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Résumé – Les filtres particulaires sont largement utilisés pour le suivi visuel d’objets multiples. Pour améliorer leur performance
dans les espaces d’état de grande dimension, nous proposons d’utiliser un filtre particulaire local. L’idée est de partitionner l’espace
d’état en plusieurs sous-espaces de dimension plus faible associés à un objet ou un groupe d’objets. L’algorithme de suivi proposé
permet de se ramener à un problème mono-dimensionnel tout en modélisant les interactions entre objets.

Abstract – Particle filters (PFs) are currently widely used for visual tracking of multiple objects. In order to improve the
performance of the PFs in high dimensional state spaces, we propose to use a local particle filter. The idea is to partition the
large state space into smaller subspaces associated with an object or a group of objects. The proposed tracking algorithm allows
to reduce the tracking to a one dimensional problem while considering the inter-object interactions.

1 Introduction

Multiple object tracking (MOT) is still a challenging task
in computer vision. Handling multiple objects in visual
tracking introduces additional complexity mainly due to
the varying number of objects and the interactions be-
tween the objects. In past years, sequential Monte Carlo
(SMC) methods have gained a great interest and have
shown capabilities to address the MOT problem. These
methods can be divided into two main categories accord-
ing to the state space representation.
The first category defines a single object state space

and runs several independent particle filters (PFs) in par-
allel, one for each object [1,2]. The dimension of the state
space remains small, but no inter-object interaction can
be modelled within the PFs. To account for interactions,
a separate processing should be added at the expense of an
extra cost. Using independent trackers also requires solv-
ing a data association problem to assign the observations
to the objects [3].
The second family offers a more rigorous formulation of

the problem based on a joint state space made from the
concatenation of the multiple objects [4,5]. In this frame-
work, the different objects can be labelled and the interac-
tions can be explicitly taken into account. But it induces
a considerable growth of the state space dimension. PFs
require a number of particles that increases exponentially
with the number of objects, so the computational cost
quickly becomes too expensive. This problem is known as
the curse of dimensionality.
Therefore alternative methods have been developed. Se-

quential Markov chain Monte Carlo (MCMC) methods are
known to be more effective than PFs in high dimensional
state spaces [6]. They have been much used for visual
tracking of multiple objects [7, 8] since the initial work
of Khan et al. [9], but the number of tracked objects is
still limited. Another solution consists in using PFs with
partitioned sampling (PS) [10] based on a decomposition
of the state space into a partition. The algorithm suc-
cessively performs sampling and resampling on each sub-
space. However this process leads to an impoverishment of
the particles due to the numerous resampling procedures
and the order in which the subspaces are explored has a
strong impact on the performance. To limit this impact,
dynamic and ranked PS have been proposed [11, 12].
In this paper, to overcome the dimension problem in the

joint state space configuration, we propose to use a local
PF which combines the interaction modelling and the par-
tition of the large state space into separate subspaces of
smaller dimension. The idea recently developed by Rebes-
chini et al. [13] is to exploit the fact that interactions are
local. Unlike PS, each subspace is sampled independently
and the treatment order does not matter. Experimental
results demonstrate the benefits of the proposed method.

2 MOT problem formulation

This paper deals with MOT along a sequence of images.
The aim is to estimate the joint state of No individual
objects Xt = {xj

t}
No

j=1 from a sequence of observations
y1:t = (y1, ..., yt). In the Bayesian framework, the distri-



bution of interest is the filtering density:

p(Xt|y1:t) ∝ p(yt|Xt)·

∫

p(Xt|Xt−1)·p(Xt−1|y1:t−1)·dXt−1

where the prior density p(Xt|Xt−1) represents the dy-
namic evolution of the state Xt and the observation like-
lihood p(yt|Xt) measures the matching of the observation
yt given the state Xt.
Each object j is represented by a rectangular bound-

ing window with a fixed size. Then x
j
t = {cjt , v

j
t } with

ct = {cxt , c
y
t } the position of the top left corner and vt =

{vxt , v
y
t } the velocity between two successive images.

Here we assume that the number of objects No is fixed,
but the approach could be easily extended to deal with
a time varying number of objects by using a random fi-
nite set or by fixing a maximum number of objects and
associating to each object an existence variable [7–9, 14].

2.1 Dynamic model

The usual quasi constant velocity model is combined with
an interaction model. As in [15,16], the objects which are
close to one another and move in the same direction tend
to form a group and to adopt similar dynamics. Accord-
ingly the objects interact inside a group and the groups
are supposed to evolve independently.
Hence we consider that the No objects are divided into

N t
G independent groups Gt = {Gg

t }
Nt

G

g=1 with ∪
Nt

G

g=1G
g
t =

{1 : No}. We denote xt(G
g
t ) = {xj

t : j ∈ G
g
t }.

