
Parallel Quad-Edge Active Contours for image segmentation
Daniel GONZALEZ1, Lauriane ROHFRITSCH1,2, Manon FAURE1, Lydia DANGLOT2,
Vannary MEAS-YEDID1, Jean-Christophe OLIVO-MARIN1, Alexandre DUFOUR*1

1Institut Pasteur, Bioimage Analysis Unit, CNRS UMR 3691, Paris, France

2Institut Jacques Monod, Membrane traffic in health & disease, CNRS UMR 7592, INSERM U950 Paris, France

daniel-felipe.gonzalez-obando@pasteur.fr, jcolivo@pasteur.fr, adufour@pasteur.fr

Résumé – Nous proposons une nouvelle implémentation parallèle des contours actifs pour la segmentation d’images combinant un système
multi-agent avec une représentation du contour sous forme d’un "quad-edge". Les points de contrôle du contour évoluent indépendamment les
uns des autres de manière parallèle, contrôlant ainsi la déformation du contour mais aussi sa convergence, tandis que la représentation "quad-
edge" simplifie la manipulation du contour et sa re-paramétrisation locale lors de son évolution. Nous illustrons cette nouvelle approche sur les
images biologiques et comparons les résultats avec une implémentation conventionnelle, en discutant des avantages et des limites actuelles. Ce
travail préliminaire est disponible en tant que plug-in pour la plate-forme libre d’analyse d’images Icy.

Abstract – We investigate a novel, parallel implementation of active contours for image segmentation combining a multi-agent system with a
quad-edge representation of the contour. The control points of the contour evolve independently from one another in a parallel fashion, handling
contour deformation, and convergence, while the quad-edge representation simplifies contour manipulation and local re-sampling during its
evolution. We illustrate this new approach on biological images, and compare results with a conventional implementation, discussing its benefits
and limitations. This preliminary work is made available as a plug-in for the open-source Icy platform.

1 Introduction & Related work

Since their original appearance in computer vision 30 years
ago [1], deformable models (also popularly referred to as ac-
tive contours) have received extensive and continued attention
from numerous scientific domains including bioimaging [2].
The curve is traditionally represented in one of two ways: a)
explicitly, either via a parametric [1, 3] or a discrete [4, 5] for-
malism, or b) implicitly, by embedding the contour as the zero-
level of a higher-dimensional Lipschitz function, a formalism
well-known as level sets [6, 7]. The former approach is gen-
erally preferred for its interactivity and relative computational
efficiency as compared to level sets (especially in 3D), while
the latter approach is typically favoured for its topological flex-
ibility and naturally multi-dimensional notation. These histor-
ical limitations have however been progressively addressed by
the community, most notably with the introduction of topo-
logical constraints within the level set framework [8, 9], and
conversely with the implementation of topological operations
(splitting and merging) for discrete active contours [5, 10, 11].

Despite their flexibility and robustness, deformable models
have long remained infamously known for their substantial com-
putational burden. While the advent of GPU-oriented comput-
ing has enabled massively parallel implementations, notably
for level sets [12–14], explicit approaches have only mildly
benefited from GPU acceleration, with benefits mostly impact-
ing heavy image-centric pre-processing operations, rather than

the contour deformation itself [15–17]. To date, few alterna-
tives to GPU implementations have been investigated. In [18],
an original reformulation of the contour deformation was pro-
posed using the concept of Multi-Agent-Systems [19], whereby
all contour points behave pseudo-independently of one another.
This concept is well suited for parallel computing, however it
was not developed for computational efficiency, and therefore
remained limited to a small number of agents (contour points).
Also, convergence detection and local topological operations
were not parallelized. More recently, a distributed approach
was proposed in [20], where both the image and the contour
are split into sub-images and sub-contours, thereby generating
multiple sub-segmentation problems running in parallel. This
solution is appealing for the analysis of very large data sets
(typically surpassing both computer or graphics memory ca-
pacities), however the management of contour connectivity and
fusion across neighboring sub-problems remains a challenge.

