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Résumé – Dans ce papier, nous proposons une méthode pour modéliser la dépendance entre des bruits impulsifs. Nous utilisons la notion de

copule ce qui nous permet de représenter les dépendances d’upper et de lower tail, ce qui n’est pas le cas des coefficients de corrélation classique

(qui de plus, ne sont pas adaptés aux lois α-stables, souvent utilisées pour modéliser des bruits impulsifs). Afin d’ illustrer l’approche par les

copules, nous considérons une configuration simple avec une seule antenne de transmission et deux antennes de réception. Nous pouvons alors

construire un récepteur adapté. Nous déterminons anlaytiquement le rapport de vraisemblance qui se décompose en deux parties : une dépendant

uniquement des marginales et une dépendant de la copule. Nous pouvons ensuite illustrer l’impact de la structure de dépendance sur les régions

de décision.

Abstract – In this paper, we propose solutions for modelling dependence in impulsive noises. We use the copula framework that allows to

represent the upper and lower tail dependencies that can not be captured by classical correlation (which, besides, is not adapted to α-stable

distributions often considered in modelling impulsive noise). To illustrate the copula approach we consider a simple configuration with a single

transmit antenna and two receive antennas and an adapted receiver architecture. We can derive the likelihood ratio that exhibits two components:

one from the marginals and one from the copulas. We can then illustrate the impact of the dependence structure on the decision regions.

1 Introduction

Impulsive interference is encountered in many situations, e.g.

in power line communications, with ultra-wide band techno-

logy, or in dense networks.

In this paper, we consider a simple detection problem in a

block fading scenario. Each data symbol is transmitted over

wireless channels and K = 2 versions of each symbol are

received. We only consider the case K = 2 for clear analy-

tical expressions and simple illustrations. Extension to higher

dimensions however still raises computation and model selec-

tion questions. This transmission structure can be motivated by

many different practical wireless communication systems, like

a rake receiver [1], a single-input-multiple-output system, a co-

operative communication system involving multiple relays or

in impulse radio Ultra Wide Band systems where repetitions of

the transmitted symbol occur [2].

For a single transmitted symbol, the received signal Y ∈ R
K

is : Y = snhn + Ik + Nn, where sn is the unknown trans-

mitted symbol at time n, hn ∈ R
K is the block fading chan-

nel coefficients, Ik ∈ R
K is the impulsive interference and

Nk
i.i.d.
∼ N (0, σ2) is the thermal noise.

In this paper we make the assumption that the channel state

is perfectly known and that interference is dominating. Besides

we assume independence between different time instant n so

that we will drop this index for simplicity of writing. The stu-

died case can then be summarized by

Y = S+ I (1)

where S is a vector containing the repeated sample s and I the

interference vector.

Many papers have considered the case where I is compo-

sed of independent and identically distributed samples. Depen-

ding on the impulsive interference distribution assumption, it is

more or less complicated to derive the optimal receiver and so-

metimes suboptimal approaches are considered [3], especially

when I is considered as an α-stable random vector.

In this paper we consider an α-stable interference distribu-

tion but we do not consider any longer that the components of I

are independent. We take the example of a SIMO situation : if a

strong interference is received on one antenna, the probability

of receiving a strong interference sample on another antenna

is not negligible. This upper tail dependence can not be captu-

red by traditional correlation function that, anyway, can not be

used for α-stable random vectors. We propose to use the copula

framework to model the dependence structure. It allows to se-

parately model the marginal distributions and the dependence



structure. To our knowledge, such a framework has not been

considered in previous papers, except [4]. Copulas have been

used in communication but rather to model the dependence of

several sources and make some source separation [6] or the cor-

related shadowing to improve MIMO performance [7].

2 Copulæ

Copulæ are a very useful way to model structures of depen-

dence between random variables [5]. The fundamental result

justifying this usefulness is the Sklar’s Theorem : it ensures

that under the condition that the cumulative distributions of the

random variables are continuous, there exists a unique copula

C such that ∀(x, . . . , xd), we have

H(x1, . . . , xd) = C (F1(x1), . . . , Fd(xd))) . (2)

where H is the joint distribution of the random vector

(X1, . . . , Xd). Hence, a copula is a function C : [0, 1]d 7→
[0, 1] which couples the marginals Fi between themselves. The

name copula comes from this last remark. In Fig. 1 we re-

present the interference samples when I has independent com-

ponents. The representation is done directly on the sample or

after a transformation through the repartition function of the

marginals (Fi(.)) to have the representation of the copula.
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FIGURE 1 – In the left plot samples are independent and they

form a cross. This can be explained saying that large values are

rare and the occurrence of two large values on the same vector

is very unlikely. In the right plot (X and Y axis are Fi(y1) and

Fi(y2)), the points are uniformly distributed which signifies the

independent structure.

