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Résumé – Les algorithmes de classification semi-supervisée sur graphes peuvent être vus comme des processus de diffusion avec réinitialisation
aux points labélisés. En partant de cette interprétation, nous proposons un nouvel algorithme inspiré d’un processus de diffusion non local, basé
sur la puissance γ de la matrice Laplacienne standard, où 0 < γ < 1. En permettant à la marche de relier en un seul saut, des nœuds distants du
graphe, cette approche induit des transitions à longue portée, aussi appelées vols de Lévy, qui accélèrent l’exploration du graphe. Dans cet article,
nous montrons que ces processus peuvent améliorer les performances des classifieurs semi-supervisés dans certains cas de figure pathologiques
tels que celui des classes déséquilibrées et proposons une règle théorique de classification.

Abstract – Classification through Graph-based semi-supervised learning algorithms can be viewed as a diffusion process with restart on the
labels. In this work, we exploit this equivalence to introduce a novel algorithm which relies on the formulation of a non-local diffusion process,
fueled by the γ-th power of the standard Laplacian matrix Lγ , with 0 < γ < 1. This approach allows to jump in one step between far apart
nodes and such long-range transitions, called Lévy Flights, entail a wider exploration of the graph. In the present contribution, we embed such
mechanism in graph based semi-supervised algorithms to improve the classification outcome, even in settings traditionally poorly performing
such as unbalanced classes, and we derive a theoretical rule for classification decision.

1 Introduction
Graph-based semi-supervised learning (G-SSL) allows for

data classification blending two ingredients : the graph struc-
ture and the labeled data. By levering the graph, one is allowed
to classify data in situations where only a handful amount of
labeled data is available, presenting an advantage with respect
to the popular paradigm of supervised learning where only the
label data prime. The usefulness of this approach is evident
in contexts where the data structure is easily accessible, while
label data might not due to expensive expertise. As a conse-
quence, G-SSL has been successfully used in tasks like classi-
fication of BitTorrent content and users [1], text categorization
[2], medical diagnosis [3], among others. In this, the widely
used methods of Standard Laplacian (SL) and PageRank (PR),
on which we will focus, admit a closed solution that can be
viewed under the light of random walks (RW) theory : from
this perspective, the class attribution of a node depends on how
many times, on average, it is visited from a labeled node. Albeit
its successes, G-SSL presents some drawbacks as, for instance,
when hubs skew the classes. 1

Contributions and Outline The main contribution of the ar-
ticle is to profit from the RW interpretation of G-SSL methods
to derive new classification rules reminiscent of more efficient
diffusion processes, such as Lévy Flights, with the aim of over-
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coming some of the limitations of standard G-SSL methods.
In Sec. 2.1 we state the G-SSL problem and outline the ge-
neralized optimization formulation and its particular cases of
SL and PR. Further, we present in Sec. 2.2 the interpretation
of G-SSL in the terminology of RW theory and motivate the
use of long-range transition RWs. The developments in Sec. 3
present novel definitions of G-SSL build on Lévy Flight-based
operators and are the main contribution of the article. Numeri-
cal experiments conducted on a synthetic graph are presented
in Sec. 4 where we illustrate the potential of our formulation.

2 State of the art and related work

2.1 Graph-based Semi-Supervised Learning
Given an undirected graph G(V,E,W ), a label set Y =
{1, . . . ,K}, and a labeled subset of the vertices S ⊂ V , we
want to classify the points in the complement of S. For the
sake of simplicity, all theoretical derivations below consider
wi,j = 1 if nodes i and j are connected, and zero otherwise,
although the extension to weighted graphs is direct (cfr. pg. 12
of [4]). Let D = diag(d1 . . . dN ) be a matrix whose entries
are the nodes’ degrees di =

∑
j wi,j . Therefore, the Standard

(or Combinatorial) Laplacian operator defined as L = D −W
is diagonalizable according to L = QTΛQ. Also, let Vk de-
note the set of labeled points that belong to class k ∈ Y with
|S| = |V1|+ · · ·+ |VK |. Consider Y ∈ RN×K to be the ground



truth matrix encoding the labeled nodes by setting [Y ]ik = 1
if node i belongs to class k ∈ Y and zero otherwise. Lastly,
the F ∈ RN×K matrix denotes the classification functions we
look for and finally, the decision rule affects node i to the class
k that satisfies argmaxkFik.

We build upon a series of works [1, 5, 6] that present a gene-
ralized expression for G-SSL that embraces the different stan-
dard G-SSL methods, namely SL, PR, and Normalized Lapla-
cian (NL). The expression proposed in [5] reads

min
F

{
2FTDσ−1LDσ−1F + µ (F−Y )

T
D2σ−1(F−Y )

}
.

