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Résumé – Les communications à ondes millimétriques (mmWave) s’appuient sur de grands réseaux d’antennes pour compenser l’affaiblisse-
ment de propagation élevé dans les liaisons d’accès cellulaire. L’estimation du canal est difficile pour les systèmes mmWave en raison du grand
nombre d’antennes. La technique d’acquisition comprimée (CS) a été envisagée pour réduire le nombre requis de symboles pilotes. La com-
plexité des algorithmes CS existants augmente linéairement avec le produit du nombre d’antennes à l’émetteur et au récepteur. Avec plusieurs
dizaines à plusieurs centaines d’antennes de chaque côté, la complexité devient très élevée. Dans cet article, nous proposons un algrithme basé
sur la technique CS qui estime les angles de départ pour des trajets constituant le canal dans une première étape, et ensuite estime les angles
d’arrivée et les gains de ces trajets dans une deuxième étape. L’avantage principal de cette solution est une réduction de la complexité, qui devient
une fonction affine du nombre d’antennes à l’émetteur et au récepteur. Les simulations montrent que les précisions de l’estimation du canal pour
les solutions classiques et la solution proposée sont proches, tandis que la solution proposée a une complexité beaucoup plus faible.

Abstract – Millimeter wave (mmWave) wireless communications rely on large antenna arrays for compensating high path loss in cellular access
links. Channel estimation is challenging for mmWave systems because of the large number of antennas. Compressed sensing (CS) has been
considered for reducing the needed number of training pilots. The computational complexity of existing CS-based solutions is linearly increasing
with the product of the number of antennas at transmitter and receiver. With several tens to several hundred antennas at both communication
sides, the complexity becomes very high. In this paper, we propose a CS-based solution that estimates the angles-of-departure (AODs) for paths
constituting the channel in a first step, and the angles of arrival (AOAs) and path gains for these paths in a second step. The main advantage of
this solution is a reduction of complexity which becomes an affine function of the number of antennas at transmitter and receiver. Simulations
show that channel estimation accuracy for the classical and proposed solutions are close, while the latter has a much lower complexity.

1 Introduction

Millimeter wave (mmWave) wireless communication is ex-
pected to be a key feature of future 5G cellular systems and
complement the sub-6 GHz bands [1, 2]. The major benefit is
the availability of much greater spectrum for higher data rates.
However, due to the increased path loss compared to sub-6
GHz frequencies, highly directional beamforming achieved by
means of large antenna arrays at both transmitter and receiver
is inevitable. The small antenna size at mmWave makes it pos-
sible to construct large arrays with compact form factors [2]. In
addition to the directional gain, the use of large arrays, a.k.a.
massive MIMO, brings the benefit of increasing data rate by
spatial multiplexing. These benefits could be leveraged by a ca-
reful design of precoders and combiners which relies on chan-
nel state information (CSI) obtained by channel estimation.

The common approach for channel estimation is through the
use of training pilots. With a very large number of transmit an-
tennas, training overhead could become prohibitive as it would
require a large percentage of available resources. In mmWave
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propagation, the scattering is expected to be limited [3]. There-
fore, the number of paths with significant gain is expected to be
small compared to the large size of the channel matrix which, in
turn, is expected to be sparse when expressed in the angular do-
main. Compressed sensing (CS) techniques allow sparse signal
recovery from far fewer measurements than signal length [4].
By exploiting sparsity, channel estimation can be formulated as
a CS problem and solved using CS tools with less pilots.

Several works have proposed CS-based algorithms for mm-
Wave channel estimation [5, 6]. However, the computational
complexity of these algorithms is proportional to the product
of the number of antennas at transmitter and receiver, i.e., the
size of the channel matrix. With several tens to several hundred
antennas at both sides, the complexity becomes very high for
practical implementation. In [7], a model for channel temporal
correlation was assumed and exploited for reducing this com-
plexity. In this work, we propose a two-step algorithm for CS-
based channel estimation, with the objective of reducing the
computational complexity. In the first step, the algorithm re-
covers angles-of-departure (AODs) of propagation paths, and
in the second step it recovers the angles-of-arrival (AOAs) and
path gains. This separation into two steps makes the complexity



an affine function of the number of antennas at transmitter and
receiver, but not a function of their product.

