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2Institut Fresnel, Aix-Marseille Université/CNRS/Centrale Marseille, 13013 Marseille, France

penghuan.liu@ls2n.fr, jerome.idier@ls2n.fr, sebastien.bourguignon@ls2n.fr
simon.labouesse@fresnel.fr, marc.allain@fresnel.fr, anne.sentenac@fresnel.fr

Résumé – La microscopie conventionnelle à large champ est un système limité par la diffraction, dont la résolution est limitée par la limite
de Abbe. Il a été montré récemment qu’un facteur de super-résolution de deux peut être obtenu en illuminant l’objet avec des éclairements
aléatoires (speckles), en exploitant les statistiques d’ordre deux des données dans un estimateur à minimum de contraste. Dans cet article, nous
montrons que le cadre de l’estimation à minimum de contraste fournit un estimateur consistent lorsque le nombre d’illuminations augmente.
Nous proposons finalement une approximation de cet estimateur permettant de réduire le coût de calcul.

Abstract – Conventional wide-field microscopy is a diffraction limited system with the resolution limit given by Abbe limit. It has been
shown recently that a super-resolution factor of two can be achieved using unknown speckle patterns, by taking advantage of the second-order
information of the acquired data associated with a minimum contrast estimator. In this paper, we show that such minimum contrast estimation
provides a consistent estimator as the number of speckle pattern increases. An approximation of such estimator is finally proposed for efficient
computations.

1 Introduction
The point spread function (PSF) of a classical fluorescence

wide-field microscopy with perfect circular lens has a finite
support in Fourier domain which is a disk of radius νpsf =
NA/λ, where λ is the wavelength of the emitted light and NA
is the numerical aperture of the system. Structured illumination
microscopy (SIM) allow us to surpass this limit by illuminating
the object ρ with several structured patterns Im instead of uni-
form illumination [1]. For each pattern Im, the recorded data
ym can be modeled as the convolution of the emitted density
from the object ρ with PSF h :

ym = h ? (ρIm) + εm (1)

with ? represents the convolution operator and εm is the elec-
trical noise. The high spatial frequencies in the object are down
modulated by Im to the support of the system and can be re-
constructed by data post processing.

One disadvantage of SIM is that its reconstruction process
rely on precise knowledge of illuminations. Normally control-
ling illumination is a difficult task and small errors will cause
strong artifacts in the reconstructed image. Blind SIM is pro-
posed to address this problem by using speckle illumination as
a substitute for conventional harmonic illumination to obtain
super-resolution (SR) [2, 3]. Moreover, the speckle pattern is
easier to generate.

A joint reconstruction approach has been proposed in [2, 3]
in which the object are reconstructed simultaneously with the

speckle patterns. However the theoretical SR capacity one can
expected form such a joint approach remains unclear. A mar-
ginal estimator based on the second-order statistics of the re-
corded data has been proposed in [4] with a known theoretical
super-resolution capacity of factor of two. We demonstrate that
such a estimator is statistical consistent in this paper. To reduce
the computational complexity of the original method, a patch
based approximation approach is proposed.

2 Marginal estimation principle
In a discrete form where each 2D image is displayed as a

column vector, Eq. (1) can be written as :
ym = HRIm + εm (2)

with H ∈ RN×N the convolution matrix and R ∈ RN×N
the diagonal matrix with diagonal values identify with ρ. Im ∈
RN where m ∈ {1, · · · ,M} is the m-th realization of speckle
with homogeneous intensity mean I0 and covariance matrix C.
We consider that the speckle pattern and the collection of the
emitted light of the sample are performed in the same optical
device. In this case the covariance matrix C identifies with H.
The noise patterns εm are assumed jointly independent, cente-
red, and spatially white, sharing a common covariance matrix
Γε proportional to the identity matrix. Now we can write the
mean and the covariance of the measured image ym as :

µy = I0Hρ, Γy = HRCRHT + σ2Id, (3)



where T denotes the transpose operator and Id the identity ma-
trix.

The principle of marginal estimation is to infer the sample
ρ from the statistical characteristics of the collected data. A
typical marginal estimation procedure would consist in maxi-
mizing the likelihood of the data as a function of ρ. However,
because of the complexity of the speckle statistics, it is hard or
even impossible to express the data likelihood in closed-form.
A simpler alternative is to estimate ρ by minimizing the mis-
match between the theoretical second-order data statistics (3)
and their empirical moments :

µ̂y =
1

M

∑
m

ym, Γ̂y =
1

M

∑
m

ymy
t
m − µ̂yµ̂Ty . (4)

In [4], the Kullback-Leibler divergence is chosen to measure
the difference between the theoretical and the empirical mo-
ments :

DM (ρ) ∝ DKL
(
N (µ̂y, Γ̂y)||N (µy,Γy)

)
= log |Γy|+

1

M
Tr(Γ−1y VVT ) + cst

(5)

where N denotes the normal distribution and Tr(·) is the trace
of a square matrix, and

V = (v1| · · · |vM ), with vm = ym − µy (6)

According to the law of large numbers, we have :

lim
M→∞

µ̂y
P−→ µ∗y, lim

M→∞
Γ̂y

P−→ Γ∗y (7)

where µ∗y,Γ
∗
y indicate the true value of the corresponding va-

riables and P−→ denotes the convergence in probability. Conse-
quently, for a sufficiently large number of acquisitions,DM (ρ∗)
is expected to vanish.

