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Résumé - Les nuages tridimensionnels (3D) de points tels que la fonction d’orientation de distribution (ODF) sont 
largement utilisés pour résoudre les problèmes de croisement de fibres en imagerie de diffusion à haute résolution 
angulaire (high angular resolution diffusion imaging— HARDI). L’évaluation des caractéristiques ou de la qualité 
des nuages de points 3D s’effectue le plus souvent en utilisant le critère visuel, bien que l’utilisation de quelques 
mesures objectives de la qualité soit également réalisée, mesures qui sont directement empruntées de la théorie 
classique du traitement du signal et de l’image, parce qu’elles sont simples et intuitives à calculer. Cependant, ces 
mesures ne sont pas toujours pertinentes pour caractériser les  nuages de points 3D. Nous proposons un nouveau 
paradigme pour évaluer les caractéristiques des nuages de points 3D, basé sur la mesure des caractéristiques 
morphologiques de ces derniers. L’idée consiste à projeter le nuage de points 3D sur un plan angle-distance (ADM), 
construire une matrice angle-distance (ADMAT), et calculer des paramètres tels que le rapport de longueur, la 
séparabilité et l’incertitude. Trois méthodes HARDI sont comparées en utilisant les mesures proposées. Les résultats 
obtenus montrent que les caractéristiques des nuages de points 3D peuvent être évaluées d’une manière relativement 
complète et quantitative. 

Abstract - Three-dimensional (3D) point clouds such as orientation distribution function (ODF) are widely used to 
resolve fiber crossing problems in high angular resolution diffusion imaging (HARDI). The assessment of 3D point 
cloud characteristics or quality is addressed most commonly using visual criterion, although the use of a few 
objective quality metrics is also reported that are directly borrowed from classical signal and image processing 
theory, because they are intuitive and simple to compute. However, they are not always pertinent to characterize 3D 
point clouds. We propose a new paradigm to assess 3D point cloud characteristics based on the measurement of the 
morphological characteristics of 3D point clouds. The idea consists in projecting a 3D point cloud onto an angle-
distance map (ADM), constructing an angle-distance matrix (ADMAT), and calculating metrics such as length ratio, 
separability and uncertainty. The results show that the characteristics of 3D point clouds can be well assessed in a 
relatively complete and quantitative manner. 
1 Introduction 

The orientation distribution function (ODF) [1] is a 
quantity used to describe the orientation architecture of 
the tissue’s fibers or fiber bundles; it gives the 
probability of diffusion in different directions. ODF is 
often estimated or reconstructed from high angular 
resolution diffusion imaging (HARDI) such as q-ball 
imaging (QBI) [2] using spherical sampling. In this field, 
most existing works put emphasis on improving the 
quality of ODF using normalization and regularization 
[2], [3], change of basis [4]–[6], sharping deconvolution 
[7], compressed sensing [8], etc. Meanwhile, other 
quantities were also used to describe fiber orientation or 
crossing, including the fiber orientation distribution 
(FOD) from the spherical deconvolution method [9], 
[10], the orientation map derived from the diffusion 
orientation transform (DOT) based on the Fourier 
transform relationship between water displacement 
probability and diffusion-attenuated magnetic resonance 
(MR) signal expressed in spherical coordinates [11], and 
the water molecule displacement probability function 
[12] using the mixture of Wisharts.  

The global shape information of ODFs has been 
compared by some quantitative measures. The mean 
square error[3], root-mean square error (RMSE) [5], 
normalized mean squared error (NMSE) [8] between the 

noisy ODF and the noise free ODF. The greater these 
metric values are, the more the noisy ODFs is different 
from noise free ODF. A widely adopted assumption of 
these metrics is that the loss of perceptual quality is 
directly related to the visibility of ODF. In [13], a more 
global description of the ODF, called Kullback-Leibler 
(sKL) method coming from information theory, was 
proposed that uses gold standard ODFs as ground-truth 
to assess how accurately the diffusion profile could be 
reconstructed from sub-sampled data based on different 
angular sampling schemes. The sKL method allows for 
the measurement of the discrepancy between the 
reconstructed and ground-truth ODFs. Such methods 
can be used for comparing ground truth ODFs and 
estimated ODFs. In [14], the authors used an objective 
criterion from statistics, called Dip test [15] that 
estimates the maximum distance between the empirical 
distribution function and the closest unimodal 
distribution function, to compare the quality of crossing 
fibers. However, the Dip test method requires sampling 
a direction from the ODFs to be able to perform the Dip 
test in a one- or two-dimensional (2D) space, and such 
sampling should be appropriate.  