2.1 Archimedean copulæ

In the following, we consider a particular class of bivariate

Archimedean copulæ. The interest of this class is, first of all,

the easiness with which they can be constructed. The multi-

variate Archimedean copulæ have the following form : for all

(u1, · · · , ud) ∈ [0, 1]d,

C(u1, · · · , ud) = φ−1 (φ(u1) + · · ·+ φ(ud)) . (3)

The function φ is called the generator of the copula and is a

continuous and convex function such that φ(1) = 0. It appears

that all Archimedean copula is symmetric in its variables.

We will focus on two families of Archimedean copulæ, both

indexed by a single parameter. The Clayton and the Gumbel

families of copulæ model asymmetric dependence in tails.

Definition 2.1. For all θ > 0,The Clayton copula of parameter

θ is defined on [0, 1]d by

C(u1, · · · , ud) =
(
u
−1/θ
1

+ · · ·+ u−1θ
d − (d− 1)

)−θ

.

In particular, it is obtained when φ−1 is the Laplace transform

of a Gamma distribution.

In Fig. 2 we have a similar representation as in Fig. 1 but in-

troducing the dependence structure of the Clayton copula. The
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FIGURE 2 – Interference samples for Cauchy marginals and

Clayton copula.

cross in the left plot tends to disappear and points, especially

in the bottom left quadrant, are differently positioned. This re-

sults from the non zero asymmetric tail dependence introduced

by the Clayton copula.

Definition 2.2. For all θ ≥ 1,The Gumbel copula of parameter

θ is defined on [0, 1]d by

C(u1, · · · , ud) = exp

(
−(

d∑

i=1

(− log ui))
1/θ

)
.

In particular, it is obtained when φ−1 is the Laplace transform

of a α-stable distribution.

In Fig. 3 we represent the dependence structure of the Gum-

bel copula on the received samples and after the transform through

the marginals.

−10 −5 0 5 10
−10

−5

0

5

10

y
1

y
2

Received samples

0 0.5 1
0

0.2

0.4

0.6

0.8

1

F
i
(y

1
)

F
iy

2
)

Received samples in the Copula space

FIGURE 3 – Received samples for Cauchy marginals and Gum-

bel copula.

3 Log Likelihoood Ratio for dependent

variables

In the two-dimensional case and with a binary input, our sys-

tem model in (1) can be written :



{
y1 = s+ i1

y2 = s+ i2.
, (4)

where s ∈ {−1, 1}. Two repetitions y1 and y2 of this bit are

obtained and I = (i1, i2) is a bivariate interference vector. The

two coordinates i1 and i2 are not independent. The LLR for

each Y ∈ R
2 is given by the ratio

Λ(y1, y2) = log
P(y1 = s+ i1, y2 = s+ i2 | s = 1)

P(y1 = s+ i1, y2 = s+ i2 | s = −1)
. (5)

Let f be the joint density of the couple (i1, i2), (5) becomes

Λ(y1, y2) = log
f(y1 − 1, y2 − 1)

f(y1 + 1, y2 + 1)
. (6)

3.1 Independent interferences

Fig. 4 illustrates the two decision regions in the case of two

independent Cauchy distributions with x0 = 0 and δ = 1. The

X and Y axis are the values of the components of the recei-

ved vector Y. We consider two possible transmitted symbols,

{−1, 1}, meaning that the transmitted vector is either (1, 1) or

(−1,−1), denoted by two circles on the figure. The white re-

gion corresponds to the decision 1, meaning that Λ ≥ 0 and the

black one to −1, i.e., Λ < 0
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FIGURE 4 – Decision regions for an independent Cauchy inter-

ference.

A Gaussian noise would correspond to a linear boundary,

corresponding to an Euclidean distance : the whole region above

the diagonal going from (−4, 4) to (4,−4) would be black, the

other white. Impulsiveness significantly modifies those boun-

daries and the optimal decision does not necessarily depends

on the closest (in euclidean distance) possibly transmitted sym-

bol. On the contrary, a large sample is probably due to a large

noise and the corresponding value can not be trusted (when the

Gaussian receiver would put much trust on it). It results in the

shifted black and whites area where the smallest value makes

the decision. However, it necessitates non linear complex ope-

rations to implement an optimal receiver.

