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Résumé – Les tenseurs et les décompositions tensorielles constituent des outils mathématiques très utiles pour représenter et analyser des
données multidimensionnelles. Le problème de l’estimation de données manquantes dans un tenseur de mesures joue un rôle important dans
de nombreuses applications. Dans cet article, nous proposons un schéma d’imputation général itératif incluant un mécanisme de rétroaction du
premier ordre, avec l’objectif d’améliorer la performance de l’algorithme. Deux cas particuliers de ce schéma, faisant intervenir des opérateurs de
seuillage doux et dur basés sur le modèle de Tucker, sont discutés. Puis, des résultats de simulations sont présentés pour illustrer leur performance.

Abstract – Tensors and tensor decompositions are very useful mathematical tools for representing and analyzing multidimensional data. The
problem of estimating missing data in a tensor of measurements, named tensor completion, plays an important role in numerous applications.
In this paper, to solve this problem, we propose a general iterative imputation scheme including a first-order feedback mechanism, aiming to
improve algorithm performance. Two particularizations of this scheme, in which we apply soft and hard thresholding operators based on the
Tucker model, are discussed. Then, simulation results are presented to illustrate their performance.

1 Introduction

The tensor completion (TC) problem constitutes an exten-
sion of matrix completion (MC) to higher-order tensors. During
the last decade, this problem has received a growing attention
from various scientific communities. Indeed, estimating mis-
sing data of a partially known tensor is of crucial importance
in numerous applications like, for instance, biomedical signal
processing, hyperspectral imaging, computer vision and gra-
phics, road and network traffic analysis, etc. The missing data
may result from sensor failures, from a compressive sensing
scheme acquiring (or transmitting) only some tensor entries, or
from the elimination of identified outliers. Promoting a low-
rank solution is a standard and powerful approach for solving
the MC and TC problems.

In the case of tensors, multiple notions of rank exist, the best
known ones being the tensor and the multilinear rank (mrank).
Also, several algorithms have been proposed for low-rank TC,
such as those in [1, 5, 6, 9, 10, 11], most of them dealing with
the mrank. In particular, [5, 6] have developed algorithms based
on an iterative imputation scheme which, at each iteration, fills
in the missing entries according to the current model estimate,
and then re-estimates the model.
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In this paper, we present a general version of such an iterative
imputation scheme including a first-order feedback control me-
chanism, aiming to improve algorithm performance. Two par-
ticularizations of this scheme, in which we apply soft and hard
thresholding operators based on the Tucker model, are discus-
sed. Then, simulation results with synthetic data are presented
to illustrate their performance.

Notation : Scalars, column vectors, matrices, and tensors of
order higher than two, are denoted by lower-case, bold lower-
case, bold upper-case, and upper-case calligraphic letters, e.g.,
a,a, A,A, respectively. The flat mode-p unfolding of a tensor
X ∈ T , RN1×···×NP is denoted by X〈p〉 ∈ RNp×N̄p , with
N̄p = N1 · · ·Np−1Np+1 · · ·NP . The mode-p product of X ∈
T with a matrix A ∈ RIp×Np is denoted by X×pA.

2 Problem statement

Consider a data tensor X ∈ T and let Ω denote the set
of tuples (n1, . . . , nP ) such that xn1,...,nP

is observed. Define
T Ω , {Y ∈ T : yn1,...,nP

6= 0 only if (n1, . . . , nP ) ∈ Ω}.
Then, we can write X = XΩ+XΩ, where XΩ stands for the or-
thogonal projection of X onto T Ω and likewise for the comple-
ment of Ω, denoted by Ω. The TC problem generally consists in
estimating XΩ from XΩ. Several approaches exist, depending
on (1) the underlying tensor model (e.g., canonical polyadic or
Tucker decompositions) ; (2) the parsimony assumption (e.g.,
low tensor rank or low mrank) ; (3) the minimized criterion,
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FIGURE 1 – Feedback control mechanism of IFCTC.

which often comprises a least-squares (LS) data fidelity term
and a parsimony-inducing regularization term ; and (4) the op-
timization algorithm.

