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Résumé - Ce travail présente un algorithme itératif innovant pour la reconstruction en micro-tomographie X de 
phase par rayonnement synchrotron. La technique d’acquisition est basée sur la propagation multi-distance 
(holotomographie). Jusqu’à présent, les étapes d’estimation de phase et de reconstruction tomographique étaient 
traitées indépendamment. Ici, nous proposons un nouvel algorithme (CTF-SART) qui combine ces deux étapes en 
une seule. Il utilise d’une part un modèle linéaire du contraste (appelé Fonction de Transfert du Contraste) pour 
l’estimation de la phase, et d’autre part l’algorithme itératif SART pour la reconstruction tomographique. Nous 
décrivons le formalisme de la méthode et présentons les premiers résultats sur données simulées. 

Abstract – This work presents a new iterative algorithm for synchrotron radiation micro-tomography, using multi-
distance propagation-based phase contrast imaging. Up to now, phase retrieval and tomographic reconstruction were 
processed as two separated problems. Here, we combine these two parts into a single step algorithm (CTF-SART). A 
linearized version of the contrast model (known as the contrast transfer function, CTF) was used for phase retrieval, 
and the simultaneous algebraic reconstruction technique (SART) for the tomographic reconstruction. We present the 
theoretical framework of the method and the first tests on simulated data. 
 
1 Introduction 
X-ray micro-tomography (µCT) is increasingly 
considered the reference investigation technique in as 
diverse fields as materials science, palaeontology and 
bone research. By the use of synchrotron radiation (SR), 
a powerful technique is achieved: SR-µCT. The high 
flux available in SR-µCT enables very fast imaging 
(<1s/tomographic scan), or the option to mono-
chromatise the beam, which gives access to quantitative 
measurements of the linear attenuation coefficient. The 
high flux also makes it feasible to use X-ray focusing 
optics to achieve nanometric resolutions, for example by 
implementing an X-ray projection microscope [1]. 

Additionally, since synchrotron insertion devices 
constitute partially coherent sources, X-ray phase 
contrast imaging becomes possible. Due to the short 
wavelength of X-rays, the phase cannot be measured 
directly but has to be computed from phase contrast 
images. Several methods to achieve phase contrast with 
X-rays have been developed. We focus here on the in-
line technique (also known as propagation-based 
imaging and Fresnel diffraction in literature), where 
phase contrast is achieved by letting the beam propagate 
in free space after interaction with the object [2] 
(Fig. 1). 
At relatively short propagation distances, in-line phase 
contrast appears as an edge enhancement effect. This 
effect is visible in tomograms as well if the raw phase 
contrast images are used as input to a tomographic 
reconstruction algorithm [3]. While this can be a useful 
modality in its own right, the main interest in this type 
of phase contrast is that a quantitative, albeit non-linear 

relationship exists between the 3D complex refractive 
index distribution in the imaged object and the contrast 
measured on the detector. This makes it possible to 
reconstruct the phase shift induced on the X-ray beam 
by the imaged object [4]. Combined with tomographic 
imaging and reconstruction, this allows to reconstruct 
the refractive index distribution in 3D. We call this 
modality phase tomography. The main advantages of 
phase tomography is that it offers several orders of 
magnitude higher sensitivity than standard attenuation-
based tomography, and that the real part of the complex 
refractive index is proportional to the mass density in 
the sample, which makes phase tomography images 
particularly attractive as input to mechanical simulation 
[5]. The main drawbacks of phase tomography is that it 
requires an additional reconstruction step, that the 
reconstruction is sensitive to noise in the low spatial 
frequency range (this is an intrinsic feature since the 
information transfer from object to contrast is low in the 
low spatial 

 

 
Figure 1 : Schematic of the acquisition geometry in X-ray 

in-line phase tomography, in 2D 



frequency range), and that with the currently available 
algorithms some spatial resolution is lost [6].  

So far, phase tomography has mainly been considered 
as a two-step process, i.e. a 2D phase retrieval step 
followed by a 3D tomographic reconstruction step. The 
phase retrieval step has mainly relied on linearization of 
the contrast model to achieve efficient, filtering-based 
algorithms. The most well-known linear models include 
the transport of intensity equation (TIE) [7], the contrast 
transfer function (CTF) [4], and the mixed approach [8]. 