3.2 Dependent interferences

If we now consider that i1 and i2 are dependent and that we

can express this dependence through an Archimedean copula,

the form of the LLR will change, indeed :

Λ(x, y) = log
fi(x− 1)fi(y − 1)c(Fi(x− 1), Fi(y − 1))

fi(x+ 1)fi(y + 1)c(Fi(x+ 1), Fi(y + 1))

= Λ⊥(x, y) + Λc(x, y), (7)

where c is the density of the copula and is defined by

c(u, v) =
∂2C

∂u∂v
(u, v); (8)

fi and Fi respectively the probability density function and the

cumulative distribution of the interference. We can notice that

Λ⊥ represents the independent part of the LLR. The second

term

Λc(x, y) = log
c(Fi(x− 1), Fi(y − 1))

c(Fi(x+ 1), Fi(y + 1))
(9)

is the part of the LLR depending on the copula and represents

the dependence structure. It can however be tricky to derive

because it also depends on the marginals.

In the case of the Clayton copula, the consequence on the

decision region is shown in Fig. 5, left plot. We clearly see that

the lower tail dependence significantly modifies the decision

regions. The area corresponding to −1 is significantly larger

due to the higher probability of having two samples influenced

by a negative value.
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FIGURE 5 – Decision region for Cauchy marginals and Clayton

(left), Gumbel (middle) or a mix of Gumbel and Clayton (right)

copula.

In the case of the Gumbel copula, the consequence on the de-

cision region is shown in Fig. 5, middle plot. We again clearly

see that the upper tail dependence significantly modifies the

decision regions, in that case in the reverse way as the Gumbel

copula because we have a different tail dependence (upper tail

dependence instead of lower tail)..

We finally plot in Fig. 5, right plot the decision regions for a

mix of Clayton and Gumbel copula. This allow to keep a sym-

metric interference, allowing upper and lower tail dependence,

which is more relevant to the considered scenario. The decision

regions have more similarities with the independent case. Ho-

wever there are still differences at the boundaries. The effect

on higher dimensions remain to be studied.

4 Applications on a SIMO model

4.1 Receiver design

The optimal receiver in terms of minimizing the Bit Error

Rate (BER) is the Maximum Likelihood (ML) detector. It is
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FIGURE 6 – BER for Cauchy noise and Gumbel (left) and Clay-

ton (middle) copulae as a function of the copula parameter.

given by the solution to the following optimization problem :

ŝ = argmax
s∈Ω

P(Y|s) (10)

where Ω is the set of possible transmitted bits.

In the binary case, Ω = {−1, 1} and the problem is reduced

to obtaining the sign of the LLR defined in (7).

ŝ = sign (Λ(x, y))

= sign (log Λ⊥(x, y) + Λc(x, y)) , (11)

Fig. 6 left (resp. middle) compares the performance of the li-

near Gaussian receiver, a Cauchy receiver assuming independent

Cauchy interference and a copula receiver that knows both the

marginal and the dependence structures. In that case the depen-

dence is captured by a Clayton (resp. Gumbel) copula.

Obviously when the parameter gets close to zero (resp. one),

the dependence is low and, if the Cauchy receiver outperforms

the Gaussian one, there is no need to introduce the dependence

structure. However, when the dependence increases (θ gets lar-

ger), the performance of the Cauchy receiver quickly degrades

when the copula receiver is able to maintain a better perfor-

mance level.

Finally, we apply our Copula receiver to a SIMO case with

two receive antennas. A Poisson field of interfer is simulated

but the channel coefficient have a correlated phase (phase shift

of the LOS contribution uniformly distributed on [−π/4, π/4]).
For the given configuration, we vary the parameters of the co-

pula keeping the symmetry. The gain in performance is limited
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FIGURE 7 – BER for SIMO model for mixture of Clayton and

Gumbel copulæ.

but this is easily explained by the small dimension considered

(only 2). It is clear that taken the dependence structure into ac-

count allow a further gain compared to the independent recei-

ver. This last one gives better performance than the Gaussian

receiver.

5 Conclusion

We proposed in this paper a way to model dependency in

impulsive interference. Usual tools (based on correlation) do

not allow to well capture the dependence structure of such an

impulsive interference, especially when the α-stable model is

used.

In the case of Cauchy marginals and copulæ from the Ar-

chimedean family and with a binary input, we are able to de-

rive analytical expressions of the decision rule based on the

likelihood ratio. The results on the decision regions show that

dependent interference has a significant impact on the optimal

decision that we should make. Consequently, we compared re-

ceivers that takes this dependency into account to receivers that

do not. We show that the latter can rapidly degrade if a depen-

dence structure is present when the former manage to main-

tain good performances. We illustrate the possible benefit on a

SIMO example.

The densification of networks and their heterogeneity make

interference an important issue in wireless communication. The

dependence structure is certainly a crucial point for an efficient

implementation of such networks. Will copula play a role ?
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