We use the following notation : A is a matrix, a is a vector, a
is a scalar. AT ,A∗,A are transpose, Hermitian and conjugate of
A, respectively. ⊗ denotes Kronecker product. ‖a‖ is the Eu-
clidean l2 norm, ‖a‖0 is the l0 norm, |a| is the absolute value,
and ‖A‖F is the Frobenius norm.E{} denotes the expectation.

2 Channel model
We adopt the double-directional impulse response channel

model [3]. Consider a MIMO system where transmitter and re-
ceiver are equipped with Nt and Nr antennas, respectively. We
restrict ourselves to 2D uniform linear arrays (ULA). The ex-
tension to other array geometries is straightforward. Let at(φ) ∈
CNt×1 and ar(φ) ∈ CNr×1 denote the steering vectors as-
sociated to transmitter and receiver arrays, respectively. For a
ULA of size N antennas, the steering vector can be written as

a(φ) =
1√
N

[1, e−j2πνsin(φ), · · · , e−j2πν(N−1)sin(φ)]T , (1)

where ν = d/λ, λ is the wavelength at operating frequency, d
is the antenna separation, and φ is the azimuth angle.

The narrowband channel matrix can be expressed as

H =

P∑
p=1

√
NtNrapar(φr,p)a

∗
t (φt,p) (2)

where P denotes the number of paths, ap is a complex am-
plitude, and φr,p and φt,p are azimuth angles at receiver and
transmitter, respectively.

2.1 Angular domain representation and chan-
nel sparsity

Due to high directivity of large arrays, a natural choice is to
represent the channel in the angular domain [8] with overcom-
plete dictionaries of steering directions

H = DrHaD
∗
t , (3)

where Dr ∈ CNr×Gr and Dt ∈ CNt×Gt are two dictionaries
of size Gr ≥ Nr and Gt ≥ Nt, respectively. It is an approxi-
mation of the channel matrix by replacing the AOD and AOA
of a path with their nearest dictionary columns. The larger the
dictionary size, the more accurate is this approximation. An
example of a dictionary D ∈ CN×2N of size G = 2N for
a ULA of N antennas and d = λ/2 is given by D(k, l) =
1/
√
Ne−j2πkl/2N , l = 0, . . . , 2N − 1. This dictionary corres-

ponds to an overlap of two unitary basis, and can be generated
by taking the top N rows of a DFT matrix of size 2N .

As scattering is limited at mmWave frequencies [3], it can
be expected that the number of paths significantly contribu-
ting to the channel in (2) is relatively small. Furthermore, one
can discard paths having small amplitudes without much ac-
curacy loss. Thus, matrix Ha is expected to be sparse. Let

h = vec(H) ∈ CNtNr×1 be the vectorization of the channel
matrix. Equation (3) can be recast as

h = (Dt ⊗Dr)vec(Ha)

= Ψha, (4)

where ha = vec(Ha) ∈ CGtGr×1. Matrix Ψ ∈ CNtNr×GtGr

is a dictionary for the channel expressed in vector form. ha is
said to be K-sparse if it has at most K non-zero entries.

3 Channel estimation
Measurements for channel estimation are obtained by trans-

mitting pilot signals over time-frequency resources, and pro-
cessing the received signals with combiners. For one pilot pj ∈
CNt×1 and one combiner qi ∈ CNr×1, the corresponding sca-
lar measurement is given by

yi,j = q∗iHpj + q∗inj , (5)

where nj ∈ CNr×1 is the noise vector over time-frequency re-
source of pj . In the absence of prior information on channel
statistics, least-squares (LS) is the classical solution for linear
estimation. The number of measurements needed for applying
LS is NtNr. Considering the sparse nature of mmWave chan-
nels, CS techniques can be used for drastically reducing the
needed number of measurements.