Here, we consider the general formulation

min
X̂∈T

‖XΩ − X̂Ω‖2F + ϕ(X̂), (1)

where ϕ(·) is a parsimony-inducing penalization functional. In
particular, ϕ(·) can be the indicator function of a set S of par-
simonious tensors, such as low-rank or low-mrank tensors.

3 General imputation scheme
An iterative single imputation algorithm proceeds by perfor-

ming the following steps at each iteration k :
1. construction of a corrected estimated model Zk by im-

posing Zk = XΩ + (X̂k−1)Ω, where X̂k−1 denotes the
parsimonious tensor model estimated at iteration k − 1 ;

2. computation of a new estimate X̂k = P(Zk), where
P is a parsimony-inducing operator depending on the
choice of ϕ(·).

In [5], the above scheme is employed with ϕ(·) being the indi-
cator function of the set of tensors having rank bounded by a gi-
ven numberR. The operator P then performs a single iteration
of the alternating least-squares (ALS) algorithm in an attempt
of approximating Zk by a rank-R tensor. An interpretation of
the resulting algorithm as an instance of the expectation mini-
mization (EM) method is discussed in [5]. A similar approach
is followed in [6], where S is the set of tensors with bounded
mrank Lr = {Y ∈ T : rank(Y〈p〉) ≤ Rp}, for some target
modal ranks R1, . . . , RP . So, P is in this case a hard threshol-
ding operator which computes an approximate projection onto
Lr by truncating the higher-order singular value decomposition
(HOSVD) of its argument [4].

Though the above described method is often effective, it may
exhibit slow convergence or yield inaccurate estimates. Hence,
we propose to improve it by changing step 1 so that XΩ is
replaced by a modified update of the form

Zk = XΩ + ψ[(Zk−1)Ω − (X̂k−1)Ω] + (X̂k−1)Ω,

with 0 ≤ ψ < 1. By solving this recurrence relation, one can
see that ψ acts as a forgetting factor of past modeling errors
(X)Ω − (X̂k−1)Ω. Viewing the operator P applied on step 2
as a system with N̄ inputs and N̄ outputs, this modified update
can be seen as the application of the first-order control rule

(Zk)Ω = 1
1−ψq−1

(
XΩ − ψ(X̂k−1)Ω

)
(2)

Algorithm 1 Imputation scheme with feedback control for TC.
Inputs : Observed entries XΩ and parameters ψ, ε, K
Outputs : Estimate X̂ of X
1: k ← k + 1
2: repeat
3: Zk = XΩ + ψ[(Zk−1)Ω − (X̂k−1)Ω] + (X̂k−1)Ω
4: X̂k = P(Zk)

5: until ‖X̂k − X̂k−1‖F ‖X̂k−1‖−1
F < ε or k = K

return X̂ = XΩ + (X̂k)Ω

to manipulate its inputs associated with the indices in Ω, with
the goal of driving its outputs associated with indices in Ω (i.e.,
the missing data) more quickly to their true values (see Fig. 1).

The resulting scheme will be called imputation scheme with
feedback control for TC (IFCTC). An explicit algorithm is gi-
ven in Algorithm 1. As stopping criteria, we establish a maxi-
mum number of iterations K and check whether the inequality
‖X̂k − X̂k−1‖F ‖X̂k−1‖−1

F < ε holds for a prescribed ε > 0.

4 Tucker-based IFCTC algorithms
In this section, we present two particular cases of the IFCTC

scheme based on the Tucker model. The first one seeks a so-
lution of low mrank, by searching for it in Lr, for some tar-
get mrank r = (R1, · · · , RP ) chosen a priori. Its operator P
truncates the HOSVD of its argument, thus corresponding to a
hard thresholding. Therefore, this scheme, which we call im-
putation scheme with feedback and HOSVD hard thresholding
(IFHHT), amounts to introducing the feedback control mecha-
nism in the algorithm proposed by [6].

In practice, such a hard-thresholding-based scheme may de-
liver unsatisfying results when applied to real-world data ten-
sors. The reason is that, in practice, these tensors are mostly
often characterized by modal unfoldings exhibiting a somew-
hat rapid decay of its singular values. If this decay is not suffi-
ciently fast, then one needs to choose an mrank r having rela-
tively high components, which implies the need of many mea-
surements (i.e., observed entries).