In this work we investigate for the first time a novel, parallel
implementation of explicit active contours that draws from the
theories of Multi-Agent Systems and the Quad-Edge formal-
ism. The contributions of such a framework are two-fold:

• We propose an implementation of the contour deforma-
tion heavily inspired from Multi-Agent Systems (improv-
ing on the work of [18]), whereby in addition to handling
their displacement and interaction with their neighbors,
each control point is responsible for handling local re-

sampling operations (adding or removing control points)
without the intervention of a global observer. We also
improve on the convergence detection algorithm of each
agent in order to significantly speed up the segmentation
of complex objects.

• We represent the control points of the contour (i.e. the
agents of the system) using the quad-edge formalism [21],
which offers an efficient and elegant framework that sim-
plifies contour manipulation and implementation. More-
over, the quad-edge formalism is readily adaptable to any
dimension and contour topology, permitting the design
of contour with complex geometries.

We describe in section 2 the general concept of our approach
and its application to closed 2D contours, and report prelimi-
nary results in section 3. Benefits and limitations of the pro-
posed approach are discussed in section 4, as well as its po-
tential extensions and applications in biomedical imaging. Fol-
lowing reproducible research principles, the proposed algorithm
is available in the form of a user-friendly plug-in in the open-
source Icy bioimaging platform1 [22].

2 Method
The starting point of our work is a fast, discrete implementation
of multiple coupled self-resampling active contours with and
without edges [5]. For the sake of simplicity, we illustrate the
proposed approach using the 2D single-contour case without
edges (other cases can be derived by analogy). We then present
the two contributions of this work, namely our Multi-Agent
strategy and the Quad-Edge implementation.

2.1 2D discrete active contours without edges
The general problem of object segmentation using active con-
tours can be expressed as follows:

argmin
C
J(C, I), s.t. J(C, I) = Jdata(C, I) + Jreg(C) (1)

where C is the curve or contour evolving inside the image I ,
Jdata is the data attachment term (which we derive here from
the classical Chan-Vese-Mumford-Shah functional [23]), and
Jreg is a regulariser of this ill-posed problem (here minimising
local curvature [1]). In a discrete setting, the cost functional can
be approximated by the sum of costs over the control points of
the contour. Following a steepest gradient descent with explicit
time-stepping, the iterative minimisation of J can be expressed
as a set of forces applied to each control point of the contour C
(see [5] for more details):

xt+1
i = xt

i + τ ·
(
~fdata(x

t
i, I) +

~freg(x
t
i, Ct)

)
, (2)

where t is the imaginary time discretisation variable represent-
ing the iterative minimisation process, τ is the minimisation

1http://icy.bioimageanalysis.org

time step, and xt
i represents a control point of the contour Ct at

iteration t. ~fdata represents the data attachment term, reading
~fdata(x

t
i, I) =

(
|I(xt

i)− c1(I, Ct)|2 − |I(xt
i)− c2(I, Ct)|2

)
· ~Ni

(3)
where I(xt

i) is the image value at the contour point (sampled
with linear interpolation), c1 and c2 are the average intensities
of I outside and inside Ct, respectively, and ~Ni is the outward-
pointing unit normal vector to the contour at xti. ~freg represents
the regularisation term, reading

~freg(x
t
i, Ct) =

α

2

(
xt
i−1 + xt

i+1 − 2xt
i

)
(4)

where xt
i−1 and xt

i+1) are the 2 neighbours of xt
i, and α is a

non-negative weight balancing the influence between the data
attachment and regularisation terms, chosen empirically.

We shall now describe below how this minimisation frame-
work can benefit from a multi-agent implementation.

2.2 Multi-Agent Active Contours
Multi-Agent Systems (related to the field of distributed artifi-
cial intelligence [19]) are used to solve large, potentially in-
tractable tasks using a set of cooperative agents that individu-
ally solve a sub-portion of the initial problem. It can be easily
noticed that the problem described above is well suited to bene-
fit from a Multi-Agent formalism, where the individual control
points xi can be seen as a swarm of individual agents evolving
within the image space I under the influence of the forces de-
fined in Eqs. 2, 3, and 4, until they minimise (as a whole) the
target functional J . In practice, the Multi-Agent implementa-
tion is achieved by evolving each control point (or agent) in an
independent thread handling local force computations and de-
formation (as suggested in [18]). However, 2 remaining tasks
require a global synchronisation step and must be parallelised:

Convergence criterion: convergence is conventionally de-
tected by globally monitoring the contour until contour dis-
placement falls under a given ε > 0. To parallelize this step,
each control point now monitors its own stability during evo-
lution, asynchronously. An additional benefit of this strategy
is that control points can converge independently of one an-
other, without necessarily waiting for a global criterion to be
met. This heuristic criterion drastically reduces the computa-
tional load when the number of points is high, especially on
complex objects, as we shall illustrate below.

