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Résumé – Le développement de méthodes avancées d’acquisition et de traitement des images contribue à l’identification de nouveaux biomar-
queurs permettant la caractérisation de maladies cérébrales. Dans cette étude, nous nous intéressons à la classification automatique des stades
cliniques basés sur les images. Spécifiquement, nous proposons une méthode entièrement automatisée de classification par random forest des
différentes formes de scléroses en plaques à partir d’images de tenseur de diffusion. Cette méthode permet d’identifier : i) la façon dont chaque
faisceau de fibres contribue à la classification et ii) quelle métrique de diffusion est la plus descriptive pour analyser la dégradation qui survient
dans certains faisceaux de fibres.

Abstract – With the development of advanced image acquisition and processing techniques providing better biomarkers for the characterization
of brain diseases, the automatic classification of biomedical imaging constitutes an important field in research. In this work, we describe a new
fully automated random forest based method to classify multiple sclerosis clinical forms using information derived from diffusion tensor imaging.
This method allows to identify: i) how each fiber-bundle contributes to the classification; ii) what diffusion metric is more descriptive to analyze
the degeneration occurring in certain fiber-bundles.

1 Introduction

Multiple sclerosis (MS) etiology is yet to be understood. MS
constitutes a rich source of open problems for image process-
ing. This includes for instance: lesions segmentation algo-
rithms [1], longitudinal statistical analysis [2], new acquisition
models [3] and other automatic algorithms, to address specific
questions like quantification of well-known brain bio-markers.
In this work, we will focus on the classification of MS patients
in different clinical groups of the disease progression. Cur-
rently, MS patients are classified by the neurologist in different
clinical forms based on their clinical history and status. For the
first time, we will try to solve this prognostic question using a
computer-based method. Due to the unknown etiology of MS,
“model based” approaches could be difficult to formalize. This
limitation could be easily overcome using a “data-driven” ap-
proach based on machine learning algorithms [4]. Therefore,
we propose a new fully automated method based on random
forest classifier to classify MS clinical forms using diffusion
tensor imaging (DTI) derived metrics [5]. Furthermore, we
enriched our approach by selecting well-known white matter

(WM) fiber-bundles for the analysis. We focalized our anal-
ysis to find for each WM region the most sensitive diffusion
marker that better discriminate the different MS clinical forms.
This work presents the first step for the creation of other “data-
driven” methods that could be developed to use data derived
from image modalities, longitudinal changes and clinical his-
tory of the patient.

2 Materials and Methods

2.1 Subjects and Acquisition
Twenty-five relapsing remitting (RR) patients and 26 secondary
progressive (SP) patients with definite MS were included in this
study. Clinical history was collected and neurological exami-
nations including the EDSS and the MS functional composite
tests, were performed by a board-qualified neurologist for all
patients. Patients are diagnosed as definite MS according to
the McDonald’s criteria [6]. They were then classified by the
neurologist in different clinical forms based on their clinical
history and status. Twenty-six healthy volunteers with no his-



tory or signs of neurologic disorders served as control subjects
for the study. Local ethical committee approval and written in-
formed consent from all participants were obtained.
The DTI protocol was based on a 2D multi-slice spin-echo
echo-planar imaging (EPI) sequence (TR/TE=6900/86 ms, ac-
quisition time=7 min). Fifty-one contiguous, 2.5mm thick, ax-
ial slices according to the anterior commissure-posterior com-
missure plane were acquired. Twenty-four diffusion-gradient
directions (b = 1000 s

mm2 ) were applied. A nominal isotropic
2.5mm3 resolution was obtained by using a matrix size of 96 x
96 over a field of view of 240 x 240 mm. The b0 (b = 0 s

mm2 )
image was acquired four times to increase signal to noise ratio
while the other directions were acquired twice.