The shape and sharpness of the ODF’s peaks, which 
reflect the local spread of fibers, and the peak 
anisotropy (indicating how elliptical the peak cross 



section) which reflects local fiber bending or fanning 
[16]. However, the model proposed in [16] can only 
model the uncertainty in fiber orientation, the peak 
height is not used. Rotation invariant feature that takes 
the eigenvalues of spherical functions as rotation 
invariant metrics to describe the shape of ODFs, implies 
that the metric was directly dependent on the used 
spherical harmonic representation of HARDI signals 
[17]. However, the reconstruction method that 
represents HARDI signals in terms of other spherical 
basis is also proposed in [4], [6], [8].  

In this study, we propose a novel paradigm to 
quantitatively and accurately assess ODF or other 
quantities by measuring their morphological 
characteristics. The idea consists in regarding an ODF 
as a three-dimensional (3D) point cloud (Figure 1), 
projecting the 3D point cloud onto an angle-distance 
map (ADM), constructing an angle-distance matrix 
(ADMAT), and calculating the metrics such as the 
length ratio, separability and uncertainty.  

   
Figure 1: Examples of 3D point cloud representation. Left: ODF 
from q-ball imaging [3]. Middle: ODF from q-ball imaging 
within constant solid angle [14]. Right: FOD from Constrained 
spherical deconvolution [18]. 
2 3D point cloud characteristics assessment 

paradigm 
2.1 Construction of the Angle-Distance Map 
(ADM) 

In the representation of ODFs by 3D point clouds, 
each point corresponds to a vector originating from the 
coordination system origin. The direction and the length 
of the vector designate the direction and the amount of 
the diffusion, respectively. The difference between the 
3D point cloud on the left of Figure 1 and the usual 
ODF visualization is that the latter is a 3D surface 
representation of the former. The 3D surface 
representation of ODFs was addressed in [1]–[3], with a 
variant reported in [14]. It is often expressed in 
spherical coordinates. Concerning 3D point clouds, we 
express them in Cartesian coordinates by 

   
!q = (x, y,z)T = q!e . Then, a 3D point cloud can be 

described by a set of vectors. A vector being defined by 
radial distance and orientation, we introduce these two 
parameters to characterize the 3D point clouds. If mq  
represents the maximal distance with   

!em  as its direction, 

we will then take   
!qm  as a reference vector. From the 

reference vector, we construct an angle-distance map 
(ADM) formed of small areas delineated by radial lines 
spaced of 90 /o aN  with  Na ∈! , and circles of radius 

/ ck N  with    k = 1,..., Nc and Nc ∈! , where cN  
designates the number of partitions in the radial 
direction and aN  the number of partitions of the angle 

range. A small area is then the intersection of an 
annulus and a fan sector. The annulus is determined by 
( )1 / and /c ci N i N− , and the fan sector by 
90( 1) / and 90 /a aj N j N− . The number of small areas 
is determined by the choice of aN  and cN . We now 
project the given vectors onto this ADM. To do this, we 
first calculate the angle between each vector   

!q  and the 
reference vector   

!qm . Since the distance q  of   
!q  to the 

origin is known (equal to its length), we then have the 
values of the angle and distance, which enables us to put 
the vectors in the corresponding area of ADM (Figure 
2). If the maximum distance appears in two or more 
directions, we can choose any of them as the reference 
direction.  

 
Figure 2: Projection of 3D points on the angle-distance map. 
From left to right: ODF, 3D point cloud with the red point 
indicating the reference vector, illustraton of 3D points in two 
annuluses, and projection of the 3D points on the ADM. 