Contour resampling Explicit active contours must be reg-
ularly re-parameterized throughout their evolution to ensure
proper image sampling. This step is usually conducted everyN
iterations on the entire contour, by adding a new control point
between neighboring points becoming too distant, or removing
a control point that is too close to any of its neighbors [5,10,18].
We here again propose to defer this task to each control point,
asynchronously. This however requires that the data structure
holding the control points is well suited for this purpose, which
is where the Quad-Edge formalism comes into play.

http://icy.bioimageanalysis.org

2.3 Quad-Edge implementation

A quad-edge is a data structure used to model planar subdi-
visions. The elementary structure is an edge that stores its
local topological and geometrical data [24]. In practice, the
edge stores its end-points, the faces on each side, and holds
a reference to its neighboring edges with same starting point
(called the O-ring) and to one of its neighboring faces (called
the dual of the edge). The structure is illustrated in Fig. 1.
Quad-Edges maintain coherent references to points and faces
on plane subdivisions, and the data structure permits efficient
adjacency queries (neighboring edges are accessible in constant
time) while local topological operations (point addition or dele-
tion) is achievable in logarithmic time [21].

To summarize, starting from an initial contour, a global man-
ager (the entry point of the algorithm) creates an edge for each
control point, and ensures their connectivity. It then creates
and assigns a separate thread for each control point, such that
all points run in a fully autonomous manner, i.e. dealing with
force computation, local re-sampling, and convergence detec-
tion. The global manager is responsible for updating global
image-centric features (e.g. the average intensity inside and
outside the contour, cf. Eq. 3), and for displaying the contour
on screen. These two operations are also asynchronous, and
are therefore run in the background on a regular basis.

FIG. 1: Representation of a portion of a (closed) 2D con-
tour using a Quad-Edge. Neighbouring edges are accessible in
constant time (via oNext), while the "inside" of the contour is
always known (via rot). This structure is used to facilitate the
implementation of discrete active contours.

3 Experiments
We compared the performance of the proposed method against
our non-parallel implementation [5]. Both algorithms are writ-
ten in Java and available as ready-to-use plug-ins for the open
source Icy platform [22]. Both algorithms are set to minimize
the same cost functional (described in section 2) with the same
parameters (initial contour, sampling, time step, weights). We
performed all tests on a 2GHz quad-core processor, and report
absolute times (best of 10 consecutive runs) as well as relative
speed-up factor.

We first segment a simulated binary image of size 512×512

pixels containing a white disk of diameter 300 pixels in its cen-
ter. Both algorithms start from a regular octagon of diameter
128 pixels in the image center. In this experiment, we impose
a global convergence criterion on both algorithms (i.e. all con-
trol points evolve until the contour globally stabilizes), so as
to measure solely the impact of parallel force computation and
local contour re-sampling steps. Results are presented in Ta-
ble 1. It can be seen that for few control points, the parallel
implementation is slower due to the overhead of creating indi-
vidual threads for parallel processing, which is non negligible
in comparison to the total computation time. This trend quickly
reverses as soon as the number of control points increases, with
the parallel implementation yielding up to more than double the
performance of its non-parallel counterpart.

Sampling (px) 16 8 4 2 1

Nb. control points 54 102 197 383 783

Baseline [5] (ms) 97 123 215 631 2251

Proposed (ms) 121 117 179 336 952

Gain factor 0.8× 1.0× 1.2× 1.9× 2.4×

TAB. 1: Performance comparison between parallel and non-
parallel active contour implementations, with global conver-
gence detection. The number of points is given after conver-
gence and is the same for both algorithms.