2.2 Image Pre-Processing and Data Preparation

The entire data processing and classification pipeline is com-
posed of three steps: i) registration and pre-processing of DTI
data; ii) tractography and fiber-bundle extraction; iii) feature
selection and classification. Diffusion images were processed
using the FRMIB software Library (FSL) [7]. First, eddy cur-
rent correction filter was applied to the 24 diffusion volumes
using the b0 as reference. After calculating the tensor model
using the FDT module of FSL, fractional anisotropy (FA), mean
diffusivity (MD), radial (λr) and axial (λa) diffusivity maps
were computed. Finally, all diffusion maps of each subject
were co-registered (non-rigid) on the Illinois Institute of Tech-
nology Atlas (IIT3) [8]. In order to extract the fiber-bundles, all
the 20 regions of interests (ROIs) contained in the JHU fiber-
bundles atlas [9] were used as seeds and masks for tractog-
raphy. To this end, a probabilistic streamline approach was
applied on the data of IIT3 atlas using the MRTrix probabilis-
tic tractography algorithm [10]. This process was repeated for
each fiber-bundle in the atlas. The suppression of the false pos-
itive fibers obtained during the tractography was performed by
post-processing tractography outputs. More in detail for each
fiber-bundle the Quick Bundle cluster algorithm [11] was ap-
plied and only the cluster with the highest mean fiber length
was selected. The last process consisted in the automatic ex-
traction of the diffusion metrics from the fiber-bundle. Based
on the resampled fibers, each fiber point (xi, yi, zi) was associ-
ated with the diffusion metric value of its corresponding voxel
(xi, yi, zi). Thus, every point of the fiber-bundle was associ-
ated with a set of diffusion metrics values allowing the charac-
terization of the diffusion properties of the entire bundle. For
each fiber-bundle four tables were generated, one for each of
the four diffusion metrics (FA, MD, λr and λa). Each of those
tables has 77 instances (one for each subject) and m features.
Each entry of the features vector contains the diffusion value
of one of the n voxels belonging to the fiber-bundle. Note that
due to the different length and width of the fiber-bundles, the
size of the feature vectors is not the same among them.

2.3 RELIEF-F feature selection
In data classification, the feature selection is one of the most
important steps during the data preparation. The role of this
step is to reduce the cardinality of the feature vector in order
to: 1) improve the computational time due to the fact that the
classification algorithm has to explore a smallest set of values,
and 2) increase the classification performances by selecting the
subset of attributes that could better discriminate the different
classes in the dataset. Due to its large application in image
classification, in this work the RELIEF-F [12] attribute selector
was used to perform the feature selection step. Since each fiber-
bundle could contain a large number of voxels (≥ 10000) we
chose RELIEF-F attribute selection due to its linear complexity
and to its high noise tolerance.

The idea behind RELIEF-F is to assign at each feature xi one
value called weight (wi). The weight value takes into account
the relation of the current feature xi with respect to its neighbor.
More in detail, let Y = {1 . . . C} be the set with all the classes
of the dataset. The weight of each feature is assigned by the
following equation:

wi = wi+
∑

c∈Y,c 6=Y (x)

P (c)

1− P (c)
(|xi−NM i

c(x)|−|xi−NHi
c(x)|)

where P (c) is the apriori to belong to the class c, NM i
c(x)

is set of Near-Miss instances (instances near to x belonging
to a different class) and NHi

c(x) is set of Near-Hit instances
(instances near to x belonging to the same class of x).

2.4 Random Forest Classification
In this work, the random forest classifier [13] developed in
WEKA [14] was selected due to its robustness and its simple
handling. Random forests are part of the ensemble methods for
classification that use a collection of z decision trees. The prin-
ciple of this classification technique is the following: during
the training part, for each decision tree bootstrap aggregating
(bagging) is used to create sample of the same size as the train-
ing data is created. For each node a random subset of features
is chosen and each tree is fully grown without pruning. At the
end of the training process the random forest generates z de-
cision trees capable to classify new instances. For the testing
step, a new instance is given as input to the random forest that
will generate z class prediction (one for each tree). The class
prediction that will be assigned to the new instance is the most
voted class from all the z classifiers.

2.5 Cross Validation and Performances Evalua-
tion

The main requirement of the classifier evaluator is to have two
datasets: test and a training test respectively used to train and
to test the classifier. If an external test set is not provided, the
same dataset should be used to perform both training and test
phases. The most common way to perform this split is to use



the so-called K-Fold cross-validation [15]. With this method a
given dataset with l instances is randomly split in k different
subsets. The instances contained in k− 1 subsets are then used
as training set while the remaining instances are used as test set.
The classifier is then evaluated using the classification results
on those subsets of data. The test is repeated k-times in order
to use all the k subsets as test set. In this work the generaliza-
tion of the classifier performances was ensured by performing
a 10 K-Fold cross-validation. The performance measurements
used in this work are based on the analysis of the True Positive
(TP), True Negative (TN), False Positive (FP) and False Neg-
ative (FN) instances classified during the testing phase. Pre-
cision, recall and F-Measure were used to measure the clas-
sification performances. More in detail, precision reflects the
fraction of retrieved instances that are correctly classified, and
is defined as TP

TP+FP . Recall represents the portion of positive
instances that are correctly identified and is defined as TP

TP+FN .
F-Measure is obtained combining precision and recall and it is
defined as 2 ∗ (precision∗recall)

(precision+recall) .