Some work has been done on improving the spatial 
resolution, still in 2D, by considering the full non-linear 
problem. Langer et al. used a non-linear conjugate 
gradient algorithm to refine an initial reconstruction 
with a linear algorithm [9]. Davidoiu et al. investigated 
the use of the Frechet derivative to define a Landweber 
iteration [10], and Moosmann et al. used a non-linear 
filtering-based approach [11]. 

To address the low-frequency noise sensitivity, 
different ways to include a priori information on the 
phase have been presented. Paganin et al. introduced a 
homogeneous object assumption by enforcing 
proportionality between attenuation and phase in the 
TIE. This yields an algorithm that can retrieve the phase 
from a single phase contrast image. This can be very 
useful in practice, despite artefacts where the 
homogeneity assumption is violated [12]. Langer et al. 
presented a method that assumes homogeneous objects, 
but where the prior is based on a measurement of the 
attenuation and is introduced as a regularizing term in a 
linear least-squares optimization [6]. 

To reduce the assumptions on the imaged object, 
some quasi-iterative 3D algorithms have been 
presented. Beltran et al. used reconstructions with 
Paganin’s method at different values of the 
proportionality constant to achieve an algorithm for 
multi-material objects. Langer et al. introduced an 
algorithm requiring a reconstructed attenuation 
tomogram followed by thresholding and forward-
projection to achieve an algorithm for multi-material 
objects [13], and an algorithm that exploits functional 
relationships between the real and imaginary part of the 
refractive index for certain materials (e.g. bone) for 
heterogeneous objects [14]. 

To further reduce the assumptions on the imaged 
object, it seems that truly 3D iterative algorithms, that is 
direct retrieval of the complex refractive index, have to 
be used. Kostenko et al. used Paganin’s method 
combined with a total variation (TV) penalty term in the 
object domain to achieve an algorithm that albeit still 
requiring homogeneous objects allows to reduce the 
number of views acquired in the tomographic scan [15]. 
Ruhland et al. used a Gerchberg-Saxton type algorithm 
with a consistency constraint to reconstruct the complex 
refractive index [16]. It is unclear if this algorithm is 
robust to phase wrapping, however, since it was only 
demonstrated on weak objects. 

In this work, the aim is to combine iterative 
tomographic reconstruction and phase retrieval to 
retrieve directly the 3D refractive index distribution, 

with the intention to reduce the assumptions on the 
imaged object by allowing less restrictive priors. To this 
aim, we present a new algorithm for 3D refractive index 
retrieval that combines the CTF and the simultaneous 
algebraic reconstruction technique (SART) [17]. 
Further, we present the first numerical experiments with 
this new algorithm on synthetic data, restricted to the 
2D case in this initial work.  

2 Direct problem 
For generality we describe the problem in 3D. 

2.1 Image formation 

In X-ray phase contrast imaging, we can consider the 
object fully described by its 3D refractive index 
distribution 

,ݔ)݊ ,ݕ (ݖ = 1− ,ݔ)ߜ ,ݕ (ݖ + ,ݔ)ߚ݅ ,ݕ  (0)	(ݖ

where the imaginary part is related to attenuation and 
the real part is related to phase shift. Both attenuation 
and phase can be considered as straight line projections  

B(ܠ) =
2π
λ
නβ(ܠ, ݖd	(ݖ (1) 

φ(ܠ) = −	
2π
λ
නδ(ܠ, z)	dݖ 	(2) 

If we consider thin objects, the wave-object interaction 
can be written as a transmittance function 

ఏܶ(ܠ) = exp[−ܤఏ(ܠ) + 	݅	߮ఏ(ܠ)]	(3) 

which modulates the incident wave so that the exit wave 
becomes 

(ܠ)ఏ,଴ݑ = ఏܶ(ܠ)ݑ௜௡௖(ܠ)	(4) 

Propagation in free space at distance D can be 
modelled by the Fresnel transform, which can be written 
as 

