is equal to 2 minus the bias,
thus -1. The represented number is 2−1 + 2−2 + 2−3 +
2−4 = 0.5 + 0.25 + 0.125 + 0.0625 = 0.9375

Using this binary encoding, the number are still lexicographi-
cally ordered.

An import remark is that, using encoded numbers overD bits,
the number of different numbers is finite. Moreover, let b be
the base of the encoding, the maximum number of comparison
needed to compare two numbers u and v is dlogb(D)e.

In order to define an efficient function h, we relax the equation
(8) and thus the property ensuring that at each iteration, the
number of elements of the bucket is decreasing. But we ensure
that the maximal number of hierarchical iterations is finite. Here
it will be dlogb(D)e.

Let the function Ekb , defined for numbers encoded over D
digits, be the function returning the kth digit in base b. The
function h is now defined as follows:

hk+1(x) = Ek+1
b (x) (18)

In today’s computers, double precision values are often en-
coded over 64 bits. Using a base b = 256, thus defined over 8
binary digits (a Byte), the maximum depth of the algorithm is
log28(264) = 8. Moreover, the h function is strongly compu-
tationally less expensive than ones using divide and multiply
operations. Note that the number of buckets is equal to the base
too.

Since the maximum number of operation at each iteration is
bound by the number of values of y. The complexity of applying
this methods in classical real implementation in computer is
O(d). Note that using a Byte for comparing number is often
done while implementing efficient sorting method such as the
Radix sort [3].

In the general case, using D binary digits, and a a base b, the
complexity is O((d+ b) ∗ logb(D)).

Filtering One of the main advantage of the method proposed
by [2] is to filter, while iterating over the values, the values that
are zeros in the projection. To do so, a lower bound τ ′ of τ is
maintained and allows to remove values yi < τ ′. Thus each
time a value yi is considered, the algorithm adds it in its next
bucket if and only if yi > τ ′.

With a vector generated using Gaussian random variables,
only few indexes in the projection will be non zeros. Such in-
dexes can be fastly find with this filtering method. Let Bucketp

be the bucket projection algorithm and Bucketpf be its version
having the additional filtering.

We propose for the lower bound τ ′, to start each time with the
% value of the next bucket. Then for each value processed, if the
value is dominated by τ ′, then the value is removed. Otherwise
the value is used to update τ ′.

Algorithm 2 Bucketp

Data: y, a
ỹ0
b0
← y

C0
b0
← −a

N0
b0
← 0

1 for k ∈ 1..dlogb(D)e do
for b ∈ 1..B do

Skb ← {i ∈ S
k−1
bk−1
| hk−1(yi) = b}

ỹkb ← (yi)i∈Sk
b

2 for b ∈ B..1 do
bk ← b
if %Nk

b+1
(y) > max(ỹkb) then

break loop 1
if %Nk

b
(y) > min(ỹkb) then

break loop 2

τ ← %Nk
bk

(y)

for i ∈ 1..|y| do
xi ← max(yi − τ, 0)

Figure 2: red: ratio between our Bucketpf algorithm and the
Pivotf algorithm, blue: ratio between our Bucketp algorithm
and Pivotf algorithm. The x-axis is a function of the vector
sparsity k.

3 Experimental evaluation
In order to simulate sparse data vectors generated by the split-
ting algorithm. See [1] for more details. We set a ratio d/k of
components to zeros of a random Gaussian vector (dimension
d = 1000000). Fig. 2 shows that our hierarchical bucket fil-
tering always outperforms the Pivotf method [2]. Moreover
the improvement of our simple hierarchical bucket method is
larger for sparse vectors. As a conclusion bucket-based method
are well suited for projection on the `1 ball inside splitting
algorithms.

Gaussian When we use a normal distribution without assump-
tion on the number of zeros, the running times of Bucketpf and
Pivotf are comparable and outperform all the other methods.

By profiling, we have remarked that for both algorithms more
than half of the time is spent on the first iteration over y, and
almost the other half is spent building the vector x, the remain-
ing part of the algorithm is completely flooded in the global run
time.

4 Conclusion
This paper propose a new projection algorithm based on a bucket
decomposition, that allows a finer grain splitting of the values.
An improvement based of the filtering principles is also given.
Finally, thanks to the experimental evaluation, we have shown
that our algorithms perform better in practice on sparse vectors.

References
[1] M. Barlaud, W. Belhajali, P. L. Combettes, and L. Fillatre,

“Classification and regression using an outer approximation
projection-gradient method,” in To appear IEEE Signal
Processing.

[2] L. Condat, “Fast projection onto the simplex and the l1
ball,” Mathematical Programming Series A, vol. 158, no. 1,
pp. 575–585, 2016.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to algorithms. MIT press Cambridge, 2001,
vol. 6.

[4] D. L. Donoho and M. Elad, “Optimally sparse represen-
tation in general (nonorthogonal) dictionaries via 1 min-
imization,” Proceedings of the National Academy of Sci-
ences, vol. 100, no. 5, pp. 2197–2202, 2003.

[5] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra,
“Efficient projections onto the l 1-ball for learning in high
dimensions,” in Proceedings of the 25th international con-
ference on Machine learning. ACM, 2008, pp. 272–279.

[6] M. Held, P. Wolfe, and H. P. Crowder, “Validation of
subgradient optimization,” Mathematical programming,
vol. 6, no. 1, pp. 62–88, 1974.

[7] K. C. Kiwiel, “Breakpoint searching algorithms for the
continuous quadratic knapsack problem,” Mathematical
Programming, vol. 112, no. 2, pp. 473–491, 2008.

[8] C. Michelot, “A finite algorithm for finding the projection
of a point onto the canonical simplex of n,” Journal of
Optimization Theory and Applications, vol. 50, no. 1, pp.
195–200, 1986.

[9] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” Journal of the Royal Statistical Society. Series B
(Methodological), pp. 267–288, 1996.

[10] E. Van Den Berg and M. P. Friedlander, “Probing the
pareto frontier for basis pursuit solutions,” SIAM Journal
on Scientific Computing, vol. 31, no. 2, pp. 890–912, 2008.