Each object j moves at a velocity equal to the average
velocity of all the objects of the group G

g
t−1 to which the

object j belongs between times t − 1 and t. Then the
evolution of each object state x

j
t = {cjt , v

j
t } is given by:

{

c
j
t = c

j
t−1 + vG

g
t−1 + ǫc

v
j
t = v

j
t−1 + ǫv

(1)

where the group velocity vG
g
t−1 is equal to:

vG
g
t−1 =

1

|Gg
t−1|

·
∑

k∈G
g
t−1

vkt−1 (2)

with |Gg
t−1| the number of objects in the group G

g
t−1. The

state noises ǫc and ǫv are independent white Gaussian
noises with Σc = diag(σ2

c , σ
2
c ) and Σv = diag(σ2

v, σ
2
v) the

respective covariance matrices defining the uncertainty re-
gion around the previous states.
Since the group motions are independent, the joint prior

density can be written as:

p(Xt|Xt−1) =

Nt
G
∏

g=1

p
(

xt(G
g
t−1)|xt−1(G

g
t−1)

)

(3)

Because the current state of an object only depends on
the previous joint state, it can also be written as:

p(Xt|Xt−1) =

No
∏

j=1

p
(

x
j
t |Xt−1

)

(4)

In this work, we assume that the groups of objects are
known, but they could be jointly evaluated with the state
of the objects as in [15, 16].

2.2 Observation model

The observation model is based on the usual colour in-
formation. For each object j, a set of RGB histograms
h
j
t = h(yt, x

j
t ) is extracted from the image region R(xj

t )
defined by the object state xj

t . As in [17], R(xj
t ) is divided

into multiple subregions to take into account the colour
spatial distribution. A histogram is then computed for
each colour and each subregion.
The likelihood associated to an object j is defined from

the Bhattacharyya distance DB between the candidate
histograms hj

t and the reference histograms Hj
t for the 3

RGB channels and the S subregions of R(xj
t ):

p
j
t (yt|x

j
t ) ∝ exp

(

−λ

3
∑

p=1

S
∑

r=1

D2
B

(

h
j
t (p, r), H

j
t (p, r)

)

)

(5)
where λ is a tuning parameter that determines how peaked
the likelihood is.
Then the joint likelihood results from the contribution

of the No individual objects:

p(yt|Xt) =

No
∏

j=1

p
j
t(yt|x

j
t ) (6)

3 Local particle filters

3.1 Principle of local particle filters

The initial idea is that in high dimensional filtering mod-
els, a decay of correlation is generally observed between
the regions of the state space which are distant enough
from one another. This leads to a locally low dimensional
model. In [13], Rebeschini and al. propose to exploit this
property to design local particle filters.
The principle is to partition the state space into sep-

arate subspaces of smaller dimension, also called blocks,
under the following assumptions. We consider a HMM
(x1:t, y1:t)t≥0 such that, at each time t, the state xt with
dimension d can be divided into N t

B independent and non

overlapping subsets or blocks {Bj
t }

Nt
B

j=1. These blocks ver-

ify ∪
Nt

B

j=1B
j
t = {1 : d} and B

j
t ∩ B

j′

t = ∅ ∀j, j′ ∈ {1 : N t
B}

with j 6= j′. The HMM is assumed to satisfy the following
factorization [6]:

p(yt|xt) · p(xt|xt−1) =

Nt
B
∏

j=1

f
j
t

(

yt, xt−1, xt(B
j
t )
)

(7)

for appropriate functions f
j
t (.) and with xt(B

j
t ) the set

of the state components belonging to the subset Bj
t , thus

xt(B
j
t ) = {xj

t : j ∈ B
j
t }.



Fig. 1: Dependence graph of a HMM satisfying the fac-
torization (7).

The dependence graph is illustrated in Figure 1 in the
simplest case for |Bj

t | = 1, ∀j, t, that means xt(B
j
t ) = x

j
t .

The dynamics of the state xt is local in the sense that the
components are mutually independent and only depend on
the components of the previous state xt−1: p(xt|xt−1) =
∏Nt

B

j=1 p
j
t (x

j
t |xt−1). Similarly, the observations are also lo-

cal: p(yt|xt) =
∏Nt

B

j=1 p
j
t (y

j
t |x

j
t ).

Then by running a PF on each non overlapping subset,
the local PF approximates the filtering distribution as a
product of marginal distributions on the N t

B subsets:

p(xt|y1:t) ≈

Nt
B
⊗

j=1

p
(

xt(B
j
t )|y1:t

)

(8)

This strategy introduces some bias in the Monte Carlo
estimation, because the approximation (8) does not con-
verge to the exact filtering distribution as the number of
particles tends to infinity. Nevertheless, the variance re-
duction due to the small dimension of the subsets is sig-
nificant compared to the small amount of bias which is
introduced in the algorithm.