ऐ࢘஽ = ℱିଵ ෨ܲ஽ℱ	(5) 

where ℱ denotes the Fourier transform and ෨ܲ஽(܎) is the 
Fourier transform of the propagator function, given by 

෨ܲ஽(܎) = exp(−݅܎|ܦߣߨ|ଶ)	(6) 

The exit wave can thus be expressed as a linear system 
with respect to the phase. However, the intensity 
recorded on the detector, is the intensity of the wave  

(ܠ)ఏ,஽ܫ = หݑఏ,஽(ܠ)หଶ	(7) 

Hence, the image formation is a non-linear system. The 
Fourier transform of the intensity can be written as [18] 

(܎)ሚ஽ܫ = ∫ܶ ቀܠ − ఒ஽܎
ଶ
ቁ ܶ∗ ቀܠ + ఒ஽܎

ଶ
ቁ exp(−݅2܎ܠߨ)݀ܠ	(8) 

2.2 Contrast Transfer Function 
The contrast transfer function model is derived by 
Taylor expanding both the attenuation and phase terms 
in the transmittance function to the first order 

(ܠ)ܶ ≈ 1− (ܠ)ܤ +   .(9)	(ܠ)߮݅



It can be shown that this linearization is valid if the 
attenuation is weak and the phase is slowly varying, i.e. 

(ܠ)ܤ ≪ 1	(10) 
and 

(ܠ)߮| ܠ)߮− + |(ࢌܦߣ ≪ 1	(11).  

Substituting Eq. (9) into Eq. (8) yields 

(܎)ሚ஽ܫ = −(܎)஽௜௥௔௖ߜ 2 cos(܎|ܦߣߨ|૛)ܤ෨(܎)
+ 2sin(܎|ܦߣߨ|૛) ෤߮(܎)	(12) 

which is the contrast transfer function. This model can 
be used to solve for both phase and attenuation using 
linear least-squares optimization (denoted LSQ in this 
paper). Here, we consider only the pure phase case, 
which means that the cosine term disappears. The 
solution for the phase becomes 

	 ෤߮(܎) =
∑ sin(܎|ܦߣߨ|૛)[ܫሚ஽(܎)−ߜ஽௜௥௔௖(܎)]ே
஽ୀଵ

[∑ 2. sin²(܎|ܦߣߨ|૛)]ே
஽ୀଵ + ߙ 	(13) 

where α is an arbitrary regularization parameter [4]. 

2.3 Simultaneous Algebraic Reconstruction 
Technique (SART) 
The tomographic reconstruction problem can be 
expressed as: 

࢖ = जࢌ	(14) 

where ࢖  represents the measurements (e.g. the 
projections), f the unknown (e.g. the attenuation map) 
and ज  the transformation (e.g. the Radon transform).  
Conversely to the conventional filtered back-projection 
(FBP) algorithm, iterative solutions are increasingly 
used. These methods enable to solve linear problems, 
that requires a first estimate of the unknown f, ࢌ(଴) . 
Here, we consider the SART algorithm. At the 
kth iteration, ࢌ(௞)  is estimated from the difference 
between ज૔ࢌ(௞ିଵ) and the measurement at angle ࣖ࢖ ,ߴ, 
using the following formula [17]: 

(࢑)ࢌ = (૚ି࢑)ࢌ +ज૔
ࢀ ࢌज૔ିࣖ࢖

(ష૚࢑)

ቚหज૔หቚ
૛ 	(15)  

3 Proposed reconstruction algorithm 
Here, we combine CTF and SART to achieve a 
refractive index retrieval algorithm. We start by 
expressing the Fourier transform of the intensity as a 
function of the refractive index decrement, for a pure 
phase object 

Iሚୈ,஘(f) = δୈ୧୰ୟୡ(f) + 2sin(πλD|f|ଶ)ℱ ൤−
2π
λ ज૔δ൨ (f)	(16) 

where ज૔  is the projection operator at angle ϑ . The 
object is non absorbing, thus the hypothesis (10) is 
verified. 
For simplicity, we rewrite this as 

Iሚୈ(f) = δୈ୧୰ୟୡ(f) + Aୈ(f)ℱ[ज૔δ](f)	(17) 