In a second example, we now segment a real biological im-
age of a neuron (cf. Fig. 2). Here we compare two variants of
the proposed algorithm to the baseline: one with global conver-
gence detection (similar to the previous example, which we re-
fer to as "semi-parallel"), and the fully parallel implementation,
where control points also handle convergence asynchronously.
Results are presented in Table 2. While the semi-parallel ver-
sion is not noticeably faster, the fully parallel implementation
clearly outperforms the baseline method, which is well illus-
trated on such complex biological objects, where the vast ma-
jority of control points converge rapidly (around the soma and
along the branches), while only a handful of control points re-
main "active" (at the leading edge).

FIG. 2: Fluorescence microscopy image of a neurone in cul-
ture (image size: 400×400). Left: original image. Right: ini-
tial contour (green) and segmentation result (magenta) super-
imposed on the original image. Contour sampling: 2 pixels.

Sampling (px) 4 2 1

Nb. control points 344 651 1253

Baseline [5] (ms) 497 1443 6844

Semi-parallel (ms) 827 (0.6×) 2067 (0.7×) 6536 (1.1×)

Fully-parallel (ms) 715 (0.7×) 1010 (1.4×) 2086 (3.3×)

TAB. 2: Performance comparison of two version of the pro-
posed Quad-Edge Parallel active contours against the equiv-
alent, non-parallel implementation on a real biological image
(cf. Fig. 2). Convergence detection is global in the semi-
parallel case, and local in the fully parallel case.

4 Discussion
We have presented a novel, parallel implementation of discrete
active contours using the concept of Multi-Agent Systems and
the Quad-Edge formalism, whereby the evolution of the con-
trol points is fully asynchronous, from force computation to
local topological re-sampling and convergence detection. The
segmentation results are comparable, while the computational
performance is substantially improved, yet without the need for
a GPU-specific implementation. We expect that these prelim-
inary but promising results will enable new and exciting de-
velopments in the field of active contours. Indeed, in addition
to being GPU-friendly, the Quad-Edge implementation offers
great topological flexibility. This facilitates the extension of
the method to 3D meshes and open contours, which we shall
investigate in subsequent work.

Acknowledgements
This work was funded by Institut Pasteur. L.R. was partially
funded by an interdisciplinary grant from the CNRS GdR MIV.

References
[1] Michael Kass, Andrew Witkin, and Demetri Terzopoulos, “Snakes: Ac-

tive contour models,” 1988.

[2] Christophe Zimmer, Bo Zhang, Alexandre Dufour, Aymeric Thebaud,
Sylvain Berlemont, Vannary Meas-Yedid, and Jean-Christophe Olivo-
Marin, “On the digital trail of mobile cells,” IEEE Signal Processing
Magazine, vol. 23, no. 3, pp. 54–62, 5 2006.

[3] Christophe Zimmer and Senior Member, “Coupled Parametric Active
Contours,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 27, no. 11, pp. 1838–1842, 2005.

[4] Andrei C Jalba, Michael H F Wilkinson, and Jos B T M Roerdink,
“CPM : A Deformable Model for Shape Recovery and Segmentation
Based on Charged Particles,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 26, no. 10, pp. 1320–35, 2004.

[5] Alexandre Dufour, Roman Thibeaux, Elisabeth Labruyère, Nancy Guil-
lén, and Jean-Christophe Olivo-Marin, “3D active meshes: fast discrete
deformable models for cell tracking in 3D time-lapse microscopy.,”
IEEE Transactions on Image Processing, vol. 20, no. 7, pp. 1925–37,
7 2011.

[6] James A. Sethian, Level Set Methods and Fast Marching Methods, Cam-
bridge University Press, 2nd editio edition, 1999.

[7] Alexandre Dufour, Vasily Shinin, Sharagim Tajbaksh, Nancy Guillén,
Jean-Christophe Olivo-Marin, and Christophe Zimmer, “Segmenting
and tracking fluorescent cells in dynamic 3D microscopy with coupled
active surfaces,” IEEE Transactions on Image Processing, vol. 14, no.
9, pp. 1396–1410, 2005.

[8] Xiao Han, Student Member, Chenyang Xu, Jerry L Prince, and Senior
Member, “A Topology Preserving Level Set Method for Geometric De-
formable Models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 25, no. 6, pp. 755–768, 2003.