Hence, the second particularization of IFCTC that we present
is rather aimed at exploiting the compressibility of the singular
spectra of the tensor unfoldings, as measured by the sum of the
corresponding singular values, i.e., the nuclear norms of these
unfoldings. In [7], it is shown that

max
p∈〈P 〉

∥∥X〈p〉∥∥∗ ≤ ‖ vec(S)‖1 ≤ min
p∈〈P 〉

√
N̄p

∥∥X〈p〉∥∥∗ , (3)

where S denotes the core of the HOSVD of X. These inequali-
ties imply that the compressibility of the modal singular spectra
of a tensor is connected to compressibility of its HOSVD core,
in the `1-sense. Conceivably, other Tucker models of X could
have even more compressible cores in that sense.

This property motivates choosingϕ(X̂) = τ‖ vec(S)‖1, where
S is the core of a Tucker model of X̂. A solution thus requires
minimizing (1) with respect to S and to the factors of a Tucker
model. Here, we consider instead a heuristic which seeks an



approximate solution to this problem. Namely, we solve at step
2 of the imputation scheme the regularized problem

min
G

∥∥∥∥∥Zk − G
P×
p=1

U
(p)
k

∥∥∥∥∥
2

F

+ τk‖ vec(G)‖1, (4)

where the Tucker factors U(p)
k are those of the HOSVD of Zk.

So, we aim to find an approximate Tucker model of Zk having
an even more compressible core than the HOSVD, by control-
ling the loss in modeling accuracy through the choice of τk.
By computing the HOSVD Zk = Sk×P

p=1
U

(p)
k , it is easy to

show that the minimizer of (4) can be obtained via

min
G∈T
‖Sk − G‖2F + τk ‖vec(G)‖1 , (5)

since the matrices U
(p)
k are orthogonal. The above problem is

solved by the l1 proximity operator[
pr`1τk(Sk)

]
n1,...,nP

= (|[Sk]n1,...,nP
| − τk)+ sign([Sk]n1,...,nP

),

where (x)+ , max{0, x}. Therefore, the new estimate is gi-
ven by X̂k = P(Zk) = pr`1τk(Sk)×P

p=1
U

(p)
k . This algorithm

is called imputation scheme with feedback and HOSVD soft
thresholding (IFHST).

Seeking a compromise between convergence speed and esti-
mation accuracy, we use a varying penalty parameter given by
τk = γτk−1, with 0 < γ < 1. For a sufficiently large τ0, this al-
lows a fast progress at early iterations, without losing precision
due to a “severe thresholding” near convergence. In practice,
this leads to an interesting behavior, namely :

— the first iterates have very sparse cores, because τk is suf-
ficiently large so that nearly all core components are ze-
roed by the soft thresholding operator for small k ;

— since τk decays exponentially, the core sparsity is gra-
dually reduced, i.e., more and more nonzero core entries
are added to the model.

Thus, this yields a sequence of increasingly complex models.
We have recently introduced the above described IFHST algo-
rithm in [8].

5 Simulation results
We first highlight the improvement brought by the feedback

mechanism in IFHHT. To this end, we generate several reali-
zations of an mrank-(4, 4, 4) 20 × 20 × 20 tensor as X0 =

G×P

p=1
U(p), where G ∈ R4×4×4 has zero-mean i.i.d. Gaus-

sian entries and unit Frobenius norm and U(p) ∈ R20×4 has or-
thonormal columns. Each generated tensor is completed from
15% randomly sampled entries. Before sampling, we add a re-
scaled Gaussian noise term N (also of unit Frobenius norm),
yielding X = X0 + 10−5 N. The IFHHT algorithm is then ap-
plied for multiple values of ψ in (0, 0.99). Note that when ψ =
0, IFHHT is equivalent to the algorithm of [6]. Fig. 2 shows
the average normalized squared error NSE=‖X− X̂‖F /‖X‖F
achieved after k iterations, for 20 realizations. For ψ = 0.99,
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FIGURE 2 – IFHHT : acceleration of convergence due to first-
order feedback control mechanism with time constant ψ.
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FIGURE 3 – IFHST : performance improvement brought by ex-
ponentially decaying threshold τk with rate γ and by first-order
feedback control rule with time constant ψ.