The contrast can then be written in the spatial domain as 
Iୈ(x) = ℱିଵ{Aୈℱ[ज૔δ]}(x) + 1		(18) 

Substituting the contrast operator in Eq. (12) for ज in 
the SART formula (Eq. 15) yields the following 
iteration formula 
δ

(୩)(x)
= δ

(୩ିଵ)(x)

+ज૔
܂
ℱିଵ{AୈIሚୈ}(x)− ℱିଵ ൜Aୈ

ଶℱ ቄज૔δ
(୩ିଵ)ቅൠ (x) − 1

ቚหℱିଵ൛Aୈ(f)ℱ{ज૔}ൟหቚ
ଶ 	(19) 

3.1 Implementation 

In these initial numerical experiments we limit 
ourselves to the 2D reconstruction of pure phase objects 
from multi-distance acquisitions. जణ  and जణ

்  are 
implemented using radon() and iradon() in 
Matlab. ‖ܣ஽(f)‖ is a constant dependent on D and can 
be pre-calculated. Here, ‖जణ‖ is approximated by the 
path length of the rays, which can also be pre-calculated 
using radon(). In each cycle, a distance is chosen 
randomly, and all projection angles are traversed in 
random order for that distance. This is repeated until all 
distances are taken into account. A preliminary study 
actually showed that 20 cycles is a good trade-off 
between convergence  and computation time.  

    

 
4 Numerical experiments 
Numerical experiments were performed using a 
modified 2D Shepp-Logan phantom. The image range 
was adjusted to yield phase projections that exceed 2π. 
The image size was 256×256 pixels (Fig. 2). Intensities 
at different distances were simulated using the squared 
modulus of the Fresnel transform. The X-ray energy 
used for these simulations was 19 keV and the pixel size 
was 3.5 µm, which corresponds to common 
experimental conditions. Based on these conditions, the 
four following propagation distances were chosen 
according to Zabler et al. [19]: 
D=[0.303; 0.636; 1.635; 1.968] m. Fig 3 illustrates the 
two simulated sinograms at the first and fourth 
distances. Detection was simulated by adding noise so 
that the Peak-to-Peak Signal to Noise Ratio (PPSNR) is 
equal to 48 dB in the simulated intensities. Fig 4 shows 
the reconstructed images both with CTF-ART and LSQ 
for the noise-free and noisy data. 

Figure 2 : (a) Original object, a modified Shepp-Logan 
phantom, and (b) a phase projection. Note that the phase 

exceeds 2π  

(b) 

(a) (b) 

(a) 



  

 

  
 

  

 

5 Discussion and conclusions 
Regarding reconstructed images (Fig. 4), CTF-SART 

yields promising results. The qualitative features of the 
object are clearly visible, but the LSQ leads to sharper 
and more quantitative reconstructed images. For 
example, the reconstructed image from noisy data 
contains a varying background (low- frequency noise). 
The LSQ incorporates Tikhonov-like regularization in 
the projections domain, however. There are some little 
fringes remaining with both reconstruction methods.  
This is probably due to an insufficient oversampling for 
the Fresnel transform. 

In this paper, we present the very first tests for an 
innovative algorithm that combines phase retrieval and 
tomographic reconstruction. While the initial results are 
promising, further refinement of the implementation of 
CTF-SART is needed. We plan to extend this algorithm 
to objects including both phase and attenuation which 
increases the dimensionality of the problem. The final 
goal would be to be able to reconstructed phase and 
attenuation without having to measure an attenuation 
image, which increase the ill-posedness of the problem. 
The advantage of this combined phase-tomographic 
reconstruction approach is that it will also be possible to 
add a regularization term in the object domain. Further, 
we could introduce different regularization for 
attenuation and phase, and retrieve these entangled 
quantities alternatively. 
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Figure 3 : Simulated sinograms for the modified Shepp-Logan 
phantom at (a) D=0.303m (b) D=1.968 m. 

Figure 4 : Reconstructed images data without noise using (a)  
CTF-SART and (b) LSQ method, and from noisy data 

(PPSNR=48 dB) using (c) CTF-SART and (d) LSQ method.  
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