3.2 Local PF for visual tracking of multi-

ple objects

According to the MOT model described by equations (4)
and (6), the product of the prior density and the likelihood
can be factorized as in equation (7) with |Bj

t | = 1, ∀j, t,
that is xt(B

j
t ) = x

j
t , and N t

B = No.
Thus the local PF consists in running a PF for each

object, while considering the dynamics dependence within
each group of objects in the sampling step. Consequently
the dimension of the estimation problem is divided by the
number of objects.
The algorithm of the local PF obtained by using the

prior density as the importance function is summarized in
Table 1.

Initialisation (t = 0)

sample {X
(i)
0 }

Np

i=1 ∼ p(X0)

initialise {w
j,(i)
0 }

Np

i=1 = 1
Np

, ∀j = 1 : No

initialise the object groups {Gg
0}

N0

G

g=1

initialise the group velocity

vG
g
0
,(i) = 1

|Gg
0
|
·
∑

k∈G
g
0

v
k,(i)
0 , ∀g = 1 : N t

G, i = 1 : Np

Sequential processing (t > 0)
for j = 1 : No

for i = 1 : Np do

sample c
j,(i)
t ∼ p(cjt |c

j,(i)
t−1 , v

G
g
t−1

,(i))

sample v
j,(i)
t ∼ p(vjt |v

j,(i)
t−1 )

evaluate w
j,(i)
t = p

j
t (yt|x

j,(i)
t )

end for

normalise the importance weights w
j,(i)
t

end for

estimate X̂t =
⊗No

j=1

∑Np

i=1 w
j,(i)
t · x

j,(i)
t

resample {x
j,(i)
t , w

j,(i)
t }

Np

i=1, ∀j = 1 : No

update the object groups {Gg
t }

Nt
G

g=1

update the group velocity

vG
g
t ,(i) = 1

|Gg
t |
·
∑

k∈G
g
t
v
k,(i)
t , ∀g = 1 : N t

G, i = 1 : Np

Tab. 1: Local particle filter algorithm for visual tracking.

4 Experimental results

To show the relevance of the local PF against the curse of
dimensionality, several simulations have been conducted
on four synthetic image sequences, each with 100 images
and a size 500 × 500. In the sequences, each object is
represented by a rectangular patch with a specific color.
The sequences S1, S2 and S3 contain 4 objects forming
three separate groups of size (2,1,1) and the sequence S4
contains 6 objects forming three separate groups of size
(4,1,1). The number of groups and their composition are
known and do not change in time.
Three trackers are considered for this experiment : the

joint PF based tracker, which defines a joint state space
model, the tracker based on multiple independent PFs
per object group, which defines a state space per group
and the local PF, which considers each object as a subset
of the joint state space model.
All the trackers use the prior density as the importance

function. The number of particles Np is respectively 20,
20 and 50 for the local, independent and joint PFs.
Table 2 shows the performance results expressed as a F-

measure averaged over the whole sequences and 100 sim-
ulations. The local PF achieves the best results in all the
scenarios. Its superiority is due to its capability to han-
dle interactions between objects while reducing the state
space of dimension No to a one dimensional state space.
The multiple independent PFs per object group have also
good performance, but lower than the local PF. These



performances are explained by switching from the state
space of dimension No to a state space per group with
smaller dimension. Finally the joint PF has the lowest
performances as it applies no dimension reduction and di-
rectly deals with the high dimensional state space.

Joint PF
Independent
PFs per group Local PF

S1 78.54 90.89 93.10
S2 76.24 89.24 92.60
S3 77.68 90.38 92.94
S4 74.90 86.18 93.87

Tab. 2: Average F-measure for the synthetic sequences.

If we look closer at the performance difference between
the three trackers, we observe that for sequences S1, S2,
S3, the performance obtained with the independent PFs
per object group is slightly below the performance of the
local PF. For the sequence S4, the F-measure difference
between the independent PFs and the local PF becomes
more important and the results of the independent PFs
get closer to the performance of the joint PF. This is due
to the increase of the number of objects within one group
in sequence S4. The dimension of the subspace corre-
sponding to the group of four objects is significant and
the independent PFs per group suffer from the same di-
mension problem as the joint PF. The major limitation of
the tracker based on the independent PFs is that the per-
formance depends on the size of the object groups. This
limitation is overcome by the local PF, which accounts for
the interactions between the objects in a simple framework
which is affected neither by the number of objects in the
scene nor the size of the object groups.

5 Conclusion

In this paper, we propose to use the local PF for visual
tracking of multiple objects. In our implementation, the
local PF partitions the large state space into one dimen-
sional subspaces associated to one object while considering
the interactions between the different objects belonging to
a same group. Consequently the dimension of the MOT
problem is divided by the number of objects. Experimen-
tal results on synthetic videos show that the local PF is a
promising solution to make PFs more effective in high di-
mensional applications such as MOT. These results have
to be confirmed on real image sequences.
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