there is no gain with respect to ψ = 0. Also, the pronounced
oscillations seen for this choice happen due to the “aggressive”
tuning of the first-order control mechanism with a pole near
the unit circle. However, by reducing ψ, convergence can be
remarkably accelerated. In particular, with ψ = 0.8 IFHHT at-
tains convergence at least five times faster than the algorithm
with no feedback correction.

A similar evaluation is performed for IFHST. Here, we have
generated 20 random tensors having fast decaying modal spec-
tra and then applied IFHST for several values of ψ, γ and
τ0. Following [9], the target tensor is generated from the mo-
del X = G×3

p=1

(
Qp Diag(1, 2−θ, . . . , 20−θ)

)
, where G ∈

R20×20×20 has standard normal entries, Qp is a random or-
thogonal matrix and θ controls the rate of decay of the modal
singular values, which we set as θ = 3. The average NSE per
iteration is shown in Fig. 3. In the first two curves, there is
no feedback nor varying threshold ; the choice of τ0 thus of-
fers a compromise between convergence speed and accuracy.
The third curve has the same convergence speed as the second
one, but attains smaller error due to ψ = 0.85. Conversely, the
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FIGURE 4 – Evolution of NSE (—) and sparsity of the softly
thresholded HOSVD core (– –) along a run of the IFHST algo-
rithm with γ = ψ = 0.85 and τ0 = 1/1.2.
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FIGURE 5 – Evolution of NSE for several TC algorithms when
applied to recover 100×100×100 tensors having fast decaying
modal spectra (θ = 3/2), with 15% sampled entries.

fourth curve converges faster than the first two due to the use
of γ = 0.85, but there is no improvement with respect to the
final error because ψ = 0. Finally, the last curve shows a re-
markable improvement with respect to both aspects, due to the
use of feedback and a varying penalty parameter.

The typical evolution of the sparsity of the thresholded Tu-
cker core along the iterations of IFHST is illustrated by Fig. 4,
which was generated with γ = ψ = 0.85 and τ0 = 1/1.2. It
also shows that a highly sparse core can accurately model X :
at k = 60, the sparsity level is 98.7% and NSE = -73.5 dB.

In Fig. 5, the IFHST algorithm is compared with the algo-
rithms SNN [1], TMac [9], geomCG [10] and SeMPIHT [11].
We generate 100×100×100 tensors having fast decaying mo-
dal spectra, with decay parameter θ = 3/2, and sample 15% of
their entries. Both TMac and geomCG were run with mrank-
increasing strategies starting from r0 = (1, 1, 1). The target
mrank of SeMPIHT, TMac and geomCG was r = (40, 40, 40),
and unit mrank increments were applied in all three algorithms.
The tolerance controlling mrank increase was set as 0.01 for
TMac and geomCG. In SeMPIHT, mrank components were in-
cremented every two iterations. IFHST was run with ψ = γ =
0.85 and τ0 = 1/12. From this figure, we can conclude that the
proposed IFHST algorithm outperforms the other algorithms
with regard to convergence speed and to estimation accuracy.

6 Conclusion
We have proposed a general iterative imputation scheme with

feedback correction for addressing the tensor completion pro-

blem, describing two concrete particularizations based on the
Tucker model, IFHHT and IFHST. Our simulation results show
the improvement brought by incorporating the feedback correc-
tion mechanism. Furthermore, they evidenced the advantage of
employing IFHST in comparison with other existing solutions
in a scenario where the generated tensors have rapidly decaying
modal spectra, which often happens for real-world data.

Future developments include studying other ways of exploi-
ting Tucker core compressibility, and also designing new IFCTC
algorithms based on hierarchical tensor models. Finally, though
we observe that IFHHT and IFHST generally provide a reaso-
nable approximation of X (provided enough entries are obser-
ved), being competitive with other TC algorithms, proving their
convergence remains an open problem.
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