3.1 CS-based channel estimation
Let P = [p1, · · · ,pNp

] be a matrix of Np pilots and Q =
[q1, · · · ,qNc

] be a matrix of Nc combiners. By applying the
Nc combiners of Q to every pilot, it is possible to write the
measurements in matrix form as follows

Y = Q∗HP + Q∗N

= Q∗DrHaD
∗
tP + Q∗N (6)

where N = [n1, · · · ,nNp ]. Vectorizing this equation gives

y = (PT D̄t ⊗Q∗Dr)ha + n

= Ãha + n, (7)

where size of Ã is m × GtGr, and m = NpNc being the
number of measurements.

Assuming ha isK-sparse, the channel estimation can be for-
mulated as a CS optimization problem as follows [4]

ĥCSa = arg min
ha

‖y − Ãha‖ , s.t. ‖ha‖0 ≤ K. (8)

When sparsity level K is small, only a few measurements
(m � NtNr) are needed for channel estimation. A simple
and fast algorithm for sparse signal recovery is orthogonal mat-
ching pursuit (OMP) [4]. OMP is an iterative algorithm where
a new non-zero entry of ha is identified at each iteration. The
complexity order of one OMP iteration is upper bounded by
O((Np + Nc)GtGr). For K iterations, the complexity order
is O(K(Np + Nc)GtGr). This complexity is very high for
large antenna arrays. For example, taking Np = Nc = 32,
Gt = 256 and Gr = 128, the application of OMP requires
about 220 ≈ 106 operations per iteration.



3.2 Two-step CS-based channel estimation
The transmitter and one receiver combiner can be seen as

a multiple-input-single-output (MISO) system. The estimation
of the MISO equivalent channel vector has lower computatio-
nal complexity than the estimation of the MIMO channel ma-
trix. The MISO channel is expected to be sparse in the angu-
lar domain, where non-zero entries correspond to AODs. Since
MIMO and MISO channels share the same AODs, the reco-
very of a MISO channel could be exploited for recovering the
MIMO channel. The two-step CS based channel estimation so-
lution relies on this issue and starts by recovering AODs at the
first step. We now describe how this solution is processed.

3.2.1 The first step estimation

The Hermitian of Y in (6) can be written as

Y∗ = P∗DtH
∗
aD
∗
rQ + N∗Q (9)

The rows of H∗a correspond to AOD directions. By assuming
sparsity, most of these rows are equal to zero.

For a combiner vector qi, let

wi = H∗aD
∗
rqi. (10)

The vector wi ∈ CGt×1 corresponds to the MISO channel vec-
tor expressed in angular domain. The non-zero entries of wi

correspond to non-zero rows of H∗a. Thus, wi is sparse.
The ith column of Y∗, denoted by ỹi, can be written as

ỹi = P∗Dtwi + N∗qi. (11)

It is possible to apply OMP on ỹi to estimate wi and recover
the AODs associated to channel paths. Due to high path loss
and since qi is randomly selected and not aligned with AOAs,
the signal to noise ratio (SNR) is expected to be low, resul-
ting in a poor recovery performance. However, notice that we
have Nc vectors wi, i = 1, · · · , Nc, and all these vectors share
the same support of non-zero entries. By jointly recovering the
support for all these vectors, one expects to improve the reco-
very accuracy. An algorithm for joint recovery that is suitable
for our problem is simultaneous OMP (SOMP) [9]. SOMP exe-
cutes the same operations of OMP with only difference in the
identification of a new entry at each iteration. Let rk−1i be the
residual vector remaining from ỹi at iteration k − 1. Also let
Rk−1 = [rk−11 , · · · , rk−1Nc

], and p̃j denote the jth column of
P∗Dt. At iteration k, SOMP selects a new entry according to

tk = arg max
j∈{1,··· ,Gt}

‖p̃∗jRk−1‖. (12)

The complexity of this operation is O(NpNcGt). For K itera-
tions, the complexity of step 1 is O(KNpNcGt).

The output of step 1 is K-sparse estimate of wi, denoted as
ŵi, i = 1, · · · , Nc.