(1)
We recall that throughout this work, with F and Y we intend
the column vectors F∗k and Y∗k. In [5] is also shown that the
minimization problem (1) has a closed form solution that takes
the form

FT = (1− α)Y TDσ
(
I − αD−1W

)−1
D−σ , (2)

where α = 2
2+µ . Properly tuned, the σ parameter allows to get

back the SL and PR methods as described next.
- SL : Replacing σ = 1 in (1) leads to the SL classification pro-
blem cast as

min
F

{
2FTLF + µ (F − Y )

T
D (F − Y )

}
, (3)

with solution

FT = (1− α)Y TD
(
I − αD−1W

)−1
D−1. (4)

- PR : Replacing σ = 0 in (1) leads to the PR classification
problem cast as

min
F

{
2FTD−1LD−1F + µ (F − Y )

T
D−1 (F − Y )

}
,

(5)
with solution

FT = (1− α)Y T
(
I − αD−1W

)−1
. (6)

We conclude this subsection by noting that very recently a simi-
lar framework, implementing the Laplacian matrix normalized
by D−α, was successfully used in the context of community
detection [7].

2.2 Random Walks interpretation
We recognize from (4) and (6) the D−1W matrix that is in-

deed the transition matrix of a RW on a graph, and also the ope-
rator I − αD−1W gives the stationary solution of a RW with
restart, with restarts occurring with probability pr = 1 − α.
Concretely, a classification rule in RW terminology is derived
in [8] stating that unlabeled node i is attributed to class k if∑

p∈Vk

dσpqpi >
∑
s∈Vk′

dσs qsi, ∀k′ 6= k, (7)

where qpi is the probability that RWs starting from any labeled
point p in class k reach the node i, before reinitialization due
to the absorption state with probability (1 − α). We refer the
reader to [8] for the derivation and we would like to emphasise
that ours, presented in Sec. 3, resembles theirs closely.

Lévy Flights Random Walks The random walk interpre-
tation of G-SSL offers an entry point to embed other types
of diffusion dynamics, like Lévy Flights into the classification
context. Lévy Flights spurred a remarkable stream of research
due to its efficient exploration properties [9]. In metric spaces,
the basic step is natural to define : the walkers are able to per-
form jumps, the "flights", whose length ` is drawn from a pro-
bability distribution P (`), enhancing the overall space explo-
ration through these long-range transitions. However a dege-
neracy in definition arises on networks since the “length” of a
jump is not univocally defined on networks. To overcome this
drawback, various generalizations of the diffusion operator L
have been proposed :
Random Walk-like operators We recall that the generali-
zation of L must be associated to a stochastic adjacency ma-
trix, i.e. with non-negative entries and the sum over the rows
(or the columns) has to be zero to entail probability conserva-
tion. The two following operators satisfy this prescription, thus
being RW operators strictu sensu :
� Lγ with 0 < γ ≤ 1 - Fractional Laplacian
In [10], it has been analytically demonstrated, on rings, that

the fractional powers of L, defined as Lγ = QTΛγQ, lead, in
the 0 < γ ≤ 1 regime, to long-range transitions with probabi-
lity of transitioning from node i to node j given by (τγ)i→j ∼
d
−(1+2γ)
i,j , with di,j defined as the shortest-path distance bet-

ween nodes i and j. Furthermore, the long-range nature of the
process was shown, by numerical investigation, also on more
general random and small-world networks.

More generally, the Laplacian belongs to the class of Stieljes
matrices and taking its fractional version Lγ , i.e. elevating to
the power γ the spectrum, preserves the property of belonging
to this class when 0 < γ ≤ 1 [11]. Indeed, we then can derive
an approximation of the fractional Laplacian matrix

Lγ = (D −W )γ

=
(
D1/2D1/2 −D1/2D−1/2WD−1/2D1/2

)γ
= Dγ/2

(
I −D−1/2WD−1/2

)γ
Dγ/2

= Dγ/2
[
I − γD−1/2WD−1/2

+
γ(γ − 1)

2
(−D−1/2WD−1/2)2

−γ(γ − 1)(γ − 2)

6
(D−1/2WD−1/2)3 + · · ·

]
Dγ/2,

(8)

which implies that, in the range 0 < γ ≤ 1, the infinite sum of
negative terms entail non-positive off-diagonal elements in Lγ

that can be associated to a stochastic adjacency matrix.
� L̃ ≡ D̃− W̃ - Laplacian from Biased RW
The principle behind biased random walks, is to tailor the

transition probabilities according to some node property, like
the degree. This approach effectively introduces a bias in the
way the walk is performed [12] and, this way, it is possible
to "force" long-range transitions : this approach was explored



in [13] and it relies on the construction of a transition matrix
informed by the geodesic distances between nodes [13, 14].