3 Results
The bundle classification pipeline was applied to the 20 fiber-
bundles namely: major and minor forceps of the Corpus Cal-
losum (CC), left (L) and right (R), Cortico-Spinal Tract (CST),
Inferior Fronto-Occipital Fasciculus (IFOF), Anterior Thala-
mic Radiation (ATR), and Uncinate Fasciculus (UC), Cingulate
Gyrus (CG), Hippocampus (HP), Inferior Longitudinal Fasci-
culus (ILF), Superior Longitudinal Fasciculus (SLF), Superior
Longitudinal Fasciculus Temporal (SLFT). The classification
performances were obtained for each fiber-bundle using one
diffusion metric as feature vector.

3.1 Classification Results
For each fiber-bundle and each of the diffusion metrics of the
4 tables, the RELIEF- F attribute selection algorithm was ap-
plied. Tests were performed (results not showed) to find the
best number of features to select and the number of threes of
the random forest. Based on those results, the 1000 most rele-
vant features (higher weights) were selected for the classifica-
tion task performed with 778 trees. The results of the classi-
fication performances for each fiber-bundle using the 4 diffu-
sion metrics are shown in Figure 1. The highest classification
was achieved with FA where the F-Measure ranged between
71.6% and 85.7% (mean=77.6%). F-Measures were similar in
MD and λr ranging between 65.8% and 89.5% (mean=76.8%)
and 66.9% and 84.1% (mean=77.0%) respectively. The worst
classification performances were obtained for λa, where the F-
Measure ranged between 63.7% and 84.5% (mean=75.6%).

The best classification performances were reached for MD
in the left ATR, and FA in the left CST. High levels of classi-
fication performances were also found in left CST, CC, IFOF
and SLF. We ranked each fiber-bundle according to their F-

Figure 1: (Top) Fiber-bundle colored according to their F-
Measure; fiber-bundles with low F-Measure value in blue and
with high F-Measure in red. (Down) Table with the F-Measure
performances obtained from the classification of each fiber-
bundle with a particular diffusion metric.

Measure values. This rank position was used to create a map
of the fiber-bundles that contributes the most for classification
of MS patients (Figure 1).

4 Discussion

Our method provided a complete, operator independent and au-
tomated processing pipeline applicable in large cohort studies.
Such reliability stands on the accuracy and robustness of the
pre- and post-processing procedures. By combining the mea-
surements of diffusion metrics on selected fiber-bundles, the
random forest classifier demonstrated high degrees of classi-
fication performances in terms of F-Measure. The resulting
performance values suggest that each fiber-bundle contributes
differently to the classification analysis. Indeed, certain fiber-
bundles, namely CST, ATR, and IFOF presented a more accu-
rate classification compared to the others. From a clinical point
of view, we observed that the fiber-bundles highlighted by the
classification are related to the typical MS clinical symptoms
like fatigue [16] and motor impairment [17]. Moreover, we
showed that the classification results depend also on the sensi-
tivity of each diffusion metrics. In agreement with our previ-
ous results, the best classification performances were obtained
using FA, MD and λr, while poor classification performances
were reached using λa.



5 Conclusion
We describe a first approach to classify clinically the MS pa-
tient using only information derived form images. As principal
results we have shown how the use of “data-driven” methods
like machine learning algorithm are very suitable in environ-
ments where build a model is not possible like in MS. Our
method present high degree of classification allowing also to
rank the WM fiber-bundles according to their capability to dis-
criminate the MS clinical forms. Finally our results are con-
sistent with the clinical studies. In conclusion, this method of-
fers a potential new tool to better characterize the pathological
mechanisms occurring along and inside the WM fibers of MS
patients. Such improved image biomarker identification could
provide a new approach for the classification of different MS
clinical forms and to better understand the MS disease evolu-
tion, if longitudinal data are available.
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