3.2.2 The second step estimation

Using (10), the lth non-zero entry of ŵi, out of K, can be
written as

ŵ∗i,l = q∗iDrHa,l + ei,l, (13)

where Ha,l is the lth column of Ha identified as not equal to
zero, and ei,l is the estimation noise. Define the column vector
vl

vl = [ŵ1,l, · · · , ŵNc,l]
∗.

It can be expressed as

vl = Q∗DrHa,l + el, (14)

where el = [e1,l, · · · , eNc,l]. Vector vl can be seen as a mea-
surement vector, and OMP can be applied to recover the sparse
vector Ha,l. Repeating this operation for l = 1, · · · ,K, we
end up with an estimation of Ha. As a remark, the K OMP
runs are parallelizable. The complexity of one OMP run for K ′

iterations at this step is O(K ′NcGr). Since Ha,l corresponds
to one AOD, it is expected to be sparser than wi.

The overall complexity of the two-step solution is equal to
the summation of complexities in each step. Assuming the num-
ber of OMP iterations at the second step is fixed to K ′, this
complexity is given by

O(KNpNcGt) +O(KK ′NcGr). (15)

When Gt > Gr the complexity of the first step is dominant.
Compared to the classical solution, the complexity is reduced
by a factor of Gr/max(Np, Nc). It is possible to reverse the
order of recovery and start with AOAs at the first step. In this
case, the complexity becomesO(KNpNcGr)+O(KK ′NpGt).
Reversing the order could improve or deteriorate the recovery
accuracy, depending on the values of Np, Nc, Nt and Nr. In
fact, it might be better to start with AODs when the number of
pilots is sufficiently large, and do the reverse when the number
of pilots is small and the number of combiners is large.

4 Simulation results
We use the channel model proposed in [3]. The operating

frequency is 28 GHz and the environment is NLOS outdoor.
Hybrid analog/digital architecture based on phase shifters [1]
is considered at transmitter and receiver with Nt = 128 and
Nr = 64 antennas, and Lt = 16 and Lr = 8 RF chains.
The antenna separation in ULA is λ/2. Pilots and combiners
phases are randomly selected from the set {1,−1, j,−j}. The
power of a transmitted pilot pi is given by ‖pi‖2 = ρ, and
the noise variance is equal to one. After a channel is generated,
path coefficients are normalized to make the omni-directional
power equal to one, i.e.,

∑P
p=1 |ap|2 = 1, resulting in an SNR

equal to ρ. The sizes of dictionaries used for angular domain
representation are Gt = 2Nt and Gr = 2Nr.

A performance metric for channel estimation is the normali-
zed mean squared error (NMSE) given by

NMSE = E{‖H− Ĥ‖F /‖H‖F }. (16)

Figure 1 shows the variation of the NMSE with the number
of measurements where SNR is 0 dB. The total number of mea-
surements that can be obtained during one symbol transmission



period is LtLr = 128. More measurements can be obtained by
sending different pilots over multiple symbol periods. We only
recover four paths. It reveals that classical CS outperforms the
two-step solution. One reason of this performance difference is
the propagation of recovery error from the first to the second
step in two-step CS. NMSE is decreasing with the number of
measurements. A NMSE saturation can be observed.This is es-
sentially due to the limited number of recovered paths.

Figure 2 shows the variation of the complexity order with
the number of measurements for the two solutions.The two-
step solution has a clear complexity improvement over classical
CS. The ratio of these complexities is approximately 10.

Figure 3 shows the variation of spectral efficiency with SNR
for the transmission of one beamformed data stream. The num-
ber of measurements is 2LtLr = 256. The precoder and com-
biner are computed based on singular vectors of the estimated
channel. The gap between the two solutions is insignificant.
The reason is that the strongest channel path contributing to
mode 1 is well recovered by both solutions.
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5 Conclusion
In this paper we proposed a new solution for mmWave mas-

sive MIMO channel estimation based on CS. Compared to clas-
sical CS solutions, the proposed solution significantly reduces
the computational complexity and has a small degradation in
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estimation accuracy and achievable data rate.
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