[9] Florent Ségonne, “Active Contours Under Topology Control — Genus
Preserving,” International Journal of Computer Vision, vol. 79, no. 2,
pp. 107–17, 2008.

[10] Jacques-olivier Lachaud and Annick Montanvert, “Deformable meshes
with automated topology changes for coarse-to-fine three-dimensional
surface extraction,” Medical Image Analysis, vol. 3, no. 2, pp. 187–207,
1999.

[11] Tim Mcinerney and Demetri Terzopoulos, “T-snakes : Topology adap-
tive snakes,” Medical Image Analysis, vol. 4, pp. 73–91, 2000.

[12] Joshua E Cates, Aaron E Lefohn, and Ross T Whitaker, “GIST: an inter-
active , GPU-based level set segmentation tool for 3D medical images,”
Medical Image Analysis, vol. 8, pp. 217–231, 2004.

[13] Mike Roberts, Jeff Packer, Mario Costa Sousa, and Joseph Ross
Mitchell, “A Work-Efficient GPU Algorithm for Level Set Segmen-
tation,” in Proceedings of High Performance Graphics, 2010.

[14] Julian Lamas-Rodriguez, Dora B. Heras, Francisco Arguello, Dagmar
Kainmueller, Stefan Zachow, and Montserrat Boo, “GPU-accelerated
level-set segmentation,” Journal of Real-Time Image Processing, vol.
12, pp. 15–29, 2016.

[15] O C Eidheim, J Skjermo, and L Aurdal, “Real-time analysis of ultra-
sound images using GPU,” International Congress Series, vol. 1281,
pp. 284–289, 2005.

[16] Jérôme Schmid, José A Iglesias, and Enrico Gobbetti Nadia Magnenat-
thalmann, “A GPU framework for parallel segmentation of volumetric
images using discrete deformable models,” The Visual Computer, vol.
27, pp. 85–95, 2011.

[17] Rigo Alvarado, Juan J Tapia, and Julio C Rolon, “Medical image seg-
mentation with deformable models on graphics processing units,” The
Journal of Supercomputing, vol. 68, no. 1, pp. 339–64, 2014.

[18] Abdelkader Fekir and Nacéra Benamrane, “Segmentation of Medical
Image Sequence by Parallel Active Contour,” in Software Tools and
Algorithms for Biological Systems, pp. 515–522. Springer, 2011.

[19] Nikos Vlassis, A Concise Introduction to Multiagent Systems and Dis-
tributed Artificial Intelligence, Morgan & Claypool, 1st editio edition,
2007.

[20] Ping Jiang, Quansheng Dou, and Xiaoying Hu, “A Parallel Realization
of the Active Contour Model on Boundary Extraction,” Applied Mathe-
matics & Information Science, vol. 260, no. 1, pp. 253–260, 2014.

[21] A Gouaillard, L Florez-Valencia, and E Boix, “itkQuadEdgeMesh : A
Discrete Orientable 2-Manifold Data Structure for Image Processing,”
The Insight Journal, pp. 1–19, 2006.

[22] Fabrice de Chaumont, Stéphane Dallongeville, Nicolas Chenouard,
Nicolas Hervé, Sorin Pop, Thomas Provoost, Vannary Meas-Yedid,
Praveen Pankajakshan, Timothée Lecomte, Yoann Le Montagner,
Thibault Lagache, Alexandre Dufour, and Jean-Christophe Olivo-
Marin, “Icy: an open bioimage informatics platform for extended re-
producible research.,” Nature Methods, vol. 9, no. 7, pp. 690–6, 2012.

[23] Tony F Chan and Luminata A Vese, “Active contours without edges,”
IEEE Transactions on Image Processing, vol. 10, pp. 266–277, 2001.

[24] Leonidas Guibas and Jorge Stolfi, “Primitives for the Manipulation of
General Subdivisions and the Computation of Voronoi Diagrams,” ACM
Transactions on Graphics, vol. 4, no. 2, pp. 74–123, 1985.

	Introduction & Related work
	Method
	2D discrete active contours without edges
	Multi-Agent Active Contours
	Quad-Edge implementation

	Experiments
	Discussion