3 Fractional G-SSL
We now exploit the random walk interpretation of the G-

SSL by amending the optimization formulation to attain more
efficient label propagation processes. We proceed by replacing
the L operator with its generalization Lγ = QTΛγQ in the
functional (1), where Λγ = diag(λγ0 , . . . , λ

γ
N−1). We also will

have, in the following, its decomposition in diagonal and off-
diagonal components, which respectively corresponds to the
generalized Dγ matrix and a new weighted adjacency matrix
− (Wγ)ij = (Lγ)ij with i 6= j. We observe that, in order to
recast (1) in a proper RW, we need to have some consistent
diagonal matrix Dγ in the fitting term. We recall that when we
revert to the class of Lγ operators, the matrix Dγ , which ori-
ginally was the degree matrix, now has to be generalized to
(Dγ)ii = (Lγ)ii. Therefore, G-SSL with the generalized La-
placian Lγ is the minimization of the new functional S(F )

S(F ) = 2FTDσ−1
γ LγDσ−1

γ F+µ (F − Y )
T
D2σ−1
γ (F − Y ) .

(9)
We refer the reader to Sec. III-A of [15] for a proof that, for
any γ > 0, the Fractional G-SSL formulation remains a convex
optimization problem. Since S(F ) is convex, we can proceed
further and apply the first optimality condition ∂FS(F ) = 0 in
order to obtain the F functions.
Proof : The first optimality condition reads

2FTDσ−1
γ

(
Lγ + (Lγ)T

)
Dσ−1
γ + 2µ (F − Y )

T
D2σ−1
γ = 0

Multiplying on the right hand side the above equation byD1−2σ
γ

2FTDσ−1
γ

(
Lγ + (Lγ)T

)
D−σγ + 2µ (F − Y )

T
= 0 . (10)

Thus, substituting Lγ = Dγ −Wγ into the previous equation

FTDσ
γ

(
2I −D−1γ

(
Wγ + (Wγ)T

)
+ µI

)
D−σγ − µY T = 0.

Since W γ is symmetric we finally arrive to

FTDσ
γ

(
2I − 2D−1γ Wγ + µI

)
D−σγ − µY T = 0.

Therefore, we can conclude that the classification function with
the generalized standard Laplacian Lγ takes the form

FT = (1− α)Y TDσ
γ

(
I − αD−1γ Wγ

)−1
D−σγ , (11)

corresponding to the generalization of the solution for F in (2).
As before we can thus consider the two cases of SL and PR,
obtaining for F :
σ = 1 - Fractional Standard Laplacian (FSL) :

FT = (1− α)Y TDγ

(
I − αD−1γ Wγ

)−1
D−1γ . (12)

σ = 0 - Fractional PageRank (FPR) :

FT = (1− α)Y T
(
I − αD−1γ Wγ

)−1
. (13)

It clearly appears from the fractional solutions (12) and (13) the
formal symmetry with (4) and (6) : indeed the labels’ attribu-
tion is, as before, the result of diffusion on the labels driven by

FIGURE 1 – Lollipop graph. Two class problem with the labeled points
colored in red and blue. The node under study is pointed by the arrow.

a new generalized "fractional transition matrix" D−1γ Wγ and
restarted with probability pr = 1− α.

We further extend this complete symmetry between the re-
sults in Sec. 2 by deriving the classification rule for the fractio-
nal G-SSL that reads as follows : node i is classified to class k
by the fractional G-SSL (9) if∑

p∈Vk

(dγ)σpqpi >
∑
s∈V ′

k

(dγ)σs qsi, ∀k′ 6= k. (14)

Proof : We recall that F and Y intend the column vectors F∗k
and Y∗k. Let ppr(j) = (1−α)eTj (I−αD−1γ Wγ)−1 denote the
personalized PageRank vector of the fractional RW and also
observe that Y T∗k =

∑
p∈Vk

eTp and Fik = FT∗kei. We replace
these in (11) to obtain

Fik =
1

(dγ)σi

∑
p∈Vk

(dγ)σpppri(p). (15)

In [16] it was proved that ppri(p) = qpippri(i), thus after re-
placing it in (15) we conclude that data point i is classified to
class k if

Fik − Fik′ ∝ (
∑
p∈Vk

(dγ)σpqpi −
∑
s∈V ′

k

(dγ)σs qsi) > 0, ∀k 6= k′.