The solution of (5) has no expression in closed form. We
choose a gradient based iteration algorithm, L-BFGS [5] in our
simulations to minimize the criterion (5) with the gradient gi-
ven by [4] :

∇DM (ρ) = −2
(

[ΩT (
1

M
VVt−Γy)Ω]◦C

)
ρ− 2

M
I0Ω

tV1

(8)
in which Ω = Γ−1y H and 1 = (1 · · · 1)T .

3 Asymptotic analysis
The statistical principle behind such an inferential principle

is called minimum contrast estimation [6], or alternatively, M-
estimation [7, Chap. 5]. Let ym, m = 1, . . . , be independent,
identically distributed data vectors, each taking its values in Y ,
with a common probability distribution depending on a para-
meter vector θ∗ in Θ. Let C : Y ×Θ → R be a real-valued
function. The theory of minimum contrast estimation relies on
the following definitions.

Definition 1. The statistical expectation J(θ∗,θ) = E [C(y,θ)]
is said to be a contrast function if it has a strict minimum at true
value θ∗.

Definition 2. For arbitrary large M , if the empirical mean

JM (θ) =
1

M

M∑
m=1

C(ym,θ) (9)

converges towards J(θ∗,θ) in probability for each value of θ∗

and θ, JM (θ) is called a contrast process.

Associated with a contrast process, a minimum contrast esti-
mator θ̂M is defined as the minimum of (9). The estimator θ̂M
has consistent property (i.e. θ̂M converges to θ∗ in probability
as M →∞) if the following conditions hold [6, 7] :

Theorem 1. Let Θ be a bounded open set inRN and J(θ∗,θ)
be a continuous function on the closure of Θ. If

— JM (θ) is a continuous function of θ
— JM (θ) converges uniformly to J(θ∗,θ), i.e.

sup
θ∈Θ
|JM (θ)− J(θ∗,θ)| −→ 0

then θ̂M is a consistent estimator of θ̂.

In our application, we define θ = Sρ with S denoting the
ideal low-pass filter with frequency support given by 2νPSF.
Then a contrast function can be defined as :

J(θ∗,θ) = D∗(S+θ) (10)

with D∗(ρ) = DKL(N (µ∗y,Γ
∗
y)||N (µy,Γy)) and S+ the

pseudo-inverse of S. J(θ∗,θ) coincide with our definition of
contrast function since the true value θ∗ is identifiable from
J(θ∗,θ) [4]. Similarly we can define the contrast process by
JM (θ) = DM (S+θ) .

The continuous demonstration of JM (θ) is simple. We see
in formula (5) that every component in Dm(ρ) is continuous.
According to the rules for constructing continuous functions
[8], it is obvious that DM (ρ) is a continuous function, so is
JM (θ).

For the uniformly convergence of JM (θ) to J(θ∗,θ), we
note that :

DM (ρ)−D∗(ρ) = Tr
(
Γ−1y (Γ̂y − Γ∗y)

)
+ log

|Γ∗y|
|Γ̂y|

(11)

Since the covariance matrix HRCRHt is a positive semi-definite
matrix, applying Weyl’s inequality [9] to formula (3), we have :

λmin(Γy) > λmin(Γε) (12)

where λmin(A) means the smallest eigenvalue of the matrix A.
Since Γ−1y is a symmetric matrix, we can define its norm by its
maximum eigenvalue :∥∥∥Γ−1y ∥∥∥ = λmax(Γ−1y ) =

1

λmin(Γy)
6

1

σ2
(13)

Combining (7)(11)(13), we have :

sup
ρ∈RN

|DM (ρ)−D∗(ρ)| −→ 0 (14)

Restricting the domain of Dm(ρ) to {ρ|ρ = S+θ,θ ∈ Θ},
we obtain :

sup
θ∈Θ
|DM (S+θ)−D∗(S+θ)| −→ 0 (15)

Now we have JM (θ) converges uniformly to J(θ∗,θ).



4 Patch based marginal estimator
To obtain the gradient (8) we need to inverse the covariance

matrix Γy , the computational complexity for which is O(N3).
This computation burden is too high for realistic image sizes.
One possible solution is to cut the image into a set of patches,
and neglect the correlation between pixels from different patches.
This corresponds to a new optimization problem :

min
ρ
F ′(ρ) =

∑
p

DKL(N (µ̂yp, Γ̂yp)||N (µyp,Γyp)) (16)

where µyp,Γyp denote the mean and covariance for patch p,
respectively. The gradient for (16) can be written similarly as
in (8). We can prove that the computational complexity for (16)
can be reduced to O(N2(logN + L)) with L the number of
pixels in each patch. What is more, the optimization for the
patched version can be solved parallelized.