Once all the ODF points are projected on the ADM, 
we analyze and characterize the distribution of the 
projections. To this end, we first define three metrics 
(whose mathematical expressions will be given in 
Section 2.2): The length ratio that describes the main 
direction diffusivity, the separability that reflects the 3D 
point cloud’s ability to separate main directions, and the 
uncertainty that indicates the width of the 3D point 
cloud’s tine or peak. The definition of these metrics is 
illustrated in Figure 3(a). The values of the length ratio 
of 2-fiber range from 0 to 1, those of the separability 
from 0 to 1 and those of the uncertainty from 0 to 
1.57 90( )/180π . The greater the length ratio is, the 
closer the lengths between the two fibers are. The 
greater the separability, the more the fibers can be easily 
separated. The smaller the uncertainty, the thinner the 
peaks of the 3D point cloud. If there are more than 2 
fibers intravoxel, we will sum the values of the length 
ratio, separability of every 2 fibers and sum of 
uncertainty of each fiber. 

To calculate the above metrics, we will construct the 
following angle-distance matrix (ADMAT). 
2.2 Construction of the Angle-Distance Matrix 
(ADMAT) and Calculation of Morphological 
Criteria from ADMAT 

Once all the ODF points are projected on the ADM, 
we analyze and characterize the distribution of the 
projections. To this end, we first define three metrics: 
The length ratio that describes the main direction 
diffusivity, the separability that reflects the 3D point 
cloud’s ability to separate main directions, and the 



uncertainty that indicates the width of the 3D point 
cloud’s tine or peak. The definition of these metrics is 
illustrated in Figure 3(a). The values of the length ratio 
of 2-fiber range from 0 to 1, those of the separability 
from 0 to 1 and those of the uncertainty from 0 to 
1.57 90( )/180π . The greater the length ratio is, the 
closer the lengths between the two fibers are. The 
greater the separability, the more the fibers can be easily 
separated. The smaller the uncertainty, the thinner the 
peaks of the 3D point cloud. To construct the ADMAT, 
we now determine how a 3D point is projected in the 
corresponding small area of the ADM.  

 
 (a) (b) 

Figure 3: Illustration of the definition of the length ratio, 
separability, and uncertainty metrics in the 3D point cloud (a) 
and in the schematized ADMAT (b). 

We can count the number of projections of the 3D 
points on the area   i, j( )  using 

  N i, j( ) = Card(angd i, j( )) , where Card() designates 
the cardinal number. We then construct the ADMAT by 
calculating each of the elements in the area. Since the 
points near the origin do not contribute much to the 
shape of the 3D point cloud, we will attenuate their 
influence using 

( )( 1)
,

1
,

i
p

i j
p

M a N p j− −

=

=∑ , (1) 
 

where 1a >  is a constant. In the present study, we chose 
10.a =  

From the ADMAT, we define two sets representing 
respectively the positions ,k xm  of zeros and the 
positions 

  nk ,x  of non-zeros in the kth line of ADMAT. 

We then, for the given kth line, calculate the finite 
difference of ,k xm  and ,k xn  to detect discontinuous 

positions.   
rk ,p  and   

vk ,p  represent the set of 

discontinuities in   mk ,x  and   nk ,x , respectively. If at kth 
line, 

  vk ,p =∅ , this means that either the 3D point cloud 

contains only one main direction or it cannot distinguish 
different directions. Otherwise, at kth line, the 3D point 
cloud contains ( )kCard v  main directions. 

We then define an operator ()fset  that takes a 
discontinuity as input and outputs a set of positions of 
zeros or non-zeros in the kth line of ADMAT 
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where  ls  designate the number of discontinuities in 
  
mk ,x  

and {.} designates a set. In the same manner, we can get 
the set ( )kfset v  of positions having non-zero value. 

We determine the number of lines ( µ × Nc ) at which 
two directions can be resolved, here µ  is the number of 
lines whose   vk ,p  is not empty divided by  Nc . The width 

of the lwth main direction is 
  
πNvµ1×Nc ,lw / 2Na  with 

1 1, ,( ( ))
c cN lw N lwCard fset v Nvµ µ× ×=  ,   µ1 × Nc  is the line 

number of ADMAT at which fiber crossing is resolved 
for the first time. In this case, we can further determine 
how well the two directions can be resolved. To do that, 
we now compute the above-mentioned morphological 
metrics: length ratio 1(1 )µ−  , separability 

1( ) 1/ns cNµ µ− +  , and uncertainty

  
π (Nvµ1×Nc ,1 + Nvµ1×Nc ,2 ) / 4Na . 

3 Application of morphological metrics to 
compare the shape of 3D point cloud 

We apply the above-described morphological metrics 
to compare the shapes of different 3D point clouds 
(ODFs) derived from diffusion signals. To do that, the 
3D point clouds are first reconstructed by analytical q-
ball imaging (AQBI). Then the metrics such as MSE, 
sKL, RMSE and NMSE are calculated from 3D point 
clouds. Finally, we compare the quality of 3D point 
clouds sorted by different metrics.  

The diffusion signal was simulated using the multi-
tensor model. In the simulation, Rician noise was used. 
The signal-to-noise ratio (SNR) is defined as 

( )
( )

2

1
10 2

1

20 log
K

kk
K

k kk

S
SNR

S SN
=

=

⎛ ⎞
⎜ ⎟= × ⎜ ⎟−⎜ ⎟⎝ ⎠

∑
∑
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where kS represents noise-free signal and 
kSN  the 

signal corrupted by Rician noise. The assessment was 
performed in the condition with b-value=3000s/mm2 
and number of diffusion gradients ND=81. 

In Figure 4, the 3D point cloud of 90o crossing 
between 2 fibers is shown as ground truth (noise-free 
ODF) for the comparison of the shapes of 3D point 
clouds (noisy ODFs) at five voxels. For all the metrics, 
we observe that Voxels 1, 3, and 5 show clearer fiber 
crossing than Voxels 2 and 4. However, Tab 1 gives 
different quality sorting results of the 7 metrics. In terms 
of MSE, sKL and RMSE, Voxel 2 (3.2, 0.07 and 5.7) 
and Voxel 4 (3.4, 0.11 and 5.8) are considered of high 
quality, because these metrics have smaller values than 
Voxel 3 (4.8, 0.26 and 6.9) and Voxel 5 (4.1, 0.16 and 
6.4) that show clear fiber crossing. In terms of NMSE, 
Voxel 1 (0.2) is the worst one of the five voxels, but it is 
clearly better than Voxel 2 (0.17). Our length ratio, 
separability and uncertainty metrics show that Voxels 1, 
3 and 5 are better than Voxels 2 and 4. Each 
morphological metric sorted the voxels in different 
orders of quality based on different morphological 
characteristics without ground truth. 



We now give the results for the 3D point clouds 
(obtained using AQBI) containing 3-fiber crossing each 
other at 90o in each voxel. As shown in Figure 5, for the 
ODFs (50 in total) containing 3 fibers crossing each 
other at 90o, the mean length ratio, mean separability 
and mean uncertainty are respectively 1.9, 1.7 and 1.04 
in the noise-free cases. In noisy cases (SNR=10), the 
mean length ratio and mean separability decreased to 
1.52 and 0.6 respectively, and the mean uncertainty 
increased to 1.7. The mean separability decreased 
notably by 1.1 and the uncertainty increased by 0.66 in 
the noisy cases. 

 
Ground Truth 
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Figure 4: Examples of a noise-free 3D point cloud (ground truth) 
and five different 3D point clouds at 5 voxels for a SNR of 3. 
	
  
Tab 1: Measurement of different shape comparison metrics of 
the 3D point clouds in Figure 4 and the quality of 3D point cloud 
sorted by metrics. 

Metrics Metric values 
(from left to right: Voxels 1 to 5) 

MSE x 107 2.0 3.2 4.8 3.4 4.1 
sKL 0.07 0.07 0.26 0.11 0.16 

RMSE x 104 4.6 5.7 6.9 5.8 6.4 
NMSE 0.2 0.17 0.16 0.034 0.04 

Length ratio 0.8 0 0.8 0 0.8 
Separability 0.2 0 0.4 0 0.3 
Uncertainty 1.1 1.57 0.69 1.57 0.87 

 

	
   	
  
Figure 5: 3D point clouds (containing 3 fibers) computed from 
data noise free (left) and having SNR=10 (right) using AQBI. 
4 Conclusion 

We have proposed a novel paradigm allowing for the 
assessment of the characteristics of general 3D point 
clouds including the ODF in HARDI. The paradigm is 
based on the measurement of the morphological 
characteristics of 3D point clouds. The results showed 
that the proposed morphological metrics are consistent 
with the visual quality of 3D point clouds, which 
provides a new way to quantify their characteristics. 
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