4 Numerical Experiments
We perform numerical simulations on the lollipop graph pre-

sented in Fig. 1. This simple toy example is meant to illustrate
the behavior of (14) and expose how the fractional operator is
able to compensate for cases in which the graph presents biases.
Fractional PageRank (σ = 0) - In this case, we would like to
focus only on the dynamical part of (14) , i.e. the probabilities
qbi and qri : we thus revert to the FRP method. For our test we
set wb > wr and our aim is to have i classified blue since b
is in a highly connected region and i is closer to b than to r,
thus priming the spatial proximity. From (14), for node i to be
classified as blue by PR, we need qbi > qri. However, in our
setting, the i node is more likely to become red since the stron-
ger wb weight attracts walkers starting from b, trapping them
in the blue cluster while, on the other hand, walkers from r are
freer due to the smaller wr, so practically we are in a qbi < qri
situation. With FPR, as displayed in Fig. 2a, we can alter this
inequality : indeed, for a fixed α, small values of the fractional
parameter γ increase qbi, allowing walkers to escape the blue
cluster and reach node i more frequently.
Consequently, the classification of i changes as shows the evo-
lution of sign(qbi−qri) in Fig. 2c : for a proper tuning of the



γ parameter (γ → 0), we can bring the walkers from the blue
class to avoid the ’sink’ and classify node i as blue, regard-
less of the confidence we give to the labels. We remark that
standard PR is also capable of recovering node i as blue, no-
netheless this effect appears only in a framework of frequent
restarts. Another setup of RW biased by the network structure
is the case of unbalanced density of intra-class links. In this
setting, the long-range transition properties of FPR seem like a
straightforward tool to compensate for this type of unbalanced-
ness.
Fractional Standard Laplacian (σ = 1) - Recalling (14),
FSL incorporates the generalized degree of labeled points to
the classification decision. In this case, we choose wr � wb
in order to highlight the cohesion of the cluster near to r in
contrast to the cluster next to b, where the small wb is a proxy
of a small similarity between the nodes. Therefore, we would
like node i to be red because, heuristically, we trust more the
cluster near to r. For σ = 1, which is the present FSL case, we
can heavily reduce the influence of the degree with γ, as dis-
played in Fig.2b and, thus, tweak the classification of i. In this
setting of wr > wb (Fig.2d), interestingly, standard SL is never
able to classify the point as red since a normal RW gets stuck in
the cluster adjacent to r, and this prevents the red walkers from
attaining node i often enough. On the other hand, the FSL is
able to revert the classification outcome, and for a reasonable
range of alpha, we can classify node i as red, as we aimed to.
We have this way privileged the red class because we interpre-
ted the higher wr as a measure of confidence and, interestingly,
this interpretation is equivalent to having multiple ground truth
labels, which might be difficult or expensive to obtain in prac-
tice.

5 Conclusion

In this work we presented a generalization of the G-SSL fra-
mework originally attached to classical random walk process,
to richer diffusion dynamics with long-range transitions.

From a theoretical standpoint, those jumps can be ignited
on networks by various choices for the Laplacian operator L
and here we focused on the Fractional Laplacian Lγ with 0 <
γ ≤ 1. Thus, we were able to extend the framework for G-SSL,
developed in [1, 5, 6], to the fractional case and, in particular,
an extension of the criterion for labels attribution was derived.

In the numerical section, we showed that the parameter γ
introduces a new degree of freedom that helps circumventing
the biases of standard methods such as hubs, which usually act
as "sinks" for the labels. Our toy example, which complements
the consistency of our theoretical derivation, allows to grasp
heuristically the power of our method : this type of rich dyna-
mics gives a tool to balance between the strength of the ground
truth labels Y and the necessity of widely diffusing through
the graph, avoiding to some extent the attraction of misleading
nodes or the effect of unbalanced classes. This flexibility with
respect to the structural constraints of the graph can therefore

(a) (b)

(c) (d)

FIGURE 2 – (a) Dependence on the γ and α parameters of the probability
qbi. (b) Dependence on the γ and σ parameters of the generalized degree of
node r (dγ)σb . Classification of node i with respect to γ and α for the two
fractional methods : FPR (c) and FSL (d). We set the weights as follows : (a)
and (c) : wr = 1 and wb = 5 - (b) and (d) : wr = 5 and wb = 1.

be a key to an improved classification in difficult settings such
as when the graph is badly constructed or it is flawed by spu-
rious or missing edges.
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