5 Simulation results
We use a simulated target whose fluorescence density in the

polar coordinates given by : ρ(r, θ) ∝ [1 + cos(40θ)] (Fig. 1a)
as the true object. The point spread function is chosen as :

h(r, θ) =
(J1(NAk0r)

k0r

)2 k20
π

(17)

where J1 is the first order Bessel function of the first kind, NA
is the objective numerical aperture set to 1.49 and k0 = 2π

λ is
the free-space wavenumber with λ the emission and the exci-
tation wavelengths. The covariance of speckle patterns are set
to H. To circumvent the boundary effects, we perform simu-
lations with convolution matrix H with a block-Toeplitz with
Toeplitz-block (BTTB) structure.

In our simulations a common pixel size of λ/20 for both raw
images and the super-resolved reconstruction is adopted, which
is finner than the Nyquist criterion λ/8NA ≈ λ/12 for a super-
resolution factor of two.

To evaluate the resolution enhancement of the reconstructed
objects, we define the modulation contrast function C(R) as a
function of of radius R as :

C(R) = 2f̃R(1/L(R))/f̃R(0) (18)

where L(R) = 2πR/40 denotes the period of the pattern taken
on a circle and f̃R is the 1D Fourier transform of fR(s) ∝
1 + cos(2πs/L(R)) with s the arc length along the circle. For
the true object, C(R) = 1 for all radius R.

Reconstructed objects under different number of speckle pat-
terns are shown in Fig. 1, and their modulation contrast values
as a function of period L(R) are shown in Fig. 2. The estima-
tion under infinite speckle patterns are addressed by conside-
ring µ̂y = µ∗y and Γ̂y = Γ∗y , with µ∗y and Γ∗y obtained by set-
ting ρ = ρ∗ in (3). In general the resolution are defined as the
period whose contrast is above 0.1 [2]. As we can see, the de-
convolution of the wide-field image bring no super-resolution
(Fig. 1b) for patterns bigger than the Abbe limit L0 = λ/2NA,

while the marginal estimator has recover the resolution corres-
ponding to 1

2L0 as expected. Some shading artifacts were vie-
wed in the low frequency domain in the reconstructed objects
(Fig.1c,d) when the number of speckle patterns is not large en-
ough to give an accurate estimation of the theoretical cova-
riance. This degradation disappears as the number of speckle
patterns increases.
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FIGURE 1 – Reconstructed objects with L-BFGS algorithm
with different number of speckle patterns. (a) A quarter of
the true object. (b) Deconvolution of wide-field image. (c,d,e)
Marginal reconstruction with 100, 300, 500 speckle patterns
respectively under SNR 40dB. (f) Marginal reconstruction un-
der asymptotic condition with infinity number of speckle pat-
terns and SNR. The green solid lines (resp. red dashed lines)
correspond to spatial frequencies transmitted by OTF support
(resp. 2 times OTF support) and the graduation in the images
represents the wavelength λ.

To verify the SR capacity after introducing patches, we do
simulations under asymptotic conditions (infinite speckle and
SNR) with different patch sizes and the reconstructed objects
are displayed in Fig. 3. Even we only consider the correlation of
pixels with themselves (Fig. 3a), the resolution is better than the
deconvolution case (Fig. 1b). And the super-resolution extends
quickly as the patch size increases. The average time elapsed
in one iteration after introducing patches using a standard Mat-
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FIGURE 2 – Modulation contrast of the reconstructed ob-
jects as a function the period extracted from images shown
in Fig. 1.

lab implementation on a normal computer is shown in Fig. 4.
We see that except the bias when the patch size is small (due to
the inefficiency for-loop processing in Matlab), the time elap-
sed for one iteration increases almost linearly as the patch size
grows.
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FIGURE 3 – Reconstructed objects with different patch size
under ∞ speckle patterns and SNR = ∞.

6 Conclusion and perspectives
For the super-resolution image reconstruction problem in SIM

using speckle patterns, a marginal estimator was proposed ba-
sed on the second-order moments of recorded data in [4]. We
demonstrate in this paper that this marginal estimator is statis-
tically consistent in a minimum contrast estimation approach.
To reduce the computational complexity of the estimation, an
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FIGURE 4 – Time (seconds) elapsed per iteration (Y-axis)
with respect to number of pixels in each patch (X-axis).

approximation is introduced by cutting each recorded image
into a set of patches and by neglecting the correlation bet-
ween pixels from different patches. Simulation results show
that the super-resolution is kept even under conditions when
the patches are very small. We stress here that compared with
classical SIM, the total photon budget does not increase even
though a larger number of speckle